
CodeWarrior™
Development Tools

PowerPlant Advanced
Topics

Revised 8/12/03

Metrowerks, the Metrowerks logo, and CodeWarrior are trademarks or registered trade-
marks of Metrowerks Corp. in the US and/or other countries. All other tradenames and
trademarks are the property of their respective owners.

Copyright © Metrowerks Corporation. 2003. ALL RIGHTS RESERVED.

The reproduction and use of this document and related materials are governed by a
license agreement media, it may be printed for non-commercial personal use only, in
accordance with the license agreement related to the product associated with the doc-
umentation. Consult that license agreement before use or reproduction of any portion
of this document. If you do not have a copy of the license agreement, contact your
Metrowerks representative or call 800-377-5416 (if outside the US call +1-512-996-
5300). Subject to the foregoing non-commercial personal use, no portion of this docu-
mentation may be reproduced or transmitted in any form or by any means, electronic
or mechanical, without prior written permission from Metrowerks.

Metrowerks reserves the right to make changes to any product described or referred to in
this document without further notice. Metrowerks makes no warranty, representation or
guarantee regarding the merchantability or fitness of its products for any particular purpose,
nor does Metrowerks assume any liability arising out of the application or use of any prod-
uct described herein and specifically disclaims any and all liability. Metrowerks software
is not authorized for and has not been designed, tested, manufactured, or intended for
use in developing applications where the failure, malfunction, or any inaccuracy of
the application carries a risk of death, serious bodily injury, or damage to tangible
property, including, but not limited to, use in factory control systems, medical devices
or facilities, nuclear facilities, aircraft navigation or communication, emergency sys-
tems, or other applications with a similar degree of potential hazard.

USE OF ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE
SUBJECT TO THE METROWERKS END USER LICENSE AGREEMENT FOR SUCH
PRODUCT.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729
U.S.A.

World Wide Web http://www.metrowerks.com

Sales Voice: 800-377-5416
Fax: 512-996-4910
Email: sales@metrowerks.com

Technical Support Voice: 800-377-5416
Voice: 512-996-5300
Email: support@metrowerks.com

http://www.metrowerks.com

Table of Contents

1 Introduction 11
What’s in PowerPlant Advanced Topics 11
What’s New in PowerPlant Advanced Topics. 12
What You Should Know 12
Chapter Organization 12
Starting Points . 13

2 Debugging in PowerPlant 15
Introduction to Debugging in PowerPlant 15
Debugging Strategy . 16
Debugging Classes . 17

LDebugMenuAttachment 18
LDebugStream . 21
LCommanderTree 24
LPaneTree . 25
LHeapAction . 27
UHeapUtils . 27
UMemoryEater . 28
UDebugUtils . 29
UDebugNew . 29
UProcess . 30
UVolume . 30
UValidPPob . 30
Debugging Macros 30

Debugging PowerPlant Projects 33
Configuring Your Project 33
Adding the Classes 34
Installing the Menu 35
Customizing the Debugging Classes 37

Summary of Debugging in PowerPlant 38
Debugging Code Exercise 38
Where To Go From Here 51

3 Threads in PowerPlant 53
Introduction to Threads in PowerPlant 53
PowerPlant Advanced Topics PPA–3

Table of Contents
The Thread Strategy 54
Thread States . 55
Semaphores . 57
Inter-Thread Communication 57

Thread Classes . 58
LThread . 59
LSimpleThread . 64
UMainThread . 65
LYieldAttachment 66
LSemaphore . 66
LEventSemaphore 67
LMutexSemaphore 67
StMutex . 68
StCritical . 68
LLink . 68
LQueue . 68
LSharedQueue . 70

Implementing Threads in PowerPlant 70
Initializing Threads 70
Creating Threads 72
Running a Thread 74
Modifying Thread State 75
Deleting Threads 76

Data Coherency . 77
Criticality . 78
Context Switching 78
Using Semaphores 80
Inter-Thread Communication 85

Asynchronous Operations 87
Summary of Threads in PowerPlant 93
Code Exercise for Threads 93

4 Networking in PowerPlant 103
Introduction to Networking in PowerPlant 103

Where to Learn More About Networking 104
Software Requirements 105

Networking Strategy 106
PPA–4 PowerPlant Advanced Topics

Table of Contents
Generic Network Interface 107
Other Classes . 108
Strategic Summary 108

Networking Classes. 108
UNetworkFactory 109
LInternetAddress 110
LTCPEndpoint . 112
LUDPEndpoint . 117

Implementing a Network-Savvy Application 119
Creating a Client 120
Obtaining an Address 121
Creating a Client Endpoint 121
Binding to a Local Port 121
Connecting to a Server 122
Sending Data . 123
Receiving Data . 123
Disconnecting from a Server 123
Handling a Disconnect Request 123
Creating a Server 124
Listening for Incoming Connections 125
Responding to Incoming Connections 126
Implementing Threads 127
Connectionless Datagram Communications 127

Summary of Networking in PowerPlant 128
Code Exercise for Networking 129

SimpleClient . 129
SimpleServer . 133

5 Internet Programming in PowerPlant 137
Introduction to Internet Programming in PowerPlant 137

Where to Learn More About Internet Protocols 138
Software Requirements 139

Internet Programming Strategy 139
Generic Internet Protocol Interface 140
Specific Internet Protocol Interfaces 141
Internet Messages 142
General Utilities . 143
PowerPlant Advanced Topics PPA–5

Table of Contents
Strategic Summary 144
Internet Classes . 144

LInternetProtocol 147
LInternetResponse 159
LInternetMessage 163
Internet Class Utilities 168

Implementing an Internet Enabled Application 170
Choosing a Protocol 171
Creating a Protocol Client 172
Preparing Content 173
Addressing the Remote Computer 173
Creating the Protocol Thread 174
Creating a Connection 175
Sending Content to a Server 176
Receiving Responses From a Server 177
Listening For Progress Messages 177
Closing Down a Connection 179
Handling Abnormal Conditions 180

Summary of Internet Protocol Usage in PowerPlant 180
Code Exercise . 181

6 Tables in PowerPlant 195
Introduction to Tables in PowerPlant 195
Table Strategy . 196

Table Architecture 196
General Table Implementation 198

Table Classes . . 199
STableCell . 202
LTableView . 202
LColumnView . . 208
LTextColumn . 209
LSmallIconTable 209
LHierarchyTable 209
LTextHierTable . 212
LTableGeometry 212
LTableMonoGeometry 213
LTableMultiGeometry 214
PPA–6 PowerPlant Advanced Topics

Table of Contents
LTableSelector . . 214
LTableSingleSelector 215
LTableMultiSelector 216
LTableStorage . 216
LTableArrayStorage 217
LCollapsableTree 218
LNodeArrayTree 219
LDropFlag . 220

Implementing Tables in PowerPlant 220
Creating a Table . 221
Managing Rows and Columns 222
Setting Cell Data 225
Getting Cell Data 225
Handling Clicks in a Cell 227
Responding to Selections 227
Drawing a Cell . 228
Finding Cells . 229
Finding Data in a Table 230
Scrolling a Table . 231

Summary of Tables in PowerPlant 231
Code Exercise for Tables 232

7 Apple Events in PowerPlant 245
Introduction to Apple Events in PowerPlant 245

Where to Learn More About Apple Events 246
Apple Event Strategy 246
Apple Event Classes 249

LModelObject . . 250
LModelDirector . 257
LModelProperty 257
UExtractFromAEDesc 258
StAEDescriptor . 259
UAEDesc . 261
UAppleEventsMgr 262

Apple Event Resources 263
The ‘aete’ Resource 263
The ‘aedt’ Resource 265
PowerPlant Advanced Topics PPA–7

Table of Contents
Editing Apple Event Resources 265
Implementing Apple Events in PowerPlant 266

Adding Classes . 266
Adding Properties 268
Adding Custom Apple Events 269
Beyond the Basics 269

Code Exercise for Apple Events. 271
Edit Apple Event Resources 273
Create a Model Object in the Application 281
Add Model Properties to the Class 284
Add a Custom Event to the Application 286
Improve HandleCreateElementEvent() 288

8 Actions in PowerPlant 293
Introduction to Actions in PowerPlant 293
The Undo Strategy . 293
Action Classes . 294

LCommander . 295
LAction . 296
LUndoer . 298
LTETextAction . 299

Implementing Undo in PowerPlant 299
Create Action Classes 300
Attach an Undoer 301
Post an Action . . 301
Implement Multilevel Undo 301

Summary of Undo in PowerPlant 302
Code Exercise for Actions 303

9 Drag and Drop in PowerPlant 311
Introduction to Drag and Drop in PowerPlant 311
Drag and Drop Strategy 312
Drag and Drop Classes 314

LDragTask . 314
LDropArea . 316
LDragAndDrop . 319

Implementing Drag and Drop in PowerPlant 320
PPA–8 PowerPlant Advanced Topics

Table of Contents
Looking for the Drag Manager 320
Handling Clicks . 321
Identifying a Drag 324
Creating a Drag Task 324
Tracking a Drag . 326
Receiving a Drop 328
Providing Custom Drag Behavior 328

Summary of Drag and Drop in PowerPlant. 330
Code Exercise for Drag and Drop 330

10 Offscreen Drawing in PowerPlant 339
Introduction to Offscreen Drawing in PowerPlant 339
Offscreen Drawing Strategy 340
Offscreen Drawing Classes. 341

LGWorld . 341
StOffscreenGWorld 345
LOffscreenView . 347

Implementing Offscreen Drawing in PowerPlant 348
Using LOffscreenView 348
Using StOffscreenGWorld Directly 348
Using LGWorld . 349

Code Exercise for Offscreen Drawing 351

Index 365
PowerPlant Advanced Topics PPA–9

Table of Contents
PPA–10 PowerPlant Advanced Topics

1
Introduction

This manual is a collection of topics that help you implement
advanced features of PowerPlant and Mac OS in your code.

What’s in PowerPlant Advanced Topics
Welcome to the PowerPlant Advanced Topics manual. This manual
shows you how to use PowerPlant to implement a wide variety of
advanced features of the Mac OS.

This manual presents the following topics:

• Debugging in PowerPlant

• Threads in PowerPlant

• Networking in PowerPlant

• Internet Programming in PowerPlant

• Tables in PowerPlant

• Apple Events in PowerPlant

• Actions in PowerPlant

• Drag and Drop in PowerPlant

• Offscreen Drawing in PowerPlant
PowerPlant Advanced Topics PPA–11

Introduction
What’s New in PowerPlant Advanced Topics
What’s New in PowerPlant Advanced Topics
The chapter on debugging is completely new. Other chapters have
been revised for updates and corrections.

What You Should Know
To get the most from this manual, you should be familiar with
PowerPlant programming. PowerPlant is a Mac OS application
framework written in C++. Therefore you should be familiar with
Mac OS programming, and with the C++ language.

In addition, this manual assumes you are familiar with the material
covered in The PowerPlant Book. That title is available as part of the
CodeWarrior documentation. The PowerPlant Book introduces you to
PowerPlant and how to write a PowerPlant application. It covers
basic PowerPlant features such as framework architecture,
framework design, panes, views, controls, debugging, menus,
windows, dialogs, file I/O, printing, periodicals, and attachments.

Chapter Organization
Most chapters in this manual follow the same internal structure. The
first part of each chapter discusses PowerPlant fundamentals for the
topic at hand. It introduces you to the classes involved in that
chapter and how you use them. Each chapter discusses the relevant
member functions and data members, the inheritance chain, and the
common situations in which you use each class.

The second part of each chapter is a code exercise. In this part of the
chapter you write real PowerPlant code following step-by-step
instructions. This gives you an opportunity for hands-on practice
with the real thing.

The code exercises are all application-based. PowerPlant is first and
foremost an application framework, after all. However, you can use
PowerPlant classes for other programming projects such as code
resources and shared libraries.
PPA–12 PowerPlant Advanced Topics

Introduction
Starting Points
Starting Points
Pick a topic that interests you, and go to that chapter. You do not
need to read this manual sequentially. Each chapter is an
independent entity. In each chapter you will learn what you need to
know to use PowerPlant effectively to implement your chosen
functionality.
PowerPlant Advanced Topics PPA–13

Introduction
Starting Points
PPA–14 PowerPlant Advanced Topics

2
Debugging in PowerPlant

This chapter discusses how to use the PowerPlant Debugging
classes to give you more control when debugging your PowerPlant
code. In addition, the debugging classes provide interfaces to other
debugging utilities if they are installed.

Introduction to Debugging in PowerPlant
Debugging is a critical part of the software development cycle.
There are many bugs that are difficult to track down using normal
debugging techniques. In many cases, these bugs remain in the final
release of software.

The PowerPlant debugging classes aid you in tracking down these
bugs and give you a greater understanding of what happens in your
code. The debugging classes are designed to “plug in” to your
existing CodeWarrior projects with minimal changes to your code.

The topics discussed in this chapter are:

• Debugging Strategy—PowerPlant approach to debugging

• Debugging Classes—in depth look at the debugging classes

• Debugging PowerPlant Projects—how to implement the
debugging classes in your PowerPlant projects

• Summary of Debugging in PowerPlant—chapter summary

• Debugging Code Exercise—using the classes in a real world
example
PowerPlant Advanced Topics PPA–15

Debugging in PowerPlant
Debugging Strategy
Debugging Strategy
The debugging classes help you expose, diagnose, and prevent
problems in your code before they become serious. Ultimately, the
debugging classes try to help you write better code.

The debugging classes work on two levels. On one level, they
provide an easy interface for the PowerPlant debugging macros
(Throw_ and Signal_) as well as additional classes to stress test
and track down various bugs in your code.

On another level, the debugging classes provide an easy interface to
other utilities that can (and should) be used when debugging your
PowerPlant project. Some of these utilities are provided by
Metrowerks while others are provided by other companies. These
utilities include:

• MacsBug—free low level debugger provided by Apple
Computer, Inc.

• ZoneRanger—memory leak detection utility by Metrowerks.

• DebugNew—source code library by Metrowerks to detect and
report memory leaks when using operator new, checks for
double-deletes, writing beyond the block’s size, dangling
pointers, and more.

• QC™—Control Panel/Extension from Onyx Technology that
adds the ability to stress test applications for runtime and
memory related errors.

• Spotlight™—stand alone debugging aid from Onyx Technology
that performs memory protection, discipline checking on
toolbox calls, and leaks detection.

• MoreFiles—by Jim Luthor/Apple DTS, while not a debugging
aid, provides many helpful routines to use with the Mac OS File
Manager. The latest version of MoreFiles can be downloaded
from ftp://members.aol.com/JumpLong/.

NOTE Any debugger capable of catching Debugger() and DebugStr()
traps reported by the PowerPlant Debugging classes can be used.
It’s required that a debugger be installed or running as you debug
your application.
PPA–16 PowerPlant Advanced Topics

Debugging in PowerPlant
Debugging Classes
MacsBug, ZoneRanger, and DebugNew are provided on the
CodeWarrior CD’s. Demo versions of QC and Spotlight can be
downloaded from the Onyx Technology web page at:

http://www.onyx-tech.com/

See also The PowerPlant Book for more information on using the
Throw_ and Signal_ macros.

Debugging Classes
The PowerPlant debugging classes are designed to work in your
existing projects with minimal changes to your code and no changes
to your resources. Figure 2.1 shows the main classes.

Figure 2.1 The primary debugging classes

This section discusses the following classes:

LDebugMenuAttachment UMemoryEater

LPaneTree UDebugUtils

LCommanderTree UDebugNew

LDebugStream UProcess
PowerPlant Advanced Topics PPA–17

Debugging in PowerPlant
LDebugMenuAttachment
Other important files include:

• PP_DebugMacros.h—contains most of the Debugging Macros
used by these classes. Using these macros while debugging will
catch many problems in your code.

• PP Debug Support.ppob & PP Debug Support.rsrc—
contain the necessary resources for use with the Debugging
Classes.

See also: “Debugging Macros.”

LDebugMenuAttachment

LDebugMenuAttachment is the main entry point for working with
the debugging classes. It does the work of implementing the
debugging menu.

The debug menu is added to your menu to give you easy access to
many of the Debugging Classes’ features. Figure 2.2 shows the
Debug menu.

The debugging menu is created from a high numbered resource to
try and reduce the impact if you implement the Debugging Classes
in an existing project. See “Customizing the Debugging Classes” for
information on what to do if you run into resource ID conflicts
between your resources and those used by the Debugging Classes.

LHeapAction UVolume

UHeapUtils UValidPPob
PPA–18 PowerPlant Advanced Topics

Debugging in PowerPlant
LDebugMenuAttachment
Figure 2.2 Debug menu

See also “Debugging PowerPlant Projects.”

Provided you have all the supported tools installed, the debugging
menu allows you to:

• break into the debugger

• launch ZoneRanger

• view the commander chain (LCommanderTree)
PowerPlant Advanced Topics PPA–19

Debugging in PowerPlant
LDebugMenuAttachment
• view the visual hierarchy (LPaneTree)

• manipulate the heap (compact, purge, scramble)

• access DebugNew (validate and report leaks)

• manipulate QC (activate, set test state, other API commands)

• change the value of gDebugThrow and gDebugSignal at
runtime without requiring you to recompile your code

• consume memory (UMemoryEater)

• validate PPob resources (UValidPPob)

LDebugMenuAttachment has many functions. There are five main
functions that you need to know. These are shown in Table 2.1

Table 2.1 Important LDebugMenuAttachment methods

You must build the LDebugMenuAttachment after the menubar is
created or you will run into problems. The best place to do this is in
your application’s Initialize() function. See The PowerPlant
Book for more information on the Initialize() function.

Method Purpose

LDebugMenuAttachment() constructor, sets up the debug
menu

~LDebugMenuAttachment() destructor, releases resources
and deletes the debugging
menu

SetDebugInfoDefaults() fills the SDebugInfo struct
with default resource ID values

InstallDebugMenu() installs the Debug menu,
Creates the menu using factory
defaults, registers Debugging
Pane/Attachment classes

InitDebugMenu() initializer: builds and installs
the menu. Must be called
immediately after the
LDebugMenuAttachment is
created.
PPA–20 PowerPlant Advanced Topics

Debugging in PowerPlant
LDebugStream
The SDebugInfo struct contains “preference” information about
how you wish LDebugMenuAttachment to behave. Currently
SDebugInfo contains pane and resource ID’s used by some of the
classes. This struct must be filled in completely. You can fill the struct
with your own ID’s, or call SetDebugInfoDefaults() to use the
default ID’s retreaved from PP_DebugConstants.h.

The best approach is to call SetDebugInfoDefaults() and then
change only the fields you need changed as shown in Listing 2.1.

Listing 2.1 Filing out SDebugInfo
SDebugInfo theDebugInfo;
LDebugMenuAttachment::SetDebugInfoDefaults(theDebugInfo);
theDebugInfo.commanderTreePPobID = PPob_LCommanderTreeWindow;
theDebugInfo.paneTreePPobID = PPob_LPaneTreeWindow;
theDebugInfo.validPPobDlogID = PPob_DialogValidatePPob;
theDebugInfo.eatMemPPobDlogID = PPob_EatMemoryDialog;

See also “Customizing the Debugging Classes” for more
information.

InstallDebugMenu() is provided as a convenience for those that
want to get up and running quickly. However,
InstallDebugMenu() uses defaults for all settings which may not
be appropriate for your particular needs.

LDebugStream

LDebugStream is based on LStream (though not derived from
LStream) that implements a one way (write-only) stream for
reporting purposes. LDebugStream maintains an internal buffer of
text (your debugging information) that flushes automatically, or
when called explicitly.

The output can be sent to a file, to a debugger, or wherever
gDebugThrow or gDebugSignal are set. When the output is sent
to a file, the file is created automatically. Alternatively, you can
overwrite or append if the file already exists.

LDebugStream has seven data members, as shown in Table 2.2.
PowerPlant Advanced Topics PPA–21

Debugging in PowerPlant
LDebugStream
Table 2.2 LDebugStream data members

LDebugStream has accessor functions to get or set the value of each
member variable.

The mFlushLocation member can have one of five values, as
shown in Table 2.3.

Table 2.3 mFlushLocation settings

LDebugStream has many functions. The main functions are shown
in Table 2.4.

Data member Stores

mMarker current marker position in the stream

mLength size of the stream in bytes

mDataH handle to the stream data

mAutoFlush automatically flush data in stream at a set
interval—default is false

mAppendToFile if file already exists, append data in stream
to the file—default is true

mFlushLocatio
n

flush stream data

mFileLocation physical location of the file containing the
debug data

Value Meaning

flushLocation_Default send data to a file

flushLocation_File send data to a file

flushLocation_Debugger send data to the debugger

flushLocation_DebugThrow send data to wherever gDebugThrow is set
(usually an alert)

flushLocation_DebugSignal send data to wherever gDebugSignal is set
(usually an alert)
PPA–22 PowerPlant Advanced Topics

Debugging in PowerPlant
LDebugStream
Table 2.4 LDebugStream main functions

SetFilename() is called automatically by the LDebugStream
constructor and sets the file name to the name of your application
plus “debug log.” However, you can call SetFilename to change the
name of the output file if you wish. This is what UValidPPob does.

TimeStamp() takes an LStr255 as a parameter and places the
current date and time in that string.

Flush() writes the internal buffer to a the location specified by
inFlushLocation. If inDisposeAfterFlush is true, the
internal data buffer is disposed of for a “full flush.”

WriteData() and WriteBlock() both call PutBytes() to do
their job.

As well, there are many redirection operators (<< and >>) that can
be used with LDebugStream. See LDebugStream.h for futher
details.

Function Purpose

GetHeader() creates a header to prepend to
the file log for each Flush()

SetFilename() sets filename to use for flush
(21 character maximum)

TimeStamp() creates a time stamp

Flush() flushes the internal buffer to
the appropriate location

PutBytes() write bytes from a buffer to the
internal buffer

WriteData() write data, specified by a
pointer and byte count, to a
stream

WriteBlock() write data, specified by a
pointer and byte count, to a
stream
PowerPlant Advanced Topics PPA–23

Debugging in PowerPlant
LCommanderTree
LCommanderTree

LCommanderTree is an extremely useful class to help determine
Commander chain validity and diagnose Commander chain
problems (a common occurrence).

LCommanderTree is a subclass of LTree that creates an information
window displaying a visual representation of the command chain.
LCommanderTree allows you to see each LCommander object in
the command chain, including subcommanders and super–
commanders, the state of each commander (on, latent, off), the
current chain, and the current target.

If the LCommander object is also a pane, the object’s PaneIDT is
also displayed in the window (Figure 2.3).

Figure 2.3 LCommanderChain window

The Commander information is displayed using user-specified
styles:

• All data is initially displayed in LCommanderChain’s base
TextTraitsRecord. You can specify your own ‘Txtr’ resource in
the PPob file.

• The current Target is displayed in the base TextTraitsRecord
plus a Target Color. The default is red.
PPA–24 PowerPlant Advanced Topics

Debugging in PowerPlant
LPaneTree
• Commanders in the current command chain are shown in the
base TextTraitsRecord plus a Style. The default is bold.

• Latent subcommanders are displayed in the base
TextTraitsRecord plus a style. The default is italic.

Each of these options can be changed to suit your style. See
“Customizing the Debugging Classes” for more information.

Other than the visual appearance, LCommanderTree is designed to
be used “as is” without programmer intervention. Accessor
functions to control how often LCommanderTree updates the
display are available in the Debug menu, or use the buttons
provided in the Command Chain window.

LPaneTree

LPaneTree displays a visual hierarchy of a PowerPlant window or
view. This visual hierarchy is similar to the Hierarchy View in
Constructor, the difference being that Constructor displays the
visual hierarchy in a PPob resource, LPaneTree displays the visual
hierarchy at runtime.

LPaneTree displays the Pane by typename, PaneIDT, pane state
(active, enabled, visible), and descriptor (if any). Furthermore,
LPaneTree can optionally display Attachment and Broadcaster/
Listener, information, hiliting the Pane currently under the cursor
for easy location of objects within a hierarchy (Figure 2.4).
PowerPlant Advanced Topics PPA–25

Debugging in PowerPlant
LPaneTree
Figure 2.4 LPaneTree window

The color used to hilite the cursor position can be changed in the
PPob resource. See “Customizing the Debugging Classes” for more
information.

In order to reduce the amount of drawing in the window,
abbreviations are used where possible.

The following information is displayed for panes:

• the name/type of the object

• the PaneIDT. (Will display as integer or FourCharCode
automatically)

• the states of the object: (A)ctive, (E)nabled, (V)isible. If the state
is not displayed, the state is opposite (e.g.: a state of EV would be
a deactivated, enabled, visible pane)

• the descriptor of the pane, if any

The following information is displayed for attachments:

• the name/type of the object

• the MessageT to respond to (as integer)

• if ExecuteHost or not
PPA–26 PowerPlant Advanced Topics

Debugging in PowerPlant
LHeapAction
Broadcaster/Listener information is displayed as follows:

• Broadcaster/Listener information is always on the line
following the Broadcaster/Listener, indented, and in a simple
list fashion.

• the name of the Broadcaster/Listener

• if a Pane, the PaneIDT in parentheses

LPaneTree is designed to be used “as is” without programmer
intervention. Accessor functions to control how often the visual
hierarchy window updates are accessed through the Debug menu,
or use the buttons provided in the Visual Hierachy window.

NOTE Currently, LPaneTree has one limitation. It cannot display the visual
hierarchy of a floating window. This is mainly due to the fact that the
DebugClasses’ own floating windows would also be displayed, but
are not actually part of your application. You can subclass
LPaneTree if you require this functionality however.

LHeapAction

LHeapAction is a PowerPlant LPeriodical subclass that performs
various actions (compact, purge, compact & purge) on a given heap
at specified intervals. LHeapAction calls UHeapUtils to do the
actual work.

You control LHeapAction through the Debug menu, including
starting, stopping, and changing the interval between operations.

UHeapUtils

UHeapUtils does all the actual work of compacting, purging, and
scrambling the heap. UHeapUtils is actually a namespace so the
functions can be called from anywhere in your code.

You control the heap through the Debug menu. This does not
prevent you from calling the functions in UHeapUtils directly
however.

UHeapUtils has four main functions as shown in Table 2.5.
PowerPlant Advanced Topics PPA–27

Debugging in PowerPlant
UMemoryEater
Table 2.5 UHeapUtils main functions

ScrambleHeap() requires QC or MacsBug to work. If MacsBug is
used, the screen will flicker as you drop in and out of MacsBug. If
you use another debugger (such as the IDE or SpotLight), this
routine will not work.

UMemoryEater

UMemoryEater is a class that allows you to consume memory in a
controlled manner thus aiding you in testing how your program
handles low memory conditions.

Choose Eat Memory from the Debug menu. The dialog box shown
in Figure 2.5 appears. From here, you can control how much
memory to consume and how the memory is allocated (Handle or
Pointer). You can then release all the memory you used up by
choosing Release Eaten Memory from the Debug menu.

Figure 2.5 Eat Memory dialog box

Function Description

CompactHeap() Compacts the heap.

PurgeHeap() Purges the heap.

CompactAndPurgeHeap() Compacts and purges heap.

ScrampleHeap() Scrambles the heap. Uses QC if
installed. Otherwise uses
MacsBug.
PPA–28 PowerPlant Advanced Topics

Debugging in PowerPlant
UDebugUtils
It’s best to use UMemoryEater in conjunction with a heap viewing
utility such as ZoneRanger. This helps you make better estimates on
how much memory to “eat” and gives you a better idea of your
appliction’s memory requirements.

UMemoryEater “zaps” it’s blocks with specific values
(PP_UMemoryEater_ZapValue) for easy identification in
ZoneRanger. See UMemoryEater.cp for more information.

UDebugUtils

UDebugUtils is implemented as a namespace and contains a useful
set of routines to check the debugging environment.

UDebugNew

UDebugNew is a collection of mini-utilities to work with
DebugNew. Table 2.6 describes what each fuction does.

Table 2.6 UDebugNew functions

Function Description

ValidateAll() Performs a validation of all allocated blocks

ValidatePtr() validate that a pointer points to a valid,
uncorrupted block

GetPtrSize() Returns the size of the pointer

Report() write memory leak tracking status to leaks.log
file, returns number of leaks

Forget() tell DebugNew to ignore any currently
allocated blocks in the leak report

ErrorHandler() A PowerPlant savvy replacement for
DebugNew's error handler

SetErrorHandler() sets the DebugNew error handler to the given
procedure

InstallDefaultErrorHandler(
)

Installs UDebugNew::ErrorHandler as the
default error handler
PowerPlant Advanced Topics PPA–29

Debugging in PowerPlant
UProcess
UProcess

UProcess is a set of wrapper functions for the Mac Process Manager.
These utilties can be easily used outside of the Debugging Classes.

UVolume

UVolume is a collection of utility routines for manipulation and
information gathering with volumes. Optionally uses MoreFiles if
enabled. These utitlies can be used outside of the Debugging
Classes.

UValidPPob

UValidPPob validates PPobs by comparing what is within the
PPobs vs. what is registered (in URegistrar). Helps to ensure you
have everything registered that you should.

Table 2.7 UValidPPob functions

ValidatePPob() presents a dialog requesting a PPob ID. Type in
the PPob ID you want to validate. Both functions can be accessed
from the Debug menu.

Debugging Macros

The Debugging Classes include many useful macros to make
debugging easier and writing code easier and more robust. Also,
many of these macros automatically call other utilities if they are
present, eliminating the need to write extra code. The other benefit
these macros provide is they can be left in final builds of your
project. No need to write conditional preprocessor directives as this
is automatically taken care of for you (see “Debugging PowerPlant
Projects” for more information).

Function Description

ValidatePPob() Validate a single PPob ID.

ValidateAllPPobs() Validates all PPob’s in the
resource fork.
PPA–30 PowerPlant Advanced Topics

Debugging in PowerPlant
Debugging Macros
Not all macros are described here. You should look over
PP_DebugMacros.h, UDebugNew.h, UHeapUtils.h, and
UOnyx.h. These files contain other macros and usage comments
helpful in debugging.

FindPaneByID_(ContainerView, PaneID, PaneClassType)

The FindPaneByID_() macro simplifies FindPaneByID() and
also performs a lot of the checking and safety for you.

First, it ensures the view isn’t nil. Second, it performs a safe
“getting” of the pane through dynamic_cast. FindPaneByID_()
then checks if the returned pointer is nil. Finally, if all is well, the
pointer is returned. Listing 2.2 shows an example of how to use
FindPaneByID() normally.

Listing 2.2 Before DebugFindPaneByID_()
Assert_(theWindow != nil);
LCaption *theCaption = dynamic_cast<LCaption*>
 (theWindow->FindPaneByID(1));
ThrowIfNil_(theCaption);

Listing 2.3 shows how to use FindPaneByID_() to perform the
same task.

Listing 2.3 After FindPaneByID_()
LCaption *theCaption = FindPaneByID_(theWindow, 1, LCaption);

Instead of throwing on failures, you can use
FindPaneByIDNoThrow_() which raises signals and returns a nil
pointer.

DebugCast_(ptr, BaseType, ResultType)

This macro is similar to DebugFindPaneByID_() in that it
performs a dynamic_cast of one type to the other and then
validates if the cast was successful or not.

ValidatePtr_(ptr)

Validates the given pointer allocated via the Mac OS Toolbox
routine NewPtr() to ensure a non-nil value before using it. Calls
PowerPlant Advanced Topics PPA–31

Debugging in PowerPlant
Debugging Macros
QCVerifyPtr() if QC is installed. The pointer can not be allocated
via new or malloc.

In non-debug builds, ValidatePtr_() only checks for nil.

ValidateHandle_(Handle)

Similar to ValidatePtr_() but for handles allocated via the Mac
OS Toolbox routine NewHandle(). This macro also validates the
master pointer. Calls QCVerifyHandle() if QC is installed.

ValidateObject_(obj) / ValidateObj_(obj)

Validates a C++ object allocated via operator new.
ValidateObject_() must not be used on stack-based classes.

Only checks for nil in a final build.

ValidateThis_()

Shortcut macro. Same as calling ValidateObject_(this).

ValidateSimpleObject_(obj)

Used to validate simple C++ objects allocated via operator new.
Simple C++ objects are objects with no virtual functions (such as
LMenu).

AssertHandleLocked_(handle) /
AsserHandleUnlocked_(handle)

These two macros ensure the handle is locked (or unlocked) before
proceeding. Displays a signal dialog if the test fails.

DisposOf_(obj)

Deletes the given object. Before deletion validates the pointer,
performs a few assertions. After deleting, sets the pointer variable to
nil. In release builds, DisposOf_() just deletes the object and sets
the pointer to nil. No validation occurs.
PPA–32 PowerPlant Advanced Topics

Debugging in PowerPlant
Debugging PowerPlant Projects
Debugging PowerPlant Projects
Setting up an existing PowerPlant project to use the Debugging
Classes is a straight forward process. If you used the PowerPlant
stationery to create your own project (recommended) the basic
infrastructure of non-debug-related classes (pane and control
classes) is already part of the project. There are some additional
requirements that you need to be aware of however.

This section discusses the following topics:

• Configuring Your Project—build target settings and macro setup

• Adding the Classes—what classes to add to your project

• Installing the Menu—how to create and set up the
LDebugMenuAttachment class

• Customizing the Debugging Classes—how to resolve resource
ID conflicts and change the appearance

TIP Instead of repeating this procedure every time you start a new
project, use the “Advanced” stationery which includes the
Debugging Classes.

Configuring Your Project

Before adding the Debugging Classes to your project, you should
make sure you have at least two build targets, one for debugging,
the other for final or release build. The name of the build target itself
does not matter.

For the debug build, make sure all debugging information is turned
on and all optimizations are turned off. You can compre the settings
used from the example project for this chapter discussed in
“Debugging Code Exercise.”

Another area to configure is the Prefix file used for the debug and
release builds. One method (and the one used in the code exercise)
is to use separate prefix files for debug and release builds that
define the main debugging macro for your project. Each prefix file
then #include’s a “common” prefix file that sets up the preprocessor
PowerPlant Advanced Topics PPA–33

Debugging in PowerPlant
Adding the Classes
macros and other extras based on the value of your main debug
macro “switch.”

The master debug macro directive can be a unique value for every
project. Alternatively, you can use a generic name such as
__APP_DEBUG__. If you create your own project stationery, this
master compiler directive then only needs to be set up once.

See also The IDE User’s Guide and the C/C++ Compilers Reference
for more information on debug settings.

Adding the Classes

The easiest method to add the main Debugging Classes to an
existing PowerPlant project is to simply drag the _Debugging
Classes folder from the Finder to the CodeWarrior Project
window. The CodeWarrior IDE will prompt you for which build
targets to include these files in, add the access paths to those targets,
and create a group layout similar to the Finder layout.

Make sure you add these files to your debug build target (or targets)
only. You can then remove the extra header files from your project if
you wish.

Other requirements

The Debugging Classes require a few other files and classes to work
properly. Depending on the needs of your application, you may
already include these in your project.

LRadioGroupView.cp and UFloatingDesktop.cp need to be
included in your project. If your project doesn’t require these files,
make sure these files are only in the debug build.

The debugging classes also use MetroNubUtils.c to determine
dubugger information. This file should only be included in your
debug target.

Resolving file conflicts

There are a few files that conflict between the Debugging Classes
and those used by all PowerPlant programs. For these cases, you
need to make sure the files required by the Debugging Classes are
PPA–34 PowerPlant Advanced Topics

Debugging in PowerPlant
Installing the Menu
only used in the debug build and those required by PowerPlant in
the release build.

UFloatingDesktop.cp conflicts with UDesktop.cp. All
PowerPlant programs must include one of these files. If your project
does not use floating windows, make sure UDesktop.cp is only
included in your release build and UFloatingDesktop.cp is only
included in the debug build. If your application uses floating
windows, you only need UFloatingDesktop.cp for both build
targets.

Similarly, PP DebugAlerts.rsrc used in all PowerPlant
applications, conflicts with the PP Debug Support.rsrc. file
used by the Debugging Classes.

Finally, UDebugging.cp conflicts with UDebuggingPlus.cp
used by the Debugging Classes.

Installing the Menu

Once your project is configured, you need to write the code to
install and configure the Debug menu as well as fill out the
SDebugInfo structure.

1. Check the debugging environment

It is important to make a few checks to the debugging environment
before things proceed too far. Insert a call to UDebug–
Utils::CheckEnvrionment() just after toolbox initialization. It
must be done after the toolbox is initialized because of the potential
for dialogs to be displayed.

This call ensures the debugging environment is ok before
proceeding. If not, Signals are raised to alert you of the situation.
This check is only needed if debugging.

2. Install the menu

There are actually a few different ways the
LDebugMenuAttachment can be created. You can use
InstallDebugMenu(), or the LDebugMenuAttachment
constructor, or use the method employed by the code exersise later
PowerPlant Advanced Topics PPA–35

Debugging in PowerPlant
Installing the Menu
in this chapter. You need to perform this step in your applicaiton’s
Initialize() method.

Note that if you use InstallDebugMenu(), LCommanderTree,
LPaneTree and LTreeWindow are registered for you.

If you want to change the default preferences used by
LDebugMenuAttachment, do not use InstallDebugMenu().
Instead, you should declare an SDebugInfo struct and call
SetDebugInfoDefaults() to fill in the default values. You can
then modify the settings you want manually. Then call the
LDebugMenuAttachment parameterized contructor passing your
SDebugInfo variable as shown in Listing 2.4.

Listing 2.4 Changing default preferences
SDebugInfo theDebugInfo;
LDebugMenuAttachment::SetDebugInfoDefaults(theDebugInfo);
theDebugInfo.commanderTreePPobID = PPob_LCommanderTreeWindow;
theDebugInfo.paneTreePPobID = PPob_LPaneTreeWindow;
theDebugInfo.validPPobDlogID = PPob_DialogValidatePPob;
theDebugInfo.eatMemPPobDlogID = PPob_EatMemoryDialog;

mDebugAttachment = NEW LDebugMenuAttachment(theDebugInfo);

3. Initialize the menu

Once the LDebugMenuAttachemnt is created, call
InitDebugMenu() function and then add the attachment to your
application object.

mDebugAttachment->InitDebugMenu();
AddAttachment(mDebugAttachment);

InitDebugMenu() performs the actual initialization of the Debug
menu.

NOTE InitDebugMenu() must be called explicitly as this is one of the
methods to override if you wish to customize the look and/or
behaviour of the Debug menu. If InitDebugMenu() was called
from the LDebugMenuAttachment constructor and you subclassed
and overrode this method, your overide would never get called.

If you call InstallDebugMenu(), you can omit this step.
PPA–36 PowerPlant Advanced Topics

Debugging in PowerPlant
Customizing the Debugging Classes
4. Destroy the menu

Make sure the menu is disposed of properly in your application
object’s destructor by using the Debugging Classes’ DisposOf_()
macro.

Listing 2.5 Disposing the LDebugMenuAttachment
#if __APP_DEBUG__
 DisposOf_(mDebugAttachment);
#endif

5. Register pane classes

Since the Debug windows are created from PPob’s, you need to
ensure that you register all of the classes that are in those PPob’s.

Listing 2.6 Register debug classes
RegisterClass_(LTreeWindow);
RegisterClass_(LCommanderTree);
RegisterClass_(LPaneTree);

If you call InstallDebugMenu(), you can omit this step.

Customizing the Debugging Classes

Depending on your needs, you may want to customize the
Debugging Classes. The most common situation where you do this
is when adding the Debugging Classes resources to an existing
project causes resource ID conflicts.

All the resource ID’s used by the Debugging Classes are stored in an
SDebugInfo struct. This struct is only used at initialization and is
never referred to again.

To solve the resource ID conflict, declare a local SDebugInfo
variable. Then call SetDebugInfoDefaults() with your variable
as a parameter. For example:

SDebugInfo theDebugInfo;
LDebugMenuAttachment::SetDebugInfoDefaults(theDebugInfo);

Now you can access the idividual fields of the SDebugInfo struct
to make the appropriate changes. For example, if your project
PowerPlant Advanced Topics PPA–37

Debugging in PowerPlant
Summary of Debugging in PowerPlant
doesn’t use the Appearance Manager classes, change the following
fields:

theDebugInfo.commanderTreePPobID = PPob_LCommanderTreeWindow;
theDebugInfo.paneTreePPobID = PPob_LPaneTreeWindow;
theDebugInfo.validPPobDlogID = PPob_DialogValidatePPob;
theDebugInfo.eatMemPPobDlogID = PPob_EatMemoryDialog;

Look at LDebugMenuAttachment.h for a complete description of
each field in the SDebugInfo struct.

Summary of Debugging in PowerPlant
Debugging is an imporant part of the software development cycle.
The PowerPlant Debugging Classes enable you to track down subtle
bugs in existing or new projects. The Debugging Classes are easy to
set up and use but are flexable enough to conform to the needs of
any project.

There is much more to these classes than can be covered in a single
chapter. You are encouraged to read through the source code and
comments for the Debugging Classes and the example exercise.

The code example for this chapter provides a good overview of how
to set up and use various classes when debugging your projects.

Debugging Code Exercise
In this exercise, you use the debugging classes to find various bugs
in the code. The purpose of this exercise is to give you a feel for how
to use the debugging classes in a real world project and the benefits
the classes provide you as a developer. This exercise is not a tutorial
in debugging technique, though you may garner some useful tidbits
here that you can use in your own code.

WARNING! This example must contain obvious errors and other problems in
order to demonstrate the utility and significance of the PowerPlant
Debugging Classes. As such, there may be steps that cause the
application, or even your system, to crash. It’s recommended you
PPA–38 PowerPlant Advanced Topics

Debugging in PowerPlant
Debugging Code Exercise
perform a backup of your system before proceeding with this
example.

The program itself doesn’t do anything spectacular, but is
structured to demonstrate the utility of the Debugging Classes. Each
step that requires code input is shown in the source with a delimiter
to find things quicker. The delimiter is:
// Insert Step # below

.and
// Insert Step # above

1. Examine the project

The purpose of this step is to give you an overview of how a project
is set up. This is not the only way to set up a project, but it is a
simple example.

The first thing to note is there are separate debugging and release
targets. The Debugging targets are set up with all optimizations
turned off and all debug information (Tracebacks, Generate SYM
info, etc.) turned on. The release builds turn off all debugging info
and have full optimization settings.

Note as well the different files that are included in the debug and
release builds. Of course, all the Debugging Classes are only in the
debug target. However, there are some more subtle changes.

For example, UDebuggingPlus.cp and PP Debug
Suport.rsrc are only in the debug build. UDebuging.cp and PP
DebugAlerts.rsrc are only in the release builds. This is a similar
technique to how UFloatingDesktop.cp and UDesktop.cp are
used in some PowerPlant projects.

Also note that some classes (mainly pane classes) are not included
in the final build. This is because of a desire to include only those
files directly needed for a target. The Debugging Classes have a bit
of an infrastructure requirement.

Lastly, there are no precompiled header files, but there are prefix
files. The prefix files are set up to handle the different targets
(debug, final). This is done because there are different desires for the
code depending on what is being targeted. For example, in the
debug prefix, various debug supports are enabled but disabled in
the final prefix.
PowerPlant Advanced Topics PPA–39

Debugging in PowerPlant
Debugging Code Exercise
2. Set up the prefix files
MusclePrefixCommon.h

There are three prefix files. MuscleDebug.h and MuscleFinal.h
define the conditional debugging macro __MUSCLE_DEBUG__
depending if it’s a debug or final build. Both of these files include
MusclePrefixCommon.h, in which all the work is really done.

The prefix files are set up this way for easy maintenance. Having all
the central information in one place reduces the number of places to
try and find information if you need to change something.

For this step, you’ll define the macros required for supporting the
debugging classes.

//••• Insert Step 2 below

#if __MUSCLE_DEBUG__

 // Establish core PowerPlant Debug macros
#define Debug_Throw
#define Debug_Signal

// Ensure the PowerPlant Debugging macros are set
// as needed to be. Note that 3rd party supports are
// disabled.
#define PP_Debug 1
#define PP_MoreFiles_Support 0
#define PP_Spotlight_Support 0
#define PP_QC_Support 0
#define PP_DebugNew_Support 1

// Set DebugNew to full strength
#define DEBUG_NEW 2 // DEBUG_NEW_LEAKS

#else

// Not debugging, so ensure debugging flags are off
#define PP_Debug 0
#define PP_MoreFiles_Support 0
#define PP_Spotlight_Support 0
#define PP_QC_Support 0
#define PP_DebugNew_Support 0
PPA–40 PowerPlant Advanced Topics

Debugging in PowerPlant
Debugging Code Exercise
#define DEBUG_NEW 0

#endif

//••• Insert Step 2 above

NOTE For the purposes of this chapter, the third party support for QC,
SpotLight, and MoreFiles are disabled. If you have any of these
utilities, feel free to enable them by changing the appropriate macro
setting.

3. Check the debugging environment
CMuscleApp.cp AppMain()

It is important to make a few checks to the debugging environment
before things proceed too far. Insert a call to UDebug–
Utils::CheckEnvrionment() just after toolbox initialization. It
must be done after the toolbox is initialized because there is
potential for dialogs to be displayed.

This call ensures the debugging environment is ok before
proceeding. If not, Signals are raised to alert you of the situation.
This check is only needed if debugging.

//••• Insert Step 3 below

#if PP_Debug
UDebugUtils::CheckEnvironment(); // Debugging environment checks
#endif

//••• Insert Step 3 above

4. Hook in the Debug menu

Here, you hook up the Debug menu, register the appropriate
classes, and then clean up when your application quits. Take into
account that this step only needs to be done in the debug build by
using the application __MUSCLE_DEBUG__ macro.

a. Install the menu
CMuscleApp.cp Initialize()

Declare an SDebugInfo instance and initialize it with the
defaults by calling SetDebugInfoDefaults(). Then modify a
PowerPlant Advanced Topics PPA–41

Debugging in PowerPlant
Debugging Code Exercise
few settings so that the Appearance Manager classes are not
used.

Create the LDebugMenuAttachment by using NEW so that
DebugNew can track any leaks. Use the ValidateObject_()
macro to ensure the pointer just allocated is sound.

Finally, Initialize the menu and add the attachment.
//••• Insert Step 4a below

#if __MUSCLE_DEBUG__

SDebugInfo theDebugInfo;
LDebugMenuAttachment::SetDebugInfoDefaults(theDebugInfo);
theDebugInfo.commanderTreePPobID = PPob_LCommanderTreeWindow;
theDebugInfo.paneTreePPobID = PPob_LPaneTreeWindow;
theDebugInfo.validPPobDlogID = PPob_DialogValidatePPob;
theDebugInfo.eatMemPPobDlogID = PPob_EatMemoryDialog;

mDebugAttachment = NEW LDebugMenuAttachment(theDebugInfo);
ValidateObject_(mDebugAttachment);

mDebugAttachment->InitDebugMenu();

AddAttachment(mDebugAttachment);

#endif

//••• Insert Step 4a above

b. Destroy the menu
CMuscleApp.cp ~CMuscleApp()

Make sure the menu is disposed of properly in your application
object’s destructor by using the Debugging Classes’
DisposOf_() macro.

//•••þInsert Step 4b below

#if __MUSCLE_DEBUG__
 DisposOf_(mDebugAttachment);
#endif

//••• Insert Step 4b above
PPA–42 PowerPlant Advanced Topics

Debugging in PowerPlant
Debugging Code Exercise
c. Register the required classes
CMuscleApp.cp CMuscleApp()

Since the Debug windows are created from PPob’s, you need to
ensure that you register all of the classes that are in those PPob’s.

Many classes are already registered (e.g.: LWindow,
LDialogBox, LEditField, etc.) because they are required by the
application. But the LCommanderTree, LPaneTree and
LTreeWindow need to be registered.

//••• Insert step 4c below

RegisterClass_(LTreeWindow);
RegisterClass_(LCommanderTree);
RegisterClass_(LPaneTree);

//••• Insert step 4c above

All the main set up for the Debugging Classes are now completed.
From this point on, you’ll compile and run the application after each
step. This allows you to see how things work more easily.

5. Write the BuildDocument() function

The real purpose of this step is to write some code to show the use
of various debug macros (such as ValidateHandle_() and
FindPaneByID_()) as well as showing some places to use stack-
based classes.

//••• Insert Step 4 below

// Place the inFile into an StDeleter object so we can
// guarentee cleanup in case an exception is thrown.
StDeleter<LFile> theFile(inFile);

// Read in the file's data
theFile->OpenDataFork(fsRdPerm);
StHandleBlock textH(theFile->ReadDataFork());
ValidateHandle_(textH.Get());
theFile->CloseDataFork();

// Create the window to display the file's data
LWindow* theWindow = LWindow::CreateWindow(Wind_TextEdit, this);

// Set the window's title to the file's name
PowerPlant Advanced Topics PPA–43

Debugging in PowerPlant
Debugging Code Exercise
FSSpec theFileSpec;
theFile->GetSpecifier(theFileSpec);
theWindow->SetDescriptor(theFileSpec.name);

// Insert the file's data into the Window/TextEdit object
LTextEditView* theText = FindPaneByID_(theWindow,
 textEdit_One, LTextEditView);
theText->SetTextHandle(textH);

// Finally, show the window
theWindow->Show();

//••• Insert Step 4 above

Compile and run the application. Look over the options in the
Debug menu. Choose Table from the Demo menu. Notice the alert?
That’s because there’s a class that isn’t registered yet. Quit the
application and continue.

6. Finding those leaks

Memory leaks are a very common occurrence in many programs.
The Debugging Classes in cooperation with DebugNew help you
check for memory leaks in your code.

a. writing the code
CListTester.cp JStringView::ListenToMessage()

For this step, you write code to handle messages in the
JStringView class that uses DebugNew’s NEW macro, more
validation macros, and the DebugCast_() macro.

//••• Insert step 6a below

case msg_InsertJ: {
mPositionField->GetDescriptor(str);
::StringToNum(str, &pos);
mStringField->GetDescriptor(str);
JString* j = NEW JString(str);
ValidateSimpleObject_(j);
mJStringList.InsertItemsAt(1, pos, j);
Refresh();
break;
}

PPA–44 PowerPlant Advanced Topics

Debugging in PowerPlant
Debugging Code Exercise
case msg_Iterator: {
 JIteratorWindow* theJWindow =
DebugCast_(LWindow::CreateWindow(Wind_Iterator, this),
 LWindow,JIteratorWindow);
 theJWindow->SetUp(mJStringList);
 theJWindow->Show();
 break;
 }

//••• Insert step 6a above

b. Checking for leaks

Make the project and run. From the Demo menu, choose List
Tester. Click the Insert button a few times to add some strings to
the list. Quit the application.

A leaks.log file is created in the same folder as your
application. It should contain a list of some leaks found in the
JStringView::ListenToMessage() you just entered. There
are also two other leaks of a similar nature.

The leaks.log lists the file name and line numbers the leaks
occurred on. Look at those line numbers in your file.

These leaks were caused because memory is allocated for the
string when you clicked on the Insert button. However, nothing
is ever done to explicitly delete those strings when you were
finished using them. You must ensure that the memory used for
the string list is fully cleaned up after use.

TIP If you have Spotlight and run the demo application through
Spotlight, repeating the same steps, you should receive the same
results in the Spotlight log. Try it if you have it (and have Spotlight
support enabled).

c. Cleaning up the leaks
PowerPlant Advanced Topics PPA–45

Debugging in PowerPlant
Debugging Code Exercise
CListTester.cp JStringView::~JStringView()

mJStringList is an object within the JStringView object. There
is no need to dispose of that object as that is handled
automatically when the JStringView object is destroyed.

However, since you allocated the JString objects within the
mJstringList, you must dispose of them as well.

//•••þInsert step 6c below

TArrayIterator<JString*> iterator(mJStringList);
JString* j;

while (iterator.Next(j)) {
 mJStringList.Remove(j);
 ForgetSimple_(j);
}

//••• Insert step 6c above

TArrayIterator is used to walk the list of objects, we then remove
the object. Forget_() is the same as DisposOf_(), just
different wording. ForgetSimple_() is used here because
JString is a simple object (no virtual methods). If you tried using
Forget_() here, the compiler will complain with an illegal
typecast error.

Now recompile the run the application again, repeating the
same steps. This time, there should be no leaks reported in the
leaks.log file. This one change takes care of the other two
leaks as well.

7. Getting memory hungry

This step demos ZoneRanger and the Eat Memory dialog to
demonstrate how to use a few of the items in the Debug menu and
show how they can be useful.

a. Launch the demo

b. Choose Launch ZoneRanger from the Debug menu.

Open the Summary window for Muscle Debug and position it
where you can see it clearly while running the Muscle Debug.
PPA–46 PowerPlant Advanced Topics

Debugging in PowerPlant
Debugging Code Exercise
c. Switch back to Muscle Debug

Keep an eye on the numbers in the ZoneRanger Summary
window. Notice the number of free bytes reported by
ZoneRanger.

WARNING! The next few steps could crash the demo application and/or your
computer depending on your system.

d. Eat some memory

Choose Eat Memory from the Debug menu and gobble up
slightly less (about 200K less) than the default value. You can
choose either Handle or Pointer, it doesn’t matter.

e. Going over the edge

Now use Muscle Debug as a normal application. Open some
windows, create new windows, etc. However, do this slowly.
One at a time. Watch the ZoneRanger window to see your free
memory being used up.

Depending on what you do and exactly how things are set up
and react, you may get varying results:

– a Signal dialog may come up to say the reanimation of a
class failed

– a Throw dialog may come up because of a failure

If these things occur, you are seeing UDebuggingPlus in action.
Feel free to try the various buttons but be aware that you are in a
low memory situation and your system could crash. Eventually,
the GrowZone() function will kick in.

f. Quit and restart

Quit Muscle Debug and restart your computer. This will clear up
any lingering memory and heap problems

See also The ZoneRanger Guide for more detailed information on
how to use ZoneRanger.

8. PPob validation

In this step, you use PPob validation to find what classes are in your
PPob’s that are not in the registry table.

a. Launch Muscle Debug
PowerPlant Advanced Topics PPA–47

Debugging in PowerPlant
Debugging Code Exercise
b. Create table demo window

Choose Table from the Demo menu. The Dialog in Figure 2.6
appears. This is one way to find out what needs to be validated
or registered, but it’s not the easiest method.

Figure 2.6 Unregistered class signal

c. Click Continue

Close the table window.

d. Validate all PPob’s

Choose Validate All PPob’s from the Debug menu. A file called
PPob Validation debug log is created in the same folder as
your application. Open this file and examine the log.

NOTE If you are not using the Appearance Manager, you can ignore the
lines referring to the Appearance Manager classes.

e. Fix the registration
CMuscleApp.cp CMuscleApp()

The PPob named “Table” with class ID ‘DemT’ is unregistered.
Register the class.
PPA–48 PowerPlant Advanced Topics

Debugging in PowerPlant
Debugging Code Exercise
//••• Insert step 8e below
RegisterClass_(CDemoTable);
//••• Insert step 8e above

f. Run the application again

Make and Run the application again. Validate All PPob’s and
open the Table window. Everything should now be OK.

9. Commander Chain

This step shows you how to use the Command Tree window to find
problems with the command chain.

a. Run the application

Run Muscle Debug (if not already running). Chose Command
Chain from the Debug menu. Choose an update interval from
the Command Chain submenu.

b. Show floating window

Choose Floater from the Demo menu. Notice that the floating
window is targetable (Figure 2.7). Floating windows in
PowerPlant should not be targetable.

Figure 2.7 Floating window - bad target

c. Correct the problem
Muscle.PPob

Open Muscle.PPob with Constructor. Open PPob ID 700 (the
floating window). Change the Targetable setting in the Property
Inspector window. Save the PPob. Make and run the application.

10. Visual Hierarchy

This step shows you how to use the Visual Hierarchy window to
find errors in the PPob file itself.
PowerPlant Advanced Topics PPA–49

Debugging in PowerPlant
Debugging Code Exercise
a. Launch Muscle Debug

Run Muscle Debug (if not already running).

b. Open a control window

Choose Standard Controls from the Demo menu.

c. Click on radio buttons

The radio buttons do not behave correctly. They will each
become enabled, and you can’t disable them.

d. Open the Visual Hierarchy window

Choose Visual Hierarchy from the Debug menu. Notice that the
LRadioGroupView does not control the radio buttons (Figure
2.8). The radio buttons need to be sub-views of the
LRadioGroupView and they are not.

Figure 2.8 Visual hierarchy error

e. Fix the PPob
Muscle.PPob

Open Muscle.PPob with Constructor and open PPob ID 200
(Standard Controls). Open the Hierarchy window and move the
three radio buttons to be subviews of the LRadioGroupView
(Figure 2.9).
PPA–50 PowerPlant Advanced Topics

Debugging in PowerPlant
Where To Go From Here
Figure 2.9 Change the hierarchy

f. Compile and run

Compile and run Muscle Debug one last time to ensure
everything is in order.

Congratulations! You’ve found all known bugs in this application.

Where To Go From Here
Now that you have an understanding of how to use the PowerPlant
Debugging Classes, you can implement them in your own projects.

There are a few things you can do with Muscle Debug still,
however. You can try to fix how low memory situations are handled
for example.

A lot goes on “behind the scenes” in the Debugging Classes that
could not be demonstrated in this chapter. Read the code and
comments for the Debugging Classes. Also read the code and
comments for Muscle Debug and look at all the various things done
to help with housekeeping and debugging.

If you own third party utilities such as QC or Spotlight, try
activating their support (the preprocessor macro) and run the demo
again from the beginning and see if you can catch any other
problems.
PowerPlant Advanced Topics PPA–51

Debugging in PowerPlant
Where To Go From Here
Happy Debugging!
PPA–52 PowerPlant Advanced Topics

3
Threads in PowerPlant

This chapter discusses how to use the PowerPlant threads classes.
You might use these classes in a PowerPlant application, or in non-
PowerPlant program.

Introduction to Threads in PowerPlant
A task may require a substantial period of time to complete. In the
context of a computer program, anything over one second is a
substantial period of time. If you seize control of the computer for
one second or more without allowing the user to perform typical
actions such as choosing a menu item, your software can be seen as
unfriendly or slow.

How can you undertake a computationally-intensive task without
causing the machine to appear sluggish or non-responsive? The
solution is to have time-consuming tasks running simultaneously
with other operations, such as managing the user interface. One
way to accomplish this goal is to run each task in concurrent but
separate threads of execution.

Threads are sometimes called lightweight processes. They are like
processes in that they represent the execution of some program
code, and because they provide a mechanism for multitasking. They
are lightweight in the sense that they don’t require as much state
information as normal processes. Therefore it is relatively cheap to
create, destroy, and switch between threads.

The Thread Manager is an implementation of the threads concept
for Mac OS computers. The Thread Manager provides a way for
applications to divide their work into discrete, independent
subtasks. The Thread Manager switches between the various
threads. In essence, each application gets its own multitasking
environment.
PowerPlant Advanced Topics PPA–53

Threads in PowerPlant
The Thread Strategy
The topics in this chapter include:

• The Thread Strategy—PowerPlant’s approach to threads

• Thread Classes—a detailed look at the PowerPlant classes
involved in thread support

• Implementing Threads in PowerPlant—how to implement
simple threads

• Data Coherency—techniques for ensuring the reliability of
shared data

• Asynchronous Operations—advanced thread operations

• Summary of Threads in PowerPlant

There is a lot of material in this chapter, some of it very deep and
involved. Do not let that frighten you. A straightforward
implementation of threads in a PowerPlant application is actually
quite simple. The code exercise at the end of the chapter
demonstrates how easy it is to implement useful, custom threads
with PowerPlant.

This chapter does not teach you the intricacies of the Thread
Manager. For more information, consult Inside Macintosh: Thread
Manager. The article “Concurrent Programming with the Thread
Manager” in issue 17 of develop magazine may be of interest,
although it might be slightly outdated because the Thread Manager
no longer supports preemptive threads.

The Thread Strategy
The Mac OS Thread Manager implements threads at a basic level.
PowerPlant’s approach enhances threads in two ways.

First, the PowerPlant classes provide a wrapper for the Thread
Manager, insulating you from the Toolbox. This can make simple or
typical threads very easy to implement.

Second, PowerPlant adds significant utility to the Thread Manager
in the following ways:

• Thread States—PowerPlant adds new thread states

• Semaphores—PowerPlant provides direct support for
semaphores
PPA–54 PowerPlant Advanced Topics

Threads in PowerPlant
Thread States
• Inter-Thread Communication—PowerPlant provides for direct
communication between threads

Thread States

The Thread Manager defines three possible thread states, current,
ready and stopped. PowerPlant implements six thread states. In
PowerPlant, a thread is always in one (and only one) of the states
described in Table 3.1.

Table 3.1 Possible thread states

The current thread is the thread in control of the CPU. There is
always one (and only one) current thread. When the current thread
transfers control of the CPU to another thread, it goes into the ready
state. Threads move between the current and ready states through a
call to LThread::Yield(). The current state in PowerPlant
corresponds to the Thread Manager’s current state.

A ready thread is a thread that is not current, but is otherwise
eligible for execution. In other words, only a ready thread may
become the current thread. The Thread Manager’s scheduling
algorithm schedules ready threads on a round-robin basis. This
state corresponds to the Thread Manager’s ready state.

A suspended thread is ineligible for CPU time. Call
LThread::Suspend() to suspend a thread. Call
LThread::Resume() to return the thread to the ready state. The
suspended state corresponds to the Thread Manager’s stopped
state.

State The thread is…

current in control of the CPU

ready waiting its turn for the CPU

suspended not eligible for CPU time

sleeping sleeping for a specified time

waiting waiting for a semaphore to clear

blocked waiting for an asynchronous I/O call to complete
PowerPlant Advanced Topics PPA–55

Threads in PowerPlant
Thread States
A sleeping thread is ineligible for CPU time for a certain period of
time. Call LThread::Sleep() to put a thread to sleep. A sleeping
thread returns to the ready state when the sleep time expires, or if
you call LThread::Wake().

A waiting thread is ineligible for CPU time while a semaphore (flag)
indicates it cannot run. When the semaphore is cleared, the thread
returns to the ready state. Call LSemaphore::Wait() to set a
semaphore. Call LSemaphore::Signal() to clear a semaphore.
See “Using Semaphores” for more information.

A blocked thread is ineligible for CPU time. It is waiting for an
asynchronous I/O call to complete. Call LThread::Block() to
block a thread after making an asynchronous I/O call. Calling
LThread::ThreadAsynchronousResume() unblocks the
thread. See “Asynchronous Operations” for more information on
blocking and asynchronous I/O.

Figure 3.1 contains a simplified state transition diagram for thread
objects.

Figure 3.1 State transition diagram for thread objects
.

Transitions from stopped states make the thread ready, not current.
A thread becomes current only by a yield from the current thread.
PPA–56 PowerPlant Advanced Topics

Threads in PowerPlant
Semaphores
Semaphores

When multiple threads access the same data, big trouble can result
if one thread changes data that another thread is using. Keeping
shared data access under control is a major issue in concurrency.

The Thread Manager in the Toolbox has a feature for preventing
two threads from accessing the same data simultaneously.
ThreadBeginCritical() turns off thread scheduling, so any
yield has no effect. ThreadEndCritical() turns thread
scheduling back on. In effect, these calls allow you to temporarily
convert your application into a single-threaded program.

This mechanism is inadequate in more complex situations. You may
want to yield to allow your application to be responsive, and yet
still preserve the integrity of the data on which you are operating.

PowerPlant allows you to easily create semaphores that prevent
other threads from modifying data until the semaphore is cleared.
The classes involved are LSemaphore, LEventSemaphore, and
LMutexSemaphore. The “mutex” is short for mutually exclusive.
LMutexSemaphore defines a particular kind of semaphore where
two or more threads are mutually exclusive. One and only one
mutually exclusive thread may be ready. All others are put in the
wait state.

Inter-Thread Communication

You may want two threads to be able to communicate directly with
each other. A typical situation is that one thread produces data that
another thread uses. There is no mechanism in the Thread Manager
to implement inter-thread communication.

PowerPlant has such a mechanism. You store shared data in a class
derived from LLink. You then create a queue of data with
LSharedQueue (derived from LQueue). You must have a queue of
some sort, because you cannot expect the producing thread to
generate data at the same rate that the consuming thread uses it.
The LSharedQueue class also inherits from LMutexSemaphore so
that you can ensure that the data production and consumption
threads do not interfere with each other.
PowerPlant Advanced Topics PPA–57

Threads in PowerPlant
Thread Classes
When you create the threads involved, you provide the single
queue that each uses for data transfer. The producer puts data in the
queue, and the consumer removes data from the queue as
necessary.

Thread Classes
PowerPlant has several classes related to thread support:

• LThread

• LSimpleThread

• UMainThread

• LYieldAttachment

• LSemaphore

• LEventSemaphore

• LMutexSemaphore

• StMutex

• StCritical

• LLink

• LQueue

• LSharedQueue

One group of classes relates directly to threads. Another group
implements semaphores. A third groups implements thread linking
and data queues. Figure 3.2 illustrates the class hierarchies.
PPA–58 PowerPlant Advanced Topics

Threads in PowerPlant
LThread
Figure 3.2 The PowerPlant thread-related classes

The grey bar on the LThread class indicates that LThread is an
abstract class. Taken together, these classes form an independent
module in PowerPlant. You can use these classes in non-PowerPlant
code if you wish.

LThread

The LThread class forms the basis for thread support in PowerPlant.
This is a complex class with many data members and member
functions. This discussion covers those you are most likely to
encounter directly. Use the PowerPlant Reference for complete
information.

NOTE The LThread class includes support for preemptive threads, but you
should not create preemptive threads. Earlier versions of the Thread
Manager had preemptive thread scheduling as well as cooperative
scheduling on 68K Macintosh computers. Future operating systems
will not support preemptive scheduling within an application. As a
result, the Thread Manager no longer supports preemptive
scheduling.

The discussion of LThread covers the following topics:

• LThread attributes—LThread data members

• LThread Behaviors—LThread member functions
PowerPlant Advanced Topics PPA–59

Threads in PowerPlant
LThread
• The Run() function—special considerations surrounding a
thread’s Run() function

LThread attributes

LThread has several data members you may find useful. Table 3.2
lists these members.

Table 3.2 Some LThread data members

The “s” data members are static, and therefore are class variables.
There is one current thread, one main thread, one thread queue, and
one process serial number for the application. Those values are
shared by all threads.

The mNextOfKin data member deserves special mention. This data
member stores a pointer to another LThread object. When the
thread completes its function and is about to be deleted, the next of
kin is notified and can retrieve the result generated by the dying
thread. See “The Run() function” for more information about a
thread’s result and next of kin.

Member Stores

sThread the current thread

sMainThread the main thread

sThreadQueue a queue of all threads

sPSN the process serial number for the application

mThread the thread ID

mState the thread’s state (current, ready, etc.)

mResult result of the thread

mNextOfKin thread to be notified when this thread dies

mSemaphore semaphore that the thread waits for (if any)

mError stores any error that occurs while waiting
PPA–60 PowerPlant Advanced Topics

Threads in PowerPlant
LThread
LThread Behaviors

LThread has a series of static member functions that are always
available, even if you don’t happen to have a thread object handy.
Table 3.3 lists several static member functions.

Table 3.3 Some LThread static member functions

The Yield() function is safe to call, even if the Thread Manager is
not present. This call causes the current thread to switch to the
ready state. The Thread Manager then switches another thread into
the current state and gives it control of the processor.

You can use the DoForEach() function to walk the list of threads
for any purpose. You specify an LThreadIterator procedure to
and pass any associated data required by that function.

The remaining functions are self-explanatory. Remember, each of
these is static. You can use them at any time.

Function Purpose

AllocateThreads() preallocate some threads

GetFreeThreads() return number of unused
preallocated threads

GetCurrentThread() return current thread

GetMainThread() return main thread

CountReadyThreads() return number of ready threads

InMainThread() return true if current thread is the
main thread

DoForEach() iterate over all threads and perform
a task

Yield() surrender time to other threads

EnterCritical() turn off thread scheduling so yields
are ignored

ExitCritical() turn on thread scheduling
PowerPlant Advanced Topics PPA–61

Threads in PowerPlant
LThread
In addition to Yield(), LThread includes other non-static
functions to change or query a thread’s state, as listed in Table 3.4.

Table 3.4 LThread state functions

See the state transition diagram in Figure 3.1 for a graphic
representation of the effect of these calls.

The Resume() function is very important. Threads are created in
the suspended state. No thread will operate unless you call
Resume() after creating the thread. Calling Resume() results in a
yield.

You specify the number of milliseconds in the Sleep() call. If you
do not specify a value, the thread is put to sleep indefinitely. Calling
Sleep() also results in a yield.

There are a few more vital functions in LThread, listed in Table 3.5.

Table 3.5 Some vital LThread functions

Function Purpose

Resume() make the thread ready, yield

Suspend() suspend the thread, yield

Sleep() put the thread in the sleep state, yield

Wake() make a sleeping thread ready, yield

Block() put a thread in the blocked state

IsCurrent() return true if the thread is current

Function Purpose

LThread() constructor

SwapContext() called each time a thread becomes current
or not current

Run() perform the thread’s designed task

SetResult() store value in mResult
PPA–62 PowerPlant Advanced Topics

Threads in PowerPlant
LThread
LThread is an abstract class, but you call the constructor function
from derived thread class constructors. “Creating Threads.” You
can use default values for the constructor parameters.

You can use the SwapContext() function to perform
housekeeping chores necessary when a thread comes into or goes
out of current status. “Context Switching.”

The remaining vital functions are all deeply intertwined with the
Run() function.

The Run() function

Run() is declared as a pure virtual function in LThread. You must
override and define this function in any derived class. The Run()
function should perform the task for which the thread is designed.
You never actually call the Run() function. The Thread Manager
executes this function when the thread becomes current. When the
Run() function completes, it returns a void pointer to data. That
value is automatically placed in the mResult data member.

However, the result is of limited use. The sequence of events when a
thread completes is as follows:

• Run() returns a value (a void pointer).

• DeleteThread() is called automatically for the thread.

• DeleteThread() calls SetResult() to store the return from
Run() in mResult.

• DeleteThread() prepares to destroy the thread.

• The next of kin is notified that the thread is about to die.

• The thread is destroyed.

The only time the value in mResult is useful is to the next of kin.
When notified that a thread is about to die, the next of kin can send

GetResult() retrieve value from mResult

SetNextOfKin() set the next of kin thread

DeleteThread() destroy a thread

Function Purpose
PowerPlant Advanced Topics PPA–63

Threads in PowerPlant
LSimpleThread
the thread (which is near death but not yet dead) a GetResult()
message. If you wish to use this feature, call the SetNextOfKin()
function after creating a thread. The next of kin will be notified just
before the thread is deleted.

If the thread generates data that you wish to survive beyond the life
of the thread’s Run() function, and you do not use the next of kin
feature, you must store that data in some variable or object that
persists outside the scope of the thread object.

If the thread has completely run its course, there is no need to
destroy the thread. PowerPlant takes care of that for you.

A thread may serve a short-term purpose. For example, you might
spawn a thread to perform a single calculation. A thread may also
last as long as the application runs. You might have a thread
running continuously to look for a particular event, perhaps an
incoming message from a network. A thread exists as long as the
Run() function does not return, and you do not call
DeleteThread().

WARNING! If you wish to destroy a thread before it has completed its Run()
function, you must use DeleteThread(). Do not use operator
delete to destroy a thread. There is a good deal of cleanup work
required to properly dispose of a thread.

LSimpleThread

LSimpleThread is a concrete subclass of LThread. It has two
additional data members:

• mProc—a ThreadProc pointer to the function you want to
execute when the thread runs

• mArg—a pointer to data you want passed to the ThreadProc

A ThreadProc function has the following prototype:
void MyThreadProc(LThread& thread, void* arg);

When you instantiate an LSimpleThread object, you specify the
ThreadProc pointer and the void pointer to data. The
LSimpleThread implementation of Run() simply calls the
ThreadProc function and passes the argument. Here’s the code:
PPA–64 PowerPlant Advanced Topics

Threads in PowerPlant
UMainThread
void* LSimpleThread::Run()
{
(*mProc)(*this, mArg);

return (mResult);
}

The mArg parameter, because it is a void pointer, can hold any kind
of pointer. This includes pointers to objects. For example, you might
pass in a pointer to an LWindow object so the thread can manage a
window.

Note that LSimpleThread::Run() returns the value of mResult
as a void pointer. This assumes that the ThreadProc function sets
the value of mResult before returning. This value is NULL by
default, and may remain NULL if you never use it.

LSimpleThread lets you implement threads with an absolute
minimum of pain. You don’t have to declare or define any thread-
related classes. You write a function that matches the ThreadProc
prototype. Then you instantiate an LSimpleThread to run that
function. In your ThreadProc function you should call
LThread::Yield() regularly. If there are data synchronization
issues you must, of course, pay attention to them. We discuss many
of these problems in detail later in this chapter. Otherwise, you have
everything necessary to implement threads!

WARNING! Don’t forget to call Resume() after you create the LSimpleThread.

UMainThread

UMainThread is a concrete implementation of LThread. You must
create a UMainThread object (or derivative) when your application
launches, and before you create any other thread objects.

This class declares no new data members or member functions.
UMainThread’s implementation of Run() is empty. What you’re
really doing is creating a PowerPlant thread object that corresponds
to the Thread Manager’s thread for your process. The main thread
typically includes the main event loop.
PowerPlant Advanced Topics PPA–65

Threads in PowerPlant
LYieldAttachment
When you create the UMainThread object, it is already running.
You do not need to call Resume(). The UMainThread::Run()
function should never be called or entered.

See also: “Initializing Threads.”

LYieldAttachment

The LYieldAttachment class derives from LAttachment. You should
not have to override this class in typical circumstances. This
attachment simply calls LThread::Yield().

There is one data member of interest, mQuantum. You provide the
value of mQuantum when you create the attachment object. This
value should be in ticks (60ths of a second). It controls how the
attachment yields. The default value is -1.

If mQuantum is negative, the attachment yields once. If mQuantum
has a positive value, the attachment sits in a loop until that many
ticks have passed, calling Yield() repeatedly.

In typical use, you specify -1 as the value for mQuantum. You then
attach an LYieldAttachment object to the application object. This
ensures that the main thread (usually a UMainThread object) yields
repeatedly, because the attachment’s ExecuteSelf() function
will be called for every event.

Although commonly attached to the application object for the main
thread, you can use LYieldAttachment with any host.

LSemaphore

LSemaphore is the base class for PowerPlant’s implementation of
semaphores. Most of the data members and functions in
LSemaphore are internal to PowerPlant. You won’t have to concern
yourself with their operation.

Each semaphore object has an mThreads data member.
Functionally, this is a list of all threads waiting for the semaphore to
clear before accessing the flagged data.

The only two data members you will typically concern yourself
with are:
PPA–66 PowerPlant Advanced Topics

Threads in PowerPlant
LEventSemaphore
• Wait()—raise the semaphore to protect data

• Signal()—lower the semaphore when data access complete

In typical circumstances that’s what happens. In fact, the sempahore
keeps a count of the waits and signals. Calling Wait() increments
the counter, and calling Signal() decrements the counter. The
state of the counter determines whether the data is protected or not.

You may specify the number of milliseconds you are willing to wait
in the call to Wait(). If you do not, the default value of the
parameter is that you will wait forever.

See also: “Using Semaphores.”

LEventSemaphore

LEventSemaphore is a subclass of LSemaphore. It has two features
that distinguish it from LSemaphore.

LEventSemaphore overrides the Signal() function. The
LEventSemaphore::Signal() function simultaneously releases
all threads waiting on this semaphore.

In addition, LEventSemaphore declares a new function, Reset().
This function is guaranteed to raise the semaphore so that no thread
can access the flagged data until the next call to Signal().

LMutexSemaphore

LMutexSemaphore implements a mutually exclusive semaphore. If
a mutually exclusive semaphore is raised, only one thread may
access the flagged data. When the semaphore is lowered, if there are
waiting threads, only one waiting thread is returned to the ready
state.

LMutexSemaphore declares a new data member, mOwner, the
thread that currently owns the semaphore. Only the owner may
access the data protected by the semaphore.

LMutexSemaphore also overrides both Wait() and Signal() to
implement the proper behavior.
PowerPlant Advanced Topics PPA–67

Threads in PowerPlant
StMutex
See also: “Using Semaphores.”

StMutex

StMutex is a stack-based utility class to implement an exception-safe
and simple mutual exclusion semaphore. You create the semaphore
first. You pass the semaphore to the constructor. The constructor
calls Wait(). The destructor calls Signal(). If an exception is
thrown while the semaphore is raised, the destructor is still called
and the semaphore is lowered correctly.

StCritical

StCritical is a stack-based utility class to implement an exception-
safe and simple method for using the Thread Manager’s
ThreadBeginCritical() and ThreadEndCritical()
functions. When you declare an StCritical object, the constructor
calls ThreadBeginCritical(). The destructor calls
ThreadEndCritical(). If an exception is thrown during the
critical segment, the destructor is still called and the critical
exclusion is released correctly.

LLink

The LLink class is an extraordinarily simple implementation of a
linked list. The class declares one data member, mLink, which is a
pointer to the next LLink object.

There are two substantive member functions, SetLink() and
GetLink(). These serve as accessors for the mLink data member.

You typically would not use this class directly. The true purpose of
LLink is to serve as a base class for custom subclasses. A typical
subclass of LLink adds data members that store data you wish to
pass between threads in an LQueue object.

LQueue

LQueue implements full linked list behavior for a list of LLink
objects. It has the features you would expect to find in a class that
manages a linked list.
PPA–68 PowerPlant Advanced Topics

Threads in PowerPlant
LQueue
There are three data members, as shown in Table 3.6.

Table 3.6 LQueue data members

Every element in an LQueue is an LLink object. The member
functions also work on LLink objects. Table 3.7 lists the LQueue
member functions.

Table 3.7 LQueue member functions

LQueue implements a first in, first out (FIFO) queue. You may only
add items to the end of the list, and you may only get items from the
head of the list. Typically you would not call Remove() directly,
but you can use it to remove any arbitrary item from the list.

TIP There is nothing that limits the use of LLink and LQueue to threads.
You can use this combination of classes to implement a simple
FIFO queue in any context.

Data member Stores

mFirst first element in the linked list

mLast last element in the linked list

mSize number of elements in the linked list

Function Purpose

GetSize() returns number of items in the list

IsEmpty() returns true if the list is empty

NextPut() add an element to the end of the list

NextGet() get and remove the first element in the list

Remove() remove an element from the list

DoForEach() walk through the list and perform a task
PowerPlant Advanced Topics PPA–69

Threads in PowerPlant
LSharedQueue
LSharedQueue

LSharedQueue inherits from both LQueue and LMutexSemaphore.
This class combines a queue with a semaphore so that you can
protect the data in the queue. The design purpose of LSharedQueue
is to allow two or more threads to share a common data queue.

As one thread adds items to the queue, other threads that read data
from the queue are locked out to protect the integrity of the queue.
Similarly, if a thread is retrieving an item from the queue, other
threads are prevented from modifying the queue.

LSharedQueue declares a new member function, Next(). When
retrieving data from an LSharedQueue, you should call Next()
and not call NextGet(). The Next() function does the semaphore
testing, and if the queue is available calls NextGet(). The Next()
function also allows you to specify how long you are willing to wait
for the data, because your access to the queue may be blocked.

See also: “Inter-Thread Communication.”

Implementing Threads in PowerPlant
This section discusses the tasks you must perform to implement
simple threads in PowerPlant code. The topics discussed include:

• Initializing Threads—setting up for thread operations

• Creating Threads—instantiating individual threads

• Running a Thread—getting a thread started

• Modifying Thread State—how to change thread state

• Deleting Threads—what to do when a thread is finished

Initializing Threads

To use threads in PowerPlant you must do two things: ensure that
the Thread Manager is available, and create a main thread.

Determine if the Thread Manager is present

Before creating thread objects, ensure that the Thread Manager is
available. PowerPlant sets the UEnvironment sFeatures data
PPA–70 PowerPlant Advanced Topics

Threads in PowerPlant
Initializing Threads
member at startup. To determine if the Thread Manager is available,
simply call UEnvironment::HasFeature(), as shown here.

if (UEnvironment::HasFeature (env_HasThreadsManager))
{
// Thread Manager available
}

TIP If you check for the Thread Manager at application startup as
outlined above, you can use weak import for the ThreadsLib in
PowerPC code. Weak import allows your application to launch even
if the Thread Manager is unavailable. If your application requires
threads, you can alert the user and quit gracefully.

Create the main thread

The main thread is a thread that represents the principal flow of
control in your application. It should contain your main event loop.
This is the thread that’s executing when your application starts up.
Even though the Thread Manager automatically creates a thread for
every application, you must still create a PowerPlant thread object
for the main thread of control in your application.

Typically you create the main thread in the application object’s
constructor. The easiest way to create a main thread object is to
instantiate a UMainThread object. The code snippet below shows
how.

MyApp::MyApp()
{
...
LThread *myMainThread = new UMainThread;
}

If you need to customize the behavior of the main thread, you can
derive a class from LThread or from UMainThread. For example, if
you want to perform special actions when the main thread swaps in
or out, override the SwapContext() member function.

WARNING! There are two considerations to keep in mind with respect to the
main thread. First, you must create the main thread before any other
threads. Second, do not call the main thread’s Run() or Resume()
PowerPlant Advanced Topics PPA–71

Threads in PowerPlant
Creating Threads
functions. This thread is already running! You should not even
implement a Run() function for the main thread.

Creating Threads

There are two principal issues involved with instantiating a thread
object:

• Allocating memory for a thread—general allocation issues

• Calling the LThread constructor—details of the LThread
constructor

Allocating memory for a thread

When creating thread objects, keep in mind that each thread
actually requires two allocations: one for the thread object itself, the
other for data maintained by the Thread Manager (mostly for the
thread’s stack).

Thread objects must be allocated dynamically (using operator
new). It is illegal to create a static or automatic thread object, or to
embed one within another object. Pointers and references to threads
may, of course, be allocated automatically or included as data
members in other objects.

If you intend to use threads from a preallocated pool, you must call
AllocateThreads() to create the pool.

Calling the LThread constructor

You cannot instantiate an LThread object directly, because LThread
is an abstract class. You must instantiate objects based on a class
derived from LThread. This might be LSimpleThread, or a thread
class of your own design.

In your class constructor, you initialize any data members and
perform any other task unique to your derived class. This is the
same as it is for any constructor. In addition, you must call the
LThread constructor in the constructor’s initializer list.

The parameters you pass to the LThread constructor determine if
the thread is cooperative or preemptive (it should always be
PPA–72 PowerPlant Advanced Topics

Threads in PowerPlant
Creating Threads
cooperative), the size of the thread’s stack, how the Thread Manager
allocates memory for the thread, and where the Thread Manager
will store the result of the thread.

The LThread constructor looks like this:
LThread(Boolean inPreemptive,
UInt32 inStacksize = thread_DefaultStack,
 LThread::EThreadOption inFlags =
 threadOption_Default,
 void **outResult = NULL)

Table 3.8 lists the parameters, default values, and the purpose of
each parameter.

Table 3.8 LThread constructor parameters

You should always set inPreemptive to false. The Thread
Manager no longer supports preemptive threads.

With respect to stack size, you might want to use the default value
early in development. The default stack size is usually sufficient.
Later, you can monitor your stack usage and adjust the stack size
accordingly. The 680x0 and PowerPC processors have different
stack requirements.

PowerPlant defines several additive flags that you can combine in
the inFlags parameter to control how the Thread Manager
allocates memory for the thread you are creating. Table 3.9 lists the
flags and their effects.

Parameter Default value Purpose

inPreempti
ve

none, you should always
use false

false =
cooperative

inStacksiz
e

thread_DefaultStack size of thread stack

inFlags threadOption_Defaul
t

controls memory
allocation

outResult NULL thread result
PowerPlant Advanced Topics PPA–73

Threads in PowerPlant
Running a Thread
Table 3.9 Memory allocation flags for threads

Finally, the outResult parameter is the address of a 4-byte storage
area where the Thread Manager will place the thread’s result value.
You may retrieve and change a thread’s result with GetResult()
and SetResult().

Running a Thread

Except for the main thread, a thread is created in the suspended
state. The thread will not start executing until it is put into the ready
state. You do this by calling Resume() after creating the thread. For
example:

MyThread * myThread = new MyThread(false,
 thread_DefaultStack, threadOption_Default);
myThread->Resume();

threadOptio
n_Default

The thread’s stack is explicitly allocated by the
Thread Manager and the FPU registers are
preserved across context switches.

threadOptio
n_NoFPU

Do not save and restore the FPU registers for
this thread. Has no effect on the PowerPC.

threadOptio
n_UsePool

Allocate the thread’s stack from the Thread
Manager’s internal memory pool. You
preallocate threads in this pool by calling
LThread::AllocateThreads().

threadOptio
n_Exact

Forces the Thread Manager to allocate a stack
with exactly the requested size.

threadOptio
n_Alloc

If the Thread Manager has exhausted its
internal memory pool, it returns an error. This
flag causes the constructor to allocate the stack
by calling the Memory Manager instead.

threadOptio
n_Main

Create the application’s main thread. When
this flag is set, all of the other flags are ignored.
Memory isn’t actually allocated for the thread’s
stack, because the main thread is actually using
the normal application stack instead.
PPA–74 PowerPlant Advanced Topics

Threads in PowerPlant
Modifying Thread State
Do not call the thread’s Run() function. The Run() function starts
executing automatically the first time the thread becomes the
current thread.

Although you never call it, all concrete thread classes must define a
Run() function that has the following prototype:

virtual void *Run(void);

The Thread Manager calls this function when the thread starts
execution. The contents of this function define the behavior of the
thread. The Run() function may call any other application service.
It does not have to be self-contained.

See “The Run() function” for a discussion of what happens when
the Run() function returns.

It is often useful to associate data with a thread. You can do this
easily by deriving a class from LThread and adding data members
to hold the necessary data. You can then access these members
normally from within the Run() function.

Modifying Thread State

Once a thread is running, you use member functions to change the
thread’s state.

The simplest state change is to transfer control to another thread.
Cooperative threads must call Yield() often in order to give other
threads a chance to run.

You can also suspend a thread. A suspended thread receives no
time until you resume it. For example, the following snippet
suspends the main thread, does some processing, and then resumes
the main thread. It isn’t usually advisable to suspend the main
thread, because the main thread typically manages the user
interface and main event loop. This snippet is for illustrative
purposes only.

void *MyThread::Run(void)
{
LThread *mainThread = LThread::GetMainThread();
// the main thread stops here
mainThread->Suspend();
PowerPlant Advanced Topics PPA–75

Threads in PowerPlant
Deleting Threads
// do some processing here

mainThread->Resume();
// the main thread continues here
return (NULL);
}

You can also put a thread to sleep for a period of time. The
following snippet executes some code after a four second delay.

void *MyThread::Run(void)
{
while (true)
{
Sleep(4000); // go to sleep for 4 seconds
// do some processing here
}
return (NULL);
}

You may also change a thread’s state to waiting or blocked. See the
Data Coherency and Asynchronous Operations topics in this
chapter for information on using those thread states.

Deleting Threads

A thread is deleted automatically when the Run() function
completes. See “The Run() function.”

If you want to kill a thread before it completes, call the thread’s
DeleteThread() member function. Do not call operator
delete for a thread object. Deleting a thread in PowerPlant
requires a lot of cleanup. The LThread::DeleteThread()
function takes care of this cleanup for you.

Do not delete the main thread. Attempting to do so will cause an
exception.

PowerPlant takes care of the details of deleting threads for you. In
most cases, the thread is destroyed immediately and its memory
released. However, what actually happens depends upon the
thread’s state, and also on the current thread. In certain cases,
destruction or memory release may be delayed. There is a storage
reclamation thread that handles the delayed release of memory.
PPA–76 PowerPlant Advanced Topics

Threads in PowerPlant
Data Coherency
Table 3.10 lists what happens when you delete a thread in various
states.

Table 3.10 Effect of deleting threads in various states

Data Coherency
With multiple threads comes the issue of data coherency. A
threaded application must deal with the possibility that two threads
may try to access, and possibly modify, shared data.

If a thread uses only data local to the thread, data coherency is not a
problem. However, such threads are rare. To be effective, most
threads must use other application services and data. It might be a
global variable, a shared data structure, or some other form of data
that exists and persists in a context outside of and shared by
multiple threads.

There are several possible solutions to ensure that any shared data
used by a thread is reliable. The four strategies supported in
PowerPlant include:

• Criticality—locking out all other threads in critical operations

 State Effect

Current Destroyed and deallocated immediately. The
call to DeleteThread() never returns.

Ready Destroyed and deallocated immediately.

Suspended Destroyed and deallocated immediately.

Sleeping Destroyed and deallocated immediately.

Waiting Removed from its semaphore’s queue of
waiting threads. It is then destroyed and
deallocated.

Blocked Destroyed and deallocated the next time the
thread is switched in (which means the
thread will be current at that time). This will
happen at some moment after its async call
completes.
PowerPlant Advanced Topics PPA–77

Threads in PowerPlant
Criticality
• Context Switching—preserving shared data internally

• Using Semaphores—flagging data as in use

• Inter-Thread Communication—passing data from one thread to
another

Criticality

You can prevent other threads from taking command by simply
refusing to yield. However, relying on the absence of a yield is
unwise. If you call some function that ultimately results in an
unanticipated yield, your code could crash. It is not always easy to
foresee every possible path of execution, so it can be difficult to rule
out all chance of a yield occurring.

A wiser way to protect data is to lock out all other threads during
critical operations. Declaring a critical operation is the simplest
mechanism to ensure that data does not change while a thread uses
it. If your thread is about to access shared data, you can seize control
of the process and prevent any thread from switching into control.

Simply call the thread’s EnterCritical() function at the
beginning of the operation. At the end of the operation, call
ExitCritical(). Between these two calls, you are guaranteed
that no other thread will gain control. These calls can be nested.

Alternatively, you can declare an StCritical object at the beginning
of the critical block. The constructor calls the Thread Manager’s
ThreadBeginCritical(). The destructor calls
ThreadEndCritical().This has an added advantage in that the
StCritical object destructor is called even if an exception is thrown
within the critical code.

The limitation of this approach is that you should not perform time-
consuming operations in a critical block. Locking out all other
threads defeats the purpose of a threaded strategy. However, these
calls are very useful if you are going to use shared data for a very
brief time.

Context Switching

Each thread has a context—the state information associated with
that thread. When a thread becomes current, the Thread Manager
PPA–78 PowerPlant Advanced Topics

Threads in PowerPlant
Context Switching
switches in the thread’s context. The previous thread’s context is
switched out.

If your thread uses a global variable, you can preserve a local copy
of the value when the thread goes out of context, and restore it
when the thread goes back into context. You can override the
SwapContext() function to do this. PowerPlant calls this function
whenever a thread is in the process of being switched in or out.

This process is analogous to preserving and restoring the A5 world
during certain process switches. Listing 3.1 illustrates how to adjust
when swapping thread context.

Listing 3.1 Context switching code
// global that must preserved for each thread
extern Boolean gAnImportantGlobal;

class MyThread : public LThread
{
public:
// member variables that preserve the global
Boolean mSavedGlobal, mTemp;
...
MyThread();
virtual void SwapContext(Boolean swappingIn);
...
};

MyThread::MyThread() : LThread(false)
{
// initialize our member variable
mSavedGlobal = gAnImportantGlobal;
}

void MyThread::SwapContext(Boolean swappingIn)
{
if (swappingIn) // thread is being switched in
{
// first, call inherited swap function
LThread::SwapContext(swappingIn);

// then, do custom swap-in action;
PowerPlant Advanced Topics PPA–79

Threads in PowerPlant
Using Semaphores
// we stuff the global with our saved value
mTemp = gAnImportantGlobal;
gAnImportantGlobal = mSavedGlobal;
}
else // the thread is being switched out
{
// first, do custom swap-out action;
mSavedGlobal = gAnImportantGlobal;
gAnImportantGlobal = mTemp;

// then, call inherited swap function
LThread::SwapContext(swappingIn);
}
}

If you examined this sample code, you noticed that it called the
inherited SwapContext() function. The inherited function
handles vital values related to the A5 world, exception handling, the
sCurrentThread data member, and performs other critical work.

WARNING! If you override SwapContext(), you must call the inherited
SwapContext() function if you expect a threaded application to
function properly.

Using Semaphores

Semaphores are really quite simple once you understand them.

A general-purpose semaphore (or flag) is simply a counter associated
with data in an object. In PowerPlant, if the counter is greater than
zero, the data is available. If the counter is zero or less, the data is
not available. It’s that simple.

If you want to attach a semaphore to data, you typically create a
semaphore data member in the object. You may also create an
independent semaphore object and associate it with the data you
want flagged. The initial count provided to the semaphore
determines the number of threads that can simultaneously access
the semaphore.
PPA–80 PowerPlant Advanced Topics

Threads in PowerPlant
Using Semaphores
Just before you access the shared data, you call the semaphore
object’s Wait() function. If the data is available (the counter is
greater than zero), this call decreases the counter by 1 and returns
immediately. This gives you access to the data.

If the counter is already zero or negative when you call Wait(), the
data is unavailable. The calling thread is entered into the
semaphore’s list and put into the waiting state.

A thread can specify the amount of time it is willing to wait when it
calls the Wait() function. If the time expires before the thread gets
access, the wait times out and an error is returned.

After you are through accessing the data, you call the semaphore
object’s Signal() function. This increases the counter by 1. If the
count becomes positive and there are threads waiting on the
semaphore, one of the waiting threads is returned to the ready state.
A subsequent context switch will give control to that thread. At that
time, the thread that had been waiting (but is now current) will
return from the call to Wait() and have access to the data.

In a nutshell, a semaphore is an automatic method of putting a
thread in the wait state until the flagged data is accessible.

PowerPlant provides three semaphore classes. LSemaphore
implements a general-purpose semaphore as described above.
LEventSemaphore is useful when two or more threads need to be
synchronized. Its distinguishing property is that when the
semaphore is made available, all waiting threads are released
simultaneously. LMutexSemaphore implements a mutual exclusion,
or mutex, semaphore. This type of semaphore allows only one
thread to claim the semaphore at any one time. It is very useful for
implementing shared data structures.

Listing 3.2 illustrates how to use LMutexSemaphore on a simple
implementation of a shared stack. In this example the stack contains
LLink objects, but it could contain data of any type.

Listing 3.2 Mutually exclusive access to shared data
class CSimpleSharedStack : public CSimpleStack {
public:
 CSimpleSharedStack();
virtual void Push(LLink *data);
PowerPlant Advanced Topics PPA–81

Threads in PowerPlant
Using Semaphores
virtual LLink * Pop(void);

private:
LMutexSemaphore fAccess; // access to stack
};

CSimpleSharedStack::CSimpleSharedStack() : fAccess(FALSE) {}

void CSimpleSharedStack::Push(LLink *data)
{
// wait for access
fAccess.Wait();
// do the work
CSimpleStack::Push(data);
// we’ve finished
fAccess.Signal();
}

LLink *CSimpleSharedStack::Pop(void)
{
LLink *data;

fAccess.Wait();
data = CSimpleStack::Pop();
fAccess.Signal();
return (data);
}

Calls to Wait() and Signal() bracket the calls to the base class
that do the actual work. It is guaranteed that no two threads can
ever simultaneously execute the code in between these two calls.

Notice that both the Push() and Pop() routines use the same
semaphore. Because the semaphore applies to the entire stack, if one
thread is pushing data onto the stack, no other thread can be
pushing or pulling data off the stack. Hence the term mutual
exclusion.

Imagine this semaphore code is not in place. Now suppose a thread
calls the Pop() function. While executing the Pop() function, the
thread is preempted by a second thread that calls the Push()
function. Unfortunately, data has not been fully removed by the
thread calling the Pop() function, and the stack pointer hasn’t been
PPA–82 PowerPlant Advanced Topics

Threads in PowerPlant
Using Semaphores
updated yet. As a result, the thread calling the Push() function
damages the stack. Such a disastrous occurrence is perfectly
possible in threaded code.

Mutual exclusion is such a useful strategy that PowerPlant includes
the StMutex utility class to make writing the code easier, and to
release the semaphore even if the code throws an exception. Simply
declare an StMutex object in the block where you want the data
protected. The StMutex constructor waits on a semaphore and the
destructor signals it. Using this class, the Push() function would be
written as follows:

Listing 3.3 Using StMutex
void CSimpleSharedStack::Push(LLink *data)
{
// mutex is constructed by waiting on fAccess
StMutex mutex(fAccess);
CSimpleStack::Push(data);

// before returning, mutex is destroyed
// by signalling fAccess
}

Semaphores can also be used to signal other threads that data is not
ready. For example, assume you are using the stack to pass data
from one thread to another. The stack remains empty until the data
is prepared and pushed onto the stack. Assume that if an attempt is
made to pop data from the empty stack, the stack returns NULL.

A thread needing information from the stack in order to proceed
would probably end up with code like this:

// wait for some data from another thread
while ((myLink = myStack->Pop()) == NULL)
LThread::Yield();
// got the data -- now process it

Even if the thread yields control to other threads from within its
loop, it is still polling the stack object repeatedly. In fact it is busy-
waiting. In the world of concurrent programming, this is a Very Bad
Thing. It uses up CPU time without performing any useful work.

You can use an availability semaphore to create a more satisfactory
solution. Set the semaphore whenever the stack is empty. Then,
PowerPlant Advanced Topics PPA–83

Threads in PowerPlant
Using Semaphores
rather than spinning its wheels in a busy-waiting state and wasting
processor time, the thread is put into a wait state until the data is
ready. Listing 3.4 shows how to do this.

Listing 3.4 Dealing with an empty stack
class CSafeSharedStack:public CSimpleSharedStack {
public:
 CSafeSharedStack();
virtual void Push(LLink *data);
virtual LLink* Pop(void);

private:
LSemaphore fValueAvailable; // is stack empty
};

CSafeSharedStack::CSafeSharedStack() : fValueAvailable(0) {}

void CSafeSharedStack::Push(LLink *data)
{
CSimpleSharedStack::Push(data);
fValueAvailable.Signal();
}

LLink *CSafeSharedStack::Pop(void)
{
fValueAvailable.Wait();
return (CSimpleSharedStack::Pop());
}

The fValueAvailable.Signal() function is called every time
something is pushed onto the stack. Likewise,
fValueAvailable.Wait() is called every time something is
popped from the stack. Hence, fValueAvailable’s integer count
encodes the number of elements on the stack. If the count is non-
positive, calls to Pop() will wait until a subsequent call to
Signal() clears the semaphore and puts the waiting thread back
in the ready state. The busy-waiting loop shown above is replaced
by a call to Pop().
PPA–84 PowerPlant Advanced Topics

Threads in PowerPlant
Inter-Thread Communication
Inter-Thread Communication

In the Using Semaphores section the example code demonstrated
how to use a mutual exclusion semaphore to pass data from one
thread to another. LSharedQueue does this for you automatically.

Suppose that an application contains two threads that need to share
data. Because the threads execute asynchronously in relation to one
another, passing data from one to the other becomes tricky. A
straightforward solution is to decouple the data from both threads
and place it in a thread-safe shared data structure.

Use an LSharedQueue object as a shared channel of communication.
Because LSharedQueue stores LLink objects, you can create a linked
list of any kind of data you want in the queue. Your data objects
descend from LLink and add whatever data members are necessary.

When one thread has data for the other, it puts the data in the queue
by calling LSharedQueue::NextPut(). The other thread
retrieves the data by calling LSharedQueue::Next().
LSharedQueue uses semaphores to ensure that the queue is thread
safe. The strategy is very much like that outlined in the Using
Semaphores section.

Listing 3.5 demonstrates a typical pattern of data sharing, the
producer-consumer relationship. One thread produces data that is
consumed by the second thread.

Listing 3.5 Sample producer-consumer code
class MyProducerThread : public LThread {
public:
MyProducerThread(LSharedQueue *inQueue) :
LThread(false)
{ mQueue = inQueue; }

protected:
virtual void Run(void);
LSharedQueue* mQueue;
};

class MyConsumerThread : public LThread {
public:
PowerPlant Advanced Topics PPA–85

Threads in PowerPlant
Inter-Thread Communication
MyConsumerThread (LSharedQueue *inQueue)
 : LThread(false)
{ mQueue = inQueue; }

protected:
 virtual void Run(void);
 LSharedQueue *mQueue;
};

void MyMakeThreads(void)
{
LSharedQueue *queue;
MyProducerThread *producer;
MyConsumerThread *consumer;

// this queue is used as a communication
// channel between the two threads
queue = new LSharedQueue;

// create the threads, pass in the queue as the
// thread argument
producer = new MyProducerThread(queue);
consumer = new MyConsumerThread(queue);

// fire ’em up
producer->Resume();
consumer->Resume();
}

void MyProducerThread::Run(void)
{
LLink *data;

while (TRUE)
{
// get some data
data = MyGetData();

// send it to consuming thread
mQueue->NextPut(data);
}
}

PPA–86 PowerPlant Advanced Topics

Threads in PowerPlant
Asynchronous Operations
void MyConsumerThread::Run(void)
{
LLink *data;

while (TRUE)
{
// get data from producing thread
data = mQueue->Next();

// process it
MyProcessData(data);
}
}

In summary, you derive your data class from LLink and add your
data to it. You can then put instances of your data class into the
queue using LSharedQueue::NextPut() and retrieve them
using LSharedQueue::Next().

Asynchronous Operations
Setting up and running asynchronous operations is a process that
goes hand-in-hand with threads. Threads attempt to provide for
concurrent processes cooperatively. Asynchronous operations run
at interrupt time, and allow you to implement the same kind of
responsiveness for which threads are intended. You can start
computationally intensive tasks running asynchronously, and
regain control virtually immediately while the operation proceeds
“in the background.”

A problem may arise if a thread that begins an asynchronous
operation must remain in existence until the operation completes.
How does the thread know when the asynchronous operation is
finished?

The LThread class contains functions that facilitate the use of
asynchronous I/O. These functions obviate the need to write any
code that runs at interrupt level. They also permit chained
asynchronous system calls in a way that simplifies program
maintenance.
PowerPlant Advanced Topics PPA–87

Threads in PowerPlant
Asynchronous Operations
NOTE Read “Asynchronous Routines on the Macintosh” in issue 13 of
develop before attempting thread-blocking I/O.

For example, a thread’s Run() method that reads data from a first
file and writes it to a second file might be written like this:

Listing 3.6 Asynchronous read and write
class MyFileCopyThread : public LThread
{
SInt16 mInRefNum, mOutRefNum;
...
virtual void *Run(void);
};

void *MyFileCopyThread::Run(void)
{
SThreadParamBlk pb;
 char buff[512];
 OSErr err;

// Fill parameter block
pb.ioPB.F.ioParam.ioRefNum = mInRefNum;
pb.ioPB.F.ioParam.ioBuffer = buff;
pb.ioPB.F.ioParam.ioReqCount = sizeof(buff);
pb.ioPB.F.ioParam.ioPosMode = fsFromStart;
pb.ioPB.F.ioParam.ioPosOffset = 0;

// Install special I/O completion routine that
// resumes the thread. Needs to be done once.
SetupAsynchronousResume(&pb);

// start async read
// note that we ignore the return code
(void) ::PBReadAsync(&pb.ioPB.F);

// If there is no error, block the thread. Upon
// completion of the call, the thread will be
// resumed and returns the error code from the
// I/O parameter block.
err = SuspendUntilAsyncResume(&pb, noErr);
PPA–88 PowerPlant Advanced Topics

Threads in PowerPlant
Asynchronous Operations
if (err != noErr)
{
// Handle read errors
}

pb.ioPB.F.ioParam.ioRefNum = mOutRefNum;
pb.ioPB.F.ioParam.ioReqCount = pb.ioPB.F.ioParam.ioActCount;

// Start async write & block thread
(void) ::PBWriteAsync(&pb.ioPB.F);
err = SuspendUntilAsyncResume(&pb, noErr);

if (err != noErr)
{
// Handle write errors
}

return (NULL);
}

Note that the I/O parameter block, which is embedded in the
SThreadParamBlk structure, is allocated on the stack (as is the I/
O buffer).

Why are we ignoring the result from PBReadAsync and
PBWriteAsync? Because async File Manager calls return garbage.
For more information, consult the develop article mentioned at the
beginning of this topic.

If you are calling a manager that returns meaningful result codes,
you should pass the result code to
SuspendUntilAsyncResume(). For example:

SThreadParamBlk pb;
SetupAsynchronousResume(&pb);
error = ::PRegisterName(&pb.ioPB.M);
SuspendUntilAsyncResume(&pb, error);

What happens if the async call completes before returning to its
caller? Because the thread is resumed from within the async call’s
completion routine, one might expect that the subsequent call to
SuspendUntilAsyncResume() would leave the thread waiting
for a resume that had already occurred—meaning that the thread
would never wake up.
PowerPlant Advanced Topics PPA–89

Threads in PowerPlant
Asynchronous Operations
Luckily, the async call’s completion routine is a little smarter than
that. When it detects that the thread isn’t yet suspended, it sets up a
Time Manager task that delays for a short period of time. Between
the time the completion routine returns and the time the Time
Manager task fires, the calling thread will perhaps have had time to
suspend itself. If so, the Time Manager task will resume it. If not, the
cycle will begin again.

The SThreadParamBlk structure contains a union of the more
commonly used I/O parameter blocks. If you want to use a
parameter block that isn't supported in SThreadParamBlk, you
can declare your own. For example, if you want to make
asynchronous calls to the PPC Toolbox, you can declare a structure
like this:

typedef struct {
LThread *ioThread;
SInt32 ioGlobals;

// important: the param block must be preceeded
// by the two io variables!

PPCParamBlockRec ioPB;
} MyPPCParamBlk;

When you perform asynchronous I/O, you just typecast your
structure to a SThreadParamBlk:

MyPPCParamBlk pb;

SetupAsynchronousResume(
(SThreadParamBlk *) &pb, myPPCUPP);
(void) ::PPCInformAsync(&pb.ioPB.informParam);
 err = SuspendUntilAsyncResume((SThreadParamBlk *) &pb, noErr)

Note that a UPP was supplied to SetupAsynchronousResume().
Why? Because PPC Toolbox completion routines don’t use the same
calling convention as, say, File Manager completion routines. All of
the I/O calls supported by the members of SThreadParamBlk use
the “pointer to parameter block in A0” calling convention. If you
make any async call whose completion routine uses different calling
conventions, you need to supply a UPP. This UPP will be used as
the completion routine of the asynchronous call. It is your
responsibility to allocate and properly initialize this UPP. In the
PPA–90 PowerPlant Advanced Topics

Threads in PowerPlant
Asynchronous Operations
example above, the actual procedure pointed to by the UPP might
look like this:

Listing 3.7 A sample completion proc
#include <stddef.h>

pascal void MyPPCToolboxCompletionProc (PPCParamBlockRec *ppcPB)
{
MyPPCParamBlk *myPB;

myPB = (MyPPCParamBlk *)
 (-offsetof(MyPPCParamBlk, ioPB)
 + (char *) ppcPB);

// note that the PPC Toolbox has set up
// the A5 world
LThread::ThreadAsynchronousResume(myPB->ioThread);
}

In cases where asynchronous routines do not use the standard I/O
parameter block, you cannot call
LThread::SetupAsynchronousResume() nor
LThread::SuspendUntilAsyncResume() but must instead
block the thread yourself. For example, the following code sets up a
speech channel, initiates speech synthesis, then suspends itself until
the text has been completely spoken (see the Speech Manager
documentation for more information).

Listing 3.8 Example of asynchronous use of the Speech Manager
void MyMakeSpeech(VoiceSpec *voice, Ptr text, long textLen)
{
extern pascal void EndSpeechProc(SpeechChannel,long refCon);

LThread *thread = LThread::GetCurrentThread();
SpeechDoneUPP speechDoneUPP;
SpeechChannel *chan;
OSErr err;

// allocate UPP for callback
speechDoneUPP = NewSpeechDoneProc(EndSpeechProc);

// allocate speech synthesis channel
PowerPlant Advanced Topics PPA–91

Threads in PowerPlant
Asynchronous Operations
err = NewSpeechChannel(voice, &chan);

// set up callback parameters
err = SetSpeechInfo(chan, soCurrentA5, (void *) SetCurrentA5());
err = SetSpeechInfo(chan, soRefCon, thread);
err = SetSpeechInfo(chan, soSpeechDoneCallBack,speechDoneUPP);
// talk
err = SpeakText(chan, text, textLen);

// Suspend ourselves until we’re done speaking.
// Note that we use the Block call instead of the
// Suspend call. This will prevent the thread from
// being killed before the async call completes.

if (err == noErr)
 thread->Block();

// we've been resumed via the callback
// (or SpeakText returned an error)
 err = DisposeSpeechChannel(chan);

// clean up UPP
 DisposeRoutineDescriptor(speechDoneUPP);
}

// This function called at interrupt time by the
// Speech Manager when all of the text has been
// spoken.

pascal void EndSpeechProc(SpeechChannel, long refCon)
{
// note that the Speech Mgr has set up our A5 world

 LThread::ThreadAsynchronousResume((LThread *)refCon);
}

Note that LThread::ThreadAsynchronousResume() is the only
function in the PowerPlant threads classes that may be called from
interrupt-level code. This means that it is illegal to access any other
member function or variable of an object belonging to the threads
classes from within an I/O completion or other interrupt-level
routine.
PPA–92 PowerPlant Advanced Topics

Threads in PowerPlant
Summary of Threads in PowerPlant
Summary of Threads in PowerPlant
The field of concurrent programming is full of possibilities and
complications. PowerPlant provides classes that help you master
the problems and realize the benefits of a threaded strategy.

You can create simple threads easily using LSimpleThread, and
UMainThread. You can extend these threads easily by deriving
from LThread or LSimpleThread and adding your own data.

If your threads share data, PowerPlant provides you with a set of
semaphore classes that easily and almost automatically protect
shared data from inadvertent disaster.

If your threads must communicate shared data, the LLink, LQueue,
and LSharedQueue provide a simple mechanism. In fact, the LLink
and LQueue classes can be used as a general purpose FIFO queue
for any kind of data.

The code exercise for this chapter uses LSharedQueue to facilitate
communication between two threads.

Code Exercise for Threads
In this exercise you create an application that uses threads. Each
thread has a visual representation, so you can see how far along it is
in its task.

The PPob resource and visual interface for this application have
been provided for you. Each window you create has three progress
bars, as shown in Figure 3.3. One thread produces data, the other
consumes it. The threads communicate with each other via a shared
queue. As the producer thread does its work, the progress bar
empties. The queue begins to fill, and then the consumer thread
starts taking data off the queue.
PowerPlant Advanced Topics PPA–93

Threads in PowerPlant
Code Exercise for Threads
Figure 3.3 Threads

The progress bar code is provided for you. Each of these objects—
the two threads and the queue—has its own progress bar object.

In this exercise you write the code to initialize threads in
PowerPlant, instantiate the necessary threads, start the threads
running, and destroy the threads. You also create the shared queue.

Before starting, examine the main() function in CThreadsApp.cp
to see how the code checks for the Thread Manager at startup and
exits gracefully. In addition, look at how the ThreadsLib file is
imported in the project file. It uses weak import so that the
application can launch even in the absence of the Thread Manager.

1. Prepare for threads.

CThreadsApp() CThreadsApp.cp

To accomplish this task, you create a main thread and attach an
LYieldAttachment to the application object. A handy place to
accomplish both tasks is in the application object constructor.

// Create the main thread.
new UMainThread;

// Add a yield attachment.
AddAttachment(new LYieldAttachment(-1));

Note that the attachment is set to -1, so it yields immediately when
called. This attachment gets control from the main event loop. The
main event loop is part of the main thread. The net effect of the
attachment is to ensure that the main thread yields regularly—once
for every event received.

2. Create the threads and queue.
PPA–94 PowerPlant Advanced Topics

Threads in PowerPlant
Code Exercise for Threads
FinishCreateSelf() CThreadWindow.cp

In this step you first create a queue object, and then the two thread
objects. For each object you get its associated progress pane, and
then instantiate the object. After that, you start each thread running.

The CThreadWindow class has three data members,
mSharedQueue, mProducerThread, and mConsumerThread.
Feel free to explore the class declaration.

a. Create the shared queue.

The queue constructor requires a pointer to a CProgressPane
object. The existing code gets that pointer for you. After that,
allocate a new CVisualSharedQueue object. Store the pointer to
the new queue in the mSharedQueue data member.

b. Create the producer thread.

The existing code gets a pointer to the progress pane for this
object. The constructor requires both the shared queue and the
progress pane. Allocate a new CProducerThread object. Store
the pointer to the new thread object in the mProducerThread
data member.

c. Create the consumer thread.

The consumer thread is an object of the CConsumerThread class.
The existing code gets a pointer to the progress pane for this
object. The constructor requires both the shared queue and the
progress pane. Allocate a new CConsumerThread object. Store
the pointer to the new thread object in the mConsumerThread
data member.

d. Make each thread ready.

Call each thread’s Resume() function. The code for all four
substeps is listed below.

// Create the shared queue.
mSharedQueue = new
CVisualSharedQueue(theProgressPane);
ThrowIfNil_(mSharedQueue);

// Get the producer's progress pane.
theProgressPane = (CProgressPane *)
FindPaneByID(kProducerProgressPane);
Assert_(theProgressPane != nil);
PowerPlant Advanced Topics PPA–95

Threads in PowerPlant
Code Exercise for Threads
// Create the producer thread.
mProducerThread = new
CProducerThread(mSharedQueue, theProgressPane
);
ThrowIfNil_(mProducerThread);

// Get the consumer's progress pane.
theProgressPane = (CProgressPane *)
FindPaneByID(kConsumerProgressPane);
Assert_(theProgressPane != nil);

// Create the consumer thread.
mConsumerThread = new CConsumerThread(
mSharedQueue, theProgressPane);
ThrowIfNil_(mConsumerThread);

// Start the threads.
mProducerThread->Resume();
mConsumerThread->Resume();

3. Write a thread constructor.

CProducerThread() CProducerThread.cp

In this step you write a CProducerThread constructor. The
CConsumerThread constructor is identical. It has been provided for
you.

The CProducerThread constructor must call the LThread
constructor. Set the LThread parameters properly. Make the thread
a cooperative thread. Don’t forget, several of the LThread
constructor parameters have default values that you may find
acceptable. Then initialize the CProducerThread data members. The
value for the two data members are passed in as parameters to the
call.

CProducerThread::CProducerThread(
LSharedQueue* inQueue,
CProgressPane* inProgressPane)
 : LThread(false), mQueue(inQueue),
 mProgressPane(inProgressPane)
{

PPA–96 PowerPlant Advanced Topics

Threads in PowerPlant
Code Exercise for Threads
}

This code creates a cooperative thread, and uses default values for
all other LThread constructor parameters. It initializes the values of
mQueue and mProgressPane appropriately.

4. Write the Run() function for the producer.

Run() CProducerThread.cp

Because this is a demonstration, a couple of unusual things happen
with the Run() function for the producer thread.

First, this thread simply creates an LLink object and puts it on the
queue. There is no real data attached to the LLink object.

Second, the state of the progress bar actually controls the thread,
rather than the other way around. The producer progress bar starts
out full and becomes empty over time. When the progress bar is
empty, the thread suspends itself. The function repeatedly puts data
on the queue and decrements the progress bar.

The Run() function should do four things.

a. Suspend the thread upon completion.

When Run() returns, the thread deletes itself. In this case you
don’t want the thread to delete itself. You’ll delete the thread
when you close the window that contains the thread, because
this thread is attached to a visual object.

The existing code has an if test for theValue. If theValue is
less than or equal to the minimum value, call Suspend() to
suspend the thread.

b. Put data in the shared queue.

Use the mQueue object’s NextPut() function and pass it a new
LLink object.

c. Decrement the progress bar value.

Send the mProgressPane a SetValue() message. The local
variable theValue holds the current value. Decrement
theValue by one before passing it.

d. Yield to other threads.

Simply call Yield().

if (theValue <= mProgressPane->GetMinValue())
{

PowerPlant Advanced Topics PPA–97

Threads in PowerPlant
Code Exercise for Threads
Suspend();
}

// Put data in the shared queue.
mQueue->NextPut(new LLink);

// Decrement the progress bar value.
mProgressPane->SetValue(theValue - 1);

// Yield so that other threads may get time.
Yield();

5. Write the Run() function for the consumer thread.

Run() CConsumerThread.cp

In this step you write the consumer thread’s Run() function. This is
the converse of the code you wrote in the previous step.

Because this is a demonstration, you simply delete the data you
retrieve. There are five tasks to perform.

a. Suspend the thread upon completion.

When Run() returns, the thread deletes itself. In this case you
don’t want the thread to delete itself. You’ll delete the thread
when you close the window that contains the thread, because
this thread is attached to a visual object.

The existing code has an if test for theValue. If theValue is
greater than or equal to the minimum value, call Suspend() to
suspend the thread.

b. Get data from the shared queue.

Send the mQueue object a Next() message to get the next link.
Receive the return value in a local LLink* variable.

This is really the meat of of the entire process. The call to
Next() will suspend the thread until data is available.

c. Delete the data.

Delete the LLink object you just retrieved. This line of code
won’t execute until after the call to Next() returns (which
means the data was available, the thread has become active, and
the data has been retrieved.
PPA–98 PowerPlant Advanced Topics

Threads in PowerPlant
Code Exercise for Threads
d. Increment the progress bar value.

Send the mProgressPane a SetValue() message. The local
variable theValue holds the current value. Increment
theValue by one before passing it.

e. Put this thread to sleep.

Rather than yield, put this thread to sleep for a brief period. This
slows the thread down with respect to the producer, so you can
see data accumulate in the shared queue. Remember that putting
the thread to sleep also causes a yield, so you accomplish two
things at once. Fifty milliseconds is a good time to sleep.

if (theValue >= mProgressPane->GetMaxValue())
{
Suspend();
}

// Get data from the shared queue.
LLink* theData = mQueue->Next();

// Just delete it.
delete theData;

// Increment the progress bar value.
mProgressPane->SetValue(theValue + 1);

// Go to sleep for a while.
Sleep(50);

6. Destroy the threads.

~CThreadWindow CThreadWindow.cp

The threads never return because you suspend them before they
return. Therefore, they do not delete themselves. You destroy these
threads when you close the window that contains them.

Simply call DeleteThread() for both threads in the window. The
existing code then cleans up the shared queue.

// Delete the producer thread.
if (mProducerThread != nil)
 mProducerThread->DeleteThread();

// Delete the consumer thread.
PowerPlant Advanced Topics PPA–99

Threads in PowerPlant
Code Exercise for Threads
if (mConsumerThread != nil)
 mConsumerThread->DeleteThread();

7. Build and run the application

When the project builds correctly and you run the application, a
window appears as shown in Figure 3.4. The producer thread
progress bar starts out full. It immediately begins to empty as the
thread it represents places data on the queue. Shortly after that, the
consumer thread starts to remove data from the queue.

Figure 3.4 Threads in operation

Next, make several windows. In the process two important things
are happening, one obvious, one subtle. The obvious feature of
threads is that no matter how many windows you make, all the
threads operate concurrently. The Thread Manager and PowerPlant
work together to ensure that all threads get time. This is cool.

The subtle feature of threads is the responsiveness of the
application. After you make one window, the application is busy
calculating and retrieving data. In a non-threaded application, once
that process begins, the application is tied up and unresponsive. In a
threaded application, the user interface (the main event loop) is also
part of a thread. Therefore, even while computationally intensive
operations are in progress, your application can still receive and
handle events! This is very cool.

Finally, remember that the shared queue implements a semaphore
that protects the integrity of the queue. Experiment with various
sleep times for both the producer and consumer thread, and put this
mechanism to the test. As it is now, the producer creates threads
faster than the consumer retrieves them. Slow down the producer
and speed up the consumer. The consumer will be put into a
waiting state automatically until data appears. The queue may
always appear empty, because the consumer will remove data as
PPA–100 PowerPlant Advanced Topics

Threads in PowerPlant
Code Exercise for Threads
soon as it appears on the queue. However, the consumer does not
become “busy-waiting” and the data queue remains safe and intact.

If you’d like to explore further, here’s a problem you can solve.
While the threads are running in one or more windows, open the
application’s About box. What happens to the threads? They stop
dead in their tracks. See if you can put the About box into a thread
so that it doesn’t seize control of the processor.

Here are two suggestions for how you might accomplish this task. A
PowerPlant solution would be to use a PowerPlant-based movable
modal dialog for the About box. Effectively, this makes the About
box part of the application’s main thread.

A non-PowerPlant solution would be to create an event filter proc
for the modal dialog. This event filter would call
LThread::Yield().

Have a good time exploring.
PowerPlant Advanced Topics PPA–101

Threads in PowerPlant
Code Exercise for Threads
PPA–102 PowerPlant Advanced Topics

4
Networking in PowerPlant

This chapter discusses how to use the PowerPlant network classes
to create a network-savvy application.

Introduction to Networking in PowerPlant
In today’s working environment more and more software
applications are becoming collaborative in nature. Individuals and
groups working together require applications that can communicate
with other applications—sometimes across great distances over the
global Internet.

The Internet is the largest computer network in the world and
connects millions of computers in hundreds of countries. These
computers, although running different operating systems and
applications, can all “speak” to one another by means of a standard
protocol known as the Internet Protocol (IP). IP provides the basis
for connectionless, best-effort data packet delivery between
computers.

The Transmission Control Protocol (TCP) builds upon the
functionality of IP by providing reliable, full-duplex, connection-
oriented, stream communications. That is, once the two ends of a
TCP connection are established, data can be sent and received
between the two, simultaneously, until the connection is closed or
broken. Together these protocols are often referred to as TCP/IP
and they form the basis for Internet communication.

The Mac OS supports two mechanisms for implementing TCP/IP:

• MacTCP

• Open Transport

The PowerPlant network classes support both MacTCP and Open
Transport in order to provide the most compatible and optimized
PowerPlant Advanced Topics PPA–103

Networking in PowerPlant
Where to Learn More About Networking
implementation depending on the currently running system
software. The classes provide numerous high-level functions so you
do not have to worry about the details of MacTCP or Open
Transport directly. When you implement your application using the
PowerPlant network classes, you need not be concerned if the user
has MacTCP or Open Transport installed on their computer—the
classes will handle the details for you.

The PowerPlant network classes also allow you to perform simple
UDP implementations. UDP is the User Datagram Protocol and
allows you to send data to a remote computer without having to
maintain a connection to that computer. This is discussed briefly in
the section entitled “Connectionless Datagram Communications.”

The topics in this chapter include:

• Networking Strategy—PowerPlant’s approach to networking

• Networking Classes—a detailed look at the PowerPlant classes
involved in network support

• Implementing a Network-Savvy Application—how to
implement simple networking in your application

• Summary of Networking in PowerPlant

• Code Exercise for Networking

NOTE The PowerPlant network classes that are included with CodeWarrior
11 or later are not compatible with versions included before
CodeWarrior 11. Any code that you’ve written prior to CodeWarrior
11 that uses the PowerPlant network classes will need to be
updated to use the new architecture. See the PowerPlant network
classes release notes on your CodeWarrior CD for more information
on specific changes between versions of the classes.

Where to Learn More About Networking

This chapter does not teach you the intricacies of data
communications, using TCP/IP with MacTCP or Open Transport,
or any of the standard Internet protocols such as HTTP (World
Wide Web HyperText Transfer Protocol), FTP (File Transfer
Protocol), or SMTP (Simple Mail Transfer Protocol). It also assumes
that you are familiar with basic communications techniques in
PPA–104 PowerPlant Advanced Topics

Networking in PowerPlant
Software Requirements
general. You should note that writing communications software is
not for the faint of heart, even with great tools like the PowerPlant
network classes. There are many intricate details to writing robust
communications code that only experience can teach you. For more
information regarding these topics, you may wish consult the
following books and documentation. This material will help you
learn how to implement Internet-savvy applications.

Comer, Douglas E. Internetworking With TCP/IP, Volume I, Principles,
Protocols, and Architecture. Prentice Hall. ISBN 0-13-216987-8

MacTCP documentation available from Apple Computer, Inc. at
ftp://ftp.apple.com/devworld/Development_Kits/
MacTCP/

Open Transport documentation available from Apple Computer
Inc., and also on your CodeWarrior CD.

InterNIC at http://rs.internic.net/

Internet Engineering Task Force at http://
www.ietf.cnri.reston.va.us/home.html

The WebStar site also has useful information for developers who are
interested in writing Internet code at http://www.starnine.com/

The Netscape site at http://home.netscape.com/

Software Requirements

The PowerPlant network classes make use of either the MacTCP or
Open Transport system software. Given this, before you can use the
classes in your program you must have this system software
installed and configured properly. You must also have some type of
TCP/IP connection such as directly to an Ethernet network or to an
Internet access provider using PPP (Point-to-Point Protocol)
software.

How to configure your machine and network is outside the scope of
this document. However, there are plenty of places to learn more. If
you do not know where to turn, consider purchasing the Apple
Internet Connection Kit from Apple Computer, Inc. This kit
includes everything you need to get connected to the Internet.
PowerPlant Advanced Topics PPA–105

Networking in PowerPlant
Networking Strategy
The PowerPlant network classes also require the PowerPlant
Threads classes which in turn require the Thread Manager from
Apple Computer, Inc. If you are running the most recent version of
the Mac OS System Software then you most likely have the Thread
Manager already installed. If not, you can obtain a copy of the
Thread Manager from the Apple Computer, Inc. web site at http:/
/www.apple.com/

It should also be noted that the PowerPlant network classes require
the use of the Open Transport Client Developer libraries version
1.1.1 or later. These libraries can be found on your CodeWarrior CD
or on Apple’s Open Transport web site at http://
devworld.apple.com/dev/opentransport/. They are
installed automatically when you use the installer on your
CodeWarrior CD.

NOTE If you are running Open Transport 1.1 or later, the Open Transport
API will be called from 68k code when running on a PowerPC. If you
are running versions of Open Transport prior to 1.1, MacTCP will be
called from 68k code when running on a PowerPC. This is due to
the fact that versions of Open Transport prior to 1.1 were never
shipped for 68K Macintosh computers, therefore it is assumed that
MacTCP is available instead. For the adventurous, you can set or
reset the OPENTPT_ON_68K compile option, but the default is to
use Open Transport whenever possible. You should also
understand that older code written using MacTCP only should run
with little or no modification under Open Transport.

Networking Strategy
The PowerPlant network classes implement both MacTCP and
Open Transport compatibility while providing a single, common
API to TCP/IP communication. This API shields you from the
intricacies of both MacTCP and Open Transport so you can
concentrate on the functionality of your application and not low-
level communications details. The API resembles the form and
function of Open Transport, the newest communications technology
for the Mac OS.
PPA–106 PowerPlant Advanced Topics

Networking in PowerPlant
Generic Network Interface
NOTE The PowerPlant network classes were designed to be used either
within the PowerPlant framework or without it. Therefore, you can
include the functionality provided by the network classes in your
application without making use of any of the other classes in
PowerPlant, except the required PowerPlant Threads classes.

Generic Network Interface

When implementing network support in your application, you need
only concern yourself with a small number of classes to provide
support for establishing connections, sending data and receiving
data. These are the basic functions that are necessary for Internet
communications. Collectively these classes are known as the generic
network interface and consist of:

• UNetworkFactory

• LInternetAddress

• LTCPEndpoint

• LUDPEndpoint

UNetworkFactory is a utility class that creates network endpoints
and mappers using the best configuration (MacTCP or Open
Transport) given the current running system software.

LInternetAddress represents both IP and DNS style Internet
addresses. It will automatically map between DNS style and IP style
addresses for you as necessary.

NOTE IP addresses refer to numbered addresses, such as 127.0.0.1. DNS
addresses refer to named addresses such as
www.metrowerks.com.

LTCPEndpoint represents a TCP/IP style network connection. It
establishes a connection between your application and another on a
remote computer using the Transmission Control Protocol. When
created it will use the best configuration (MacTCP or Open
Transport) given the current running system software.

LUDPEndpoint represents a UDP style network connection. It
establishes a connection between your application and another on a
PowerPlant Advanced Topics PPA–107

Networking in PowerPlant
Other Classes
remote computer using the User Datagram Protocol. When created
it will use the best configuration (MacTCP or Open Transport) given
the current running system software.

Other Classes

Other classes exist in the PowerPlant network classes. However,
they implement low-level, internal methods that are not discussed
in this chapter. You need not be concerned with them in order to
implement networking in your PowerPlant application. You should
feel free to explore them as your understanding of networking
increases, however, the Generic Network Interface classes shield
you from the details within them.

Strategic Summary

As mentioned earlier, the PowerPlant network classes make use of
the PowerPlant Threads classes. In this way, your entire network
implementation is “threaded” and therefore is extremely optimized
for communications. By using threads, the network classes are able
to take advantage of all the features that the Thread Manager and
PowerPlant Threads classes have to offer. Other advantages
include:

• A highly optimized architecture for asynchronous network
events

• The ability to have multiple communication sessions active with
little or no degradation in throughput

• The ability to abort any network operation

• The automatic timing out of any network operation

• Simple implementation of protocols self-contained in the
thread’s Run() method

Networking Classes
Now that you have an idea of what the individual network classes
do, let’s take a more in-depth look at the functionality of each.
Figure 4.1 illustrates the class hierarchy that you will be concerned
with when implementing networking in your PowerPlant
application.
PPA–108 PowerPlant Advanced Topics

Networking in PowerPlant
UNetworkFactory
Figure 4.1 The classes that you will use directly

Classes discussed in this section include:

• UNetworkFactory

• LInternetAddress

• LTCPEndpoint

• LUDPEndpoint

UNetworkFactory

The UNetworkFactory utility functions allow you to easily create
TCP endpoints and mappers based on the current running system
software. Calling simple functions in this utility class automatically
choose MacTCP or Open Transport support transparently to you
and your program.

UNetworkFactory includes only a few but very important functions
as follows:

Table 4.1 Some vital UNetworkFactory functions

Function Purpose

CreateTCPEndpo
int()

creates the best TCP/IP endpoint object
based on the current running system
software (MacTCP or Open Transport)

CreateUDPEndpo
int()

creates the best UDP endpoint object based
on the current running system software
(MacTCP or Open Transport)
PowerPlant Advanced Topics PPA–109

Networking in PowerPlant
LInternetAddress
NOTE It is unlikely that you will ever need to create a mapper object (using
CreateInternetMapper()) yourself since the endpoint objects
(discussed below) can accept address objects as arguments when
connecting to a remote computer. Also, the endpoint objects will
perform any necessary DNS lookups automatically for you.
CreateInternetMapper() is provided as a convenience if you
need to perform DNS name or address lookups without maintaining
a connection to the remote computer.

LInternetAddress

LInternetAddress represents both IP and DNS style Internet
addresses. It will automatically map between DNS style and IP style
addresses for you as necessary.

LInternetAddress includes numerous constructors allowing you to
pass various parameters to the object including a numbered
address, a named address and a port number. It also contains many
useful functions as follows:

CreateInternet
Mapper()

creates the best name mapper object based
on the current running system software
(MacTCP or Open Transport)

HasTCP() returns true if a TCP/IP protocol stack is
installed

HasOpenTranspo
rt()

returns true if Open Transport is installed

HasMacTCP() returns true if MacTCP is installed

Function Purpose
PPA–110 PowerPlant Advanced Topics

Networking in PowerPlant
LInternetAddress
Table 4.2 Some vital LInternetAddress functions

Function Purpose

GetIPDescriptor() converts the IP address into a
dotted decimal format and returns
it as a string—optionally appends
the port number (i.e.: 127.0.0.1:80)

GetDNSDescriptor() returns the DNS name of the host
computer—optionally appends the
port number (i.e.:
www.metrowerks.com:80)—
ensures a DNS lookup has been
performed

GetIPAddress() returns the 32-bit IP address of the
host—optionally returns the dotted
decimal format as a string

GetDNSAddress() returns a string representing the
address of the host computer—may
be in dotted decimal format—does
not ensure a DNS lookup has been
performed

SetIPAddress() allows you to set the 32-bit host
address

SetDNSAddress() allows you to set the DNS address
as a string—either by name or as
dotted decimal

GetHostPort() returns the port of the host address

SetHostPort() allows you to set the port of the
host address

MakeOTIPAddress() returns the host address as an Open
Transport TNetbuf/InetAddress
structure—for use in advanced
Open Transport calls that you may
make outside of the PowerPlant
network classes
PowerPlant Advanced Topics PPA–111

Networking in PowerPlant
LTCPEndpoint
NOTE Something that we have yet to touch on is the fact that all TCP
connections occur on ports. There are over 65000 ports to choose
from on any one computer. Some ports are “well known” or
“reserved” such as port 80 which is used by HTTP (World Wide
Web) servers. Servers usually “listen” for incoming connections on a
particular port. Outgoing connections, however, usually use any port
that is available at the time the endpoint binds. Binding is the task of
telling the computer that you want to make use of a particular port. If
the IP or DNS address is the “street name” then the port number
being used is your “house number” on that street. As long as
someone knows how to get to your street, and knows what number
your house is, they can contact you.

LTCPEndpoint

LTCPEndpoint forms the basis for TCP/IP networking in
PowerPlant. This is a simple class that inherits from the abstract
base class LEndpoint. When you call the UNetworkFactory function
CreateTCPEndpoint() an LTCPEndpoint will be created for you
automatically in the form of either an LOpenTptTCPEndpoint or an
LMacTCPTCPEndpoint depending on the current system software.
Either way, the calls that you make to bind, connect, transfer data
and disconnect will be the same.

TCP/IP is used for many session-oriented protocols such as HTTP
(World Wide Web HyperText Transfer Protocol), FTP (File Transfer
Protocol), POP (Post Office Protocol) and SMTP (Simple Mail
Transfer Protocol).

MakeOTDNSAddress() returns the host address as an Open
Transport TNetbuf/DNSAddress
structure—for use in advanced
Open Transport calls that you may
make outside of the PowerPlant
network classes

Clone() returns a copy (via operator new) of
the LInternetAddress object

Function Purpose
PPA–112 PowerPlant Advanced Topics

Networking in PowerPlant
LTCPEndpoint
TIP Be sure to explore the PowerPlant Internet classes, found on your
CodeWarrior CD. These classes implement many popular protocols
on top of the PowerPlant network classes including HTTP, FTP,
POP and SMTP. Not only do they offer your PowerPlant application
these popular services, with a minimum of effort on your part, but
they are also an excellent example of implementing session-
oriented protocols using the PowerPlant network classes.

This section covers those functions that you are most likely to
encounter directly. Use the PowerPlant Reference for detailed and
complete technical information.

LTCPEndpoint and its related classes have numerous member
functions that you will find useful in order to allow you to bind to a
local port, connect to a remote computer and send and receive data.

Table 4.3 Some vital LTCPEndpoint functions

Function Purpose

LTCPEndpoint() constructor

Local Address Configuration

Bind() reserve a local TCP port for the
connection

Unbind() release a previously bound local TCP
port

Connection Establishment (Clients)

Connect() connect to a remote computer

Disconnect() terminate the connection to a remote
computer via an orderly disconnect—
blocks the thread until the remote
computer has shut down the connection
and therefore does not allow further
data transfer via the connection
PowerPlant Advanced Topics PPA–113

Networking in PowerPlant
LTCPEndpoint
SendDisconnect() terminate the connection to a remote
computer via an orderly disconnect—
returns immediately and allows further
reception of data via the connection

AbortiveDisconnect() terminate the connection to a remote
computer without waiting for the
remote computer to acknowledge

AcceptRemoteDisco
nnect()

accept an incoming disconnect request
from a remote computer

Passive Connections (Servers)

Listen() obtain information about an incoming
connection from a remote computer

AcceptIncoming() accept an incoming connection from a
remote computer

RejectIncoming() reject an incoming connection from a
remote computer

Host Addresses

GetLocalAddress() returns the address of the local
computer as an LInternetAddress object

GetRemoteHostAddr
ess()

returns the address of the remote
computer as an LInternetAddress object

Sending Data

Send() send data to a remote computer—
accepts a void pointer to data and size
argument

SendData() see Send()—with optional expedited
flag and timeout

SendPStr() send data to a remote computer—
accepts a pointer to a pascal string

SendCStr() send data to a remote computer—
accepts a pointer to a C string

Function Purpose
PPA–114 PowerPlant Advanced Topics

Networking in PowerPlant
LTCPEndpoint
SendHandle() send data to a remote computer—
accepts a Macintosh Memory Manager
Handle

SendPtr() send data to a remote computer—
accepts a Macintosh Memory Manager
Pointer

Receiving Data

Receive() receive data from a remote computer—
accepts a void pointer to a buffer and
size argument

ReceiveData() see Receive()—with optional expedited
flag and timeout

ReceiveDataUntilMatc
h()

see ReceiveData()—with optional match
character

ReceiveLine() see Receive()—with optional “use
LineFeed” flag and timeout

ReceiveChar() receive a single character from a remote
computer—with optional timeout

Connection Status

GetState() return the current state of the endpoint

Receive Configuration

GetAmountUnread() return the number of bytes of unread
data on the endpoint

Acknowledgment of Sent Data

AckSends() enable the acknowledgment of sent data
mechanism for the endpoint

DontAckSends() disable the acknowledgment of sent
data mechanism for the endpoint

IsAckingSends() return if the acknowledgment of sent
data mechanism for the endpoint is
enabled or disabled

Function Purpose
PowerPlant Advanced Topics PPA–115

Networking in PowerPlant
LTCPEndpoint
One item to keep in mind when using the SendData function is
that the 65K single buffer size limitation of MacTCP has also been
implemented in the Open Transport code of the classes. This was
done to keep the API the same for both MacTCP and Open
Transport without causing subtle differences between the
implementations. If you must send more than 65K of data in one
burst, you should split it up into multiple buffers before sending.

NOTE For consistency and simplicity of end user code design, threads are
blocked after a ReceiveData() call until there is data on the
endpoint. Thus, you can create simple receive loops that block the
thread without having to do your own “Receive - If (no data) Yield()”
type loop as was required in previous versions of the PowerPlant
network classes. The downside of this functionality is that since the
receive has been blocked you are most likely to get hit with
unexpected messages (usually disconnects) while in this state.
Since you have asked specifically for a receive, anything that is not
a typical completion for receive gets thrown back to you as an
exception. Most of the time, you can expect this to be a disconnect
or an orderly disconnect. While these are not necessarily “error

QueueSends() enable the queuing of data to be sent
mechanism— which returns control to
the caller immediately after calling a
send function

DontQueueSends() disable the queuing of data to be sent
mechanism— which returns control to
the caller once the data has actually
been sent

IsQueuingSends() return if the queuing of data to be sent
mechanism is enabled or disabled

Miscellaneous

AbortThreadOperation
()

aborts the current threaded operation—
accepts the thread to abort as the
argument

Function Purpose
PPA–116 PowerPlant Advanced Topics

Networking in PowerPlant
LUDPEndpoint
conditions” in terms of the connection, they are unexpected events
and get thrown back to you as such.

LUDPEndpoint

LUDPEndpoint forms the basis for sessionless (connectionless)
networking in PowerPlant. This is a simple class that inherits from
the abstract base class LEndpoint. When you call the
UNetworkFactory function CreateUDPEndpoint() an
LUDPEndpoint will be created for you automatically in the form of
either an LOpenTptUDPEndpoint or an LMacTCPUDPEndpoint
depending on the current running system software. Either way, the
calls that you make to bind and transfer data will be the same.

UDP is used for many sessionless protocols such as NTP (Network
Time Protocol) and for implementing echo, ping and traceroute
functionality.

This section covers those functions that you are most likely to
encounter directly. Use the PowerPlant Reference for detailed and
complete technical information.

LUDPEndpoint and its related classes have numerous member
functions that you will find useful in order to allow you to bind to a
port and send and receive data.

Table 4.4 Some vital LUDPEndpoint functions

Function Purpose

LUDPEndpoint() constructor

UDP datagram messaging

Bind() reserve a local UDP port for the “connection”

Unbind() release a previously bound local UDP port

Host Addresses

GetLocalAddress() returns the address of the local computer as an
LInternetAddress object
PowerPlant Advanced Topics PPA–117

Networking in PowerPlant
LUDPEndpoint
TIP For more information on how to implement communications
protocols, handle communications errors robustly, and take
advantage of communications programming tactics, consult a

GetRemoteHostAddress() returns the address of the remote computer as an
LInternetAddress object

Sending Data

SendPacketData() send data to a remote computer

Receiving Data

ReceiveFrom() receive data from a remote computer

Connection Status

GetState() return the current state of the endpoint

Acknowledgment of Sent Data

AckSends() enable the acknowledgment of sent data mechanism
for the endpoint

DontAckSends() disable the acknowledgment of sent data mechanism
for the endpoint

IsAckingSends() return if the acknowledgment of sent data
mechanism for the endpoint is enabled or disabled

QueueSends() enable the queuing of data to be sent mechanism—
which returns control to the caller immediately after
calling the SendPacketData() function

DontQueueSends() disable the queuing of data to be sent mechanism—
which returns control to the caller once the data has
actually been sent

IsQueuingSends() return if the queuing of data to be sent mechanism is
enabled or disabled

Miscellaneous

AbortThreadOperation() aborts the current threaded operation—accepts the
thread to abort as the argument

Function Purpose
PPA–118 PowerPlant Advanced Topics

Networking in PowerPlant
Implementing a Network-Savvy Application
communications text-book. See also “Where to Learn More About
Networking”.

Implementing a Network-Savvy Application
Implementing network support in your application is relatively
simple when using the PowerPlant network classes because the
classes shield you from the details of the OS networking
implementation. Although there are numerous ways to use these
classes, one example of implementing simple network support
follows.

When you implement network applications you write a client, a
server, or a client/server application. A client application is one that
requests information from a server. A server application is one that
supplies information to a client or clients. A client/server, or peer-
to-peer application, includes both client and server functionality in
the same application. A chat program that allows two individuals to
communicate directly with each other is an example of a client/
server application.

In this section we discuss the steps required to build both the client
and server side of a network application. Because the PowerPlant
network classes make use of the PowerPlant Threads classes you
may wish to review the chapter which discusses them before
continuing.

One thing to keep in mind is that most of the functions dealing with
binding, connecting, sending and receiving data are all being called
from within a thread. Many times the functions that you call will
block the thread until the asynchronous task completes. This makes
it extremely easy to implement protocols and client architectures
from within the Run() method of your thread.

Each topic in this section reflects a task you may need to perform
when writing your own network applications. This section includes
the following topics:

• Creating a Client
PowerPlant Advanced Topics PPA–119

Networking in PowerPlant
Creating a Client
• Obtaining an Address

• Creating a Client Endpoint

• Binding to a Local Port

• Connecting to a Server

• Sending Data

• Receiving Data

• Disconnecting from a Server

• Handling a Disconnect Request

• Creating a Server

• Listening for Incoming Connections

• Responding to Incoming Connections

More specialized topics follow including:

• Implementing Threads

• Connectionless Datagram Communications

Creating a Client

A client is the end of the connection that initiates the
communication between itself and a server. If you’ve ever used any
Internet software such as a browser, file transfer application, news
reader, etc. then you have used a client application.

Before you implement your client application you need to know
which protocols you will be supporting. In order to write a program
that is useful it must support a protocol above TCP/IP such as
HTTP, FTP, or a protocol of your own design.

TIP You may choose to use the PowerPlant Internet classes to provide
your protocol support. The PowerPlant Internet classes support
many common protocols used on the Internet today. Review the
PowerPlant Internet classes documentation for complete
information.

You first need to create a client class that creates and maintains any
user interface elements you may need—such as a window and
controls. Once your window is created you can offer the user some
PPA–120 PowerPlant Advanced Topics

Networking in PowerPlant
Obtaining an Address
simple controls to allow them to pick the address of a remote
computer to connect to.

Figure 4.2 A sample client window

Obtaining an Address

In order to connect to a remote computer you must know its
address on the network. Addresses come in a variety of forms, as
discussed earlier. Normally you request the remote address from
the user of your application as a string of text, either dotted decimal
or DNS name, and simply create an LInternetAddress object from it.
This is used later to connect to the remote computer.

Creating a Client Endpoint

Before you can communicate with the remote computer you must
create an endpoint. Every connection between a client and server
has two endpoints, one on each end of the connection. You create
your client endpoint by calling
UNetworkFactory::CreateTCPEndpoint(). If you were
creating a connectionless UDP endpoint you would call
UNetworkFactory::CreateUDPEndpoint() instead.

Binding to a Local Port

Now that you have created your client endpoint you need to bind it
to a local port in order to communicate. As you may recall, your
client machine has an Internet address but also has thousands of
possible ports on the machine that it can use to communicate
through. By binding to one of these local ports you are making it
PowerPlant Advanced Topics PPA–121

Networking in PowerPlant
Connecting to a Server
possible for the server to find your application easily amongst any
other applications that might be simultaneously using IP on your
computer.

To bind to a local port you need to create an LInternetAddress
object. Pass zero for both the host address and the host port in the
constructor. These parameters mean that you will use any available
port as the outgoing communications “channel.” Because the client
is initiating the connection, the port number really doesn’t matter.

Pass the LInternetAddress object to LEndpoint::Bind() to
perform the bind. You should also pass zero for the
inListenQueueSize function parameter to Bind(). You pass a
different value as inListenQueueSize when you create a server.
Servers are interested in listening for incoming connections, clients
are not. The thread that is handling your client side of the equation
will be blocked until the bind completes.

Connecting to a Server

To actually connect to the remote endpoint, you simply need to pass
the LInternetAddress object to the endpoint via its Connect()
member function.

At this point the thread will be blocked once again and upon it
being resumed the connection will have either taken place or failed.
Assuming the connection was made, you can continue to send and/
or receive data from within your thread. If the connection failed
your try/catch block will have caught any exceptions and you can
handle them accordingly.

NOTE Servers refuse connections for a variety of reasons. For example, if
an FTP server has too many users transferring files at the moment
you connect, it refuses your connection. It may also refuse your
connection because you entered the wrong password or don’t have
access to the server. If you try to connect to a machine that you
think is running a particular server but it is not, your connection will
also be refused by the TCP software on that machine because there
are no listeners on that particular port.
PPA–122 PowerPlant Advanced Topics

Networking in PowerPlant
Sending Data
Sending Data

To send data to the remote computer you merely need to call any
one of the Send() member functions depending on
the type of data you are sending. You can rest assured
that the data will arrive at its destination in the majority of cases
because TCP/IP does its best to guarantee this. If you are using a
UDP endpoint, however, the data is not guaranteed to arrive and
you will need to call the UDP specific send function instead.

Receiving Data

To receive data from the remote endpoint you merely need to call
any one of the Receive() member functions
depending on the type and size of data you are
receiving. If you are using a UDP endpoint, however, the you
will need to call the UDP specific receive function instead.

Disconnecting from a Server

If you wish to initiate a disconnect, simply call either the
Disconnect() or SendDisconnect() member functions. In
most cases you will just need to call Disconnect() when you are
ready to close a connection. After calling the Disconnect()
function the thread will block and upon being resumed you should
call Unbind() to release the local port you bound to earlier.

NOTE If you are connecting via UDP instead of TCP, remember that you
need not (and can not) call Connect() and Disconnect().
Otherwise, using UDP is similar to TCP in the sense that you bind,
send, receive and unbind.

Handling a Disconnect Request

If, at any time in your threaded send and receive loop, you receive a
OrderlyDisconnect_Error message you should call
AcceptRemoteDisconnect() immediately and continue by
deleting the local endpoint. This message is telling you that the
remote endpoint initiated a disconnect and you should oblige.
PowerPlant Advanced Topics PPA–123

Networking in PowerPlant
Creating a Server
WARNING! Sending data after receiving a OrderlyDisconnect_Error
message is risky business. Because the remote endpoint may have
already closed its end of the connection or may ignore incoming
data, the data may never be received.

Creating a Server

A server is the end of the connection that listens for incoming
requests from one or more clients. Servers usually offer information
that the client can request once connected. Servers are more difficult
to write than clients in most cases.

Before you implement your server application you need to know
which protocols you will support. A useful application must
support a protocol above TCP/IP such as HTTP, FTP, or a protocol
of your own design.

NOTE When writing a server, you may opt to have a server class and a
responder class. The server class listens for incoming connections.
When one occurs, the server creates a responder object that
completes the connection and handles the exchange of data
between the client and itself. The responder can function very
similarly to the client class mentioned above. An exception is that it
need not call Bind(), because when it connects by calling
AcceptIncoming() the bind happens transparently.

You first need to create a server class that listens for incoming
connections, and a responder class that responds to these
connections.

Your responder class is almost identical to your client class in many
respects, because it handles the exact same protocol. The only major
difference is in the way it connects, instead of initiating a connection
by calling Connect(), it accepts an incoming connection request,
discussed below.
PPA–124 PowerPlant Advanced Topics

Networking in PowerPlant
Listening for Incoming Connections
Listening for Incoming Connections

Servers spend most of their time listening for incoming connection
requests. When a server receives a request it can decide whether or
not to accept the request based on the IP or DNS address of the
computer that the request has originated from, the number of users
currently logged into the server, or other criteria that you choose.

To listen for incoming connection requests your server object should
first create the server endpoint by calling
UNetworkFactory::CreateTCPEndpoint().

Secondly, create an LInternetAddress object. Pass in the port
number that you want to listen to for incoming connection requests.
For example, if you are writing an HTTP (World Wide Web) server
you will use “well-known-port” number 80.

Next, pass the LInternetAddress object to the Bind() member
function. Your server thread will be blocked and upon it being
resumed you will be bound to the port you specified. You should
pass any number greater than zero for the inListenQueueSize
function parameter when calling Bind(). This tells TCP/IP that
you want to listen for up to inListenQueueSize incoming
connections at once. Therefore, while one connection is being
serviced, others will not be turned away.

NOTE You should not arbitrarily set the inListenQueueSize function
parameter. For each connection you offer to service, more RAM is
required for use by your application and the TCP/IP subsystem. You
should experiment with the number of connections that best suits
your needs and memory requirements. You may also wish to allow
the user to set this value via a preference setting but remember that
they may also need to increase the memory partition of your
application as well.

Assuming the bind completed with no errors, your server object is
now listening for incoming connections.
PowerPlant Advanced Topics PPA–125

Networking in PowerPlant
Responding to Incoming Connections
Responding to Incoming Connections

Incoming connection requests are flagged by the T_LISTEN
message. When your server object receives a T_LISTEN message
you can evaluate the incoming connection request to see if you
would like to service it. Immediately after you receive the
T_LISTEN message you should call Listen() to inform the server
endpoint that you will be dealing with the latest incoming
connection request.

The easiest way to manage this in your thread is to simple
Suspend() your thread once the bind has completed successfully.
Upon receiving a T_LISTEN message your thread will be
automatically resumed. You can then call the Listen() member
function of the server endpoint.

If you choose to reject the incoming connection request, after calling
Listen(), you simply need to call the RejectIncoming()
member function of the server endpoint and return to waiting for
other T_LISTEN messages.

Assuming you choose to accept the incoming connection request,
you should create a responder object and pass the endpoint on to it.
This forces the responder to connect to the remote requester.

Your responder first creates another endpoint using
UNetworkFactory::CreateTCPEndpoint(). Once created, the
responder’s thread calls the server endpoint’s AcceptIncoming()
member function, passing in the newly created responder endpoint
as the inEndpoint function parameter. This is an extremely
important step and can be considered the “hand-off.” The server
endpoint is handing off the connection to the responder endpoint.

The responder thread will then be blocked and will resume when
the hand-off is completed. From this point on the responder can act
as if it is a client, following the protocol as defined. The responder is
now connected to the client on the remote computer and can freely
send and receive data with it.

TIP When writing a peer-to-peer application (such as a chat program)
where the two ends function as both a client and a server, you may
opt to derive your responder and client classes from a common
PPA–126 PowerPlant Advanced Topics

Networking in PowerPlant
Implementing Threads
base class. In many cases each object, once connected, must
handle the exact same protocol as the other with very few, if any,
differences.

Implementing Threads

Threaded implementations can be extremely useful when dealing
with query/response protocols such as POP or SMTP. That is, a
protocol that simply sends a query and then awaits a response is a
good candidate for a thread-based implementation.

As mentioned, the PowerPlant network classes depend on the
PowerPlant Threads classes in order to function. The heart of your
network applications will contain threads that do the majority of the
network tasks such as binding, connecting, sending, receiving,
disconnecting and unbinding. The internal implementation of the
PowerPlant network classes depend on this and make use of
blocking,. suspending and resuming of your threads in order to
implement an elegant and optimized networking architecture.

For complete examples of how to implement your threaded
network implementation, see the SimpleClient and SimpleServer
examples on your CodeWarrior CD and their associated Code
Exercise below.

TIP When writing threaded network classes, it is easiest to write the
logic of your Run() member function of your Thread class first. Due
to the convenient blocking, suspending and resuming of threads,
you can easily implement the structure of your entire protocol in your
Run() member function.

Connectionless Datagram Communications

So far we’ve mainly discussed TCP. However, the PowerPlant
network classes also support UDP, User Datagram Protocol.
Whereas TCP offers a reliable, full-duplex, connection-oriented
stream service, UDP offers best-effort, connectionless datagram
delivery with an optional checksum. UDP still allows you to specify
PowerPlant Advanced Topics PPA–127

Networking in PowerPlant
Summary of Networking in PowerPlant
a port on the remote computer, however, which differentiates it
from the lower-level IP.

UDP is extremely easy to use. In fact, it is very similar to TCP except
for the fact that you do not call Connect() and Disconnect().
Once you bind to a local port, the functions you need to make use of
are SendPacketData() and ReceiveFrom(). By calling these
functions you can send and receive datagrams (small packets of
data that stand on their own) between two remote computers.
Protocols that simply return the local time, or a short text message
such as a quote, lend themselves to UDP quite nicely.

NOTE Using UDP is simpler than TCP but don’t use it unless you need to.
Some simple protocols support UDP for convenience, but UDP is
not reliable. TCP has built-in functionality to ensure reliable delivery
of data, quickly, in both directions. UDP communications are prone
to errors if the connection is not pristine in quality. Only experienced
network programmers should use UDP.

Summary of Networking in PowerPlant
Communications and networking between applications is becoming
increasingly important in today’s diverse computer culture. TCP/IP
is an important protocol for applications to implement because it is
cross-platform in nature. A TCP/IP application on a Macintosh can
communicate easily with a TCP/IP application on a PC running
Windows, a UNIX or NeXT workstation, a BeBox or a mainframe.

There are numerous standard protocols today that you can
implement using the PowerPlant network classes including HTTP,
FTP, and SMTP. You can also define your own protocols built upon
the TCP/IP implementation to extend your application and make it
“Internet-savvy.” The ability to access remote computers and make
use of their resources makes your application that much more
powerful.
PPA–128 PowerPlant Advanced Topics

Networking in PowerPlant
Code Exercise for Networking
Code Exercise for Networking
The SimpleClient and SimpleServer applications show how to
implement both a client and server application using the
PowerPlant network classes. Although there are numerous ways to
use the classes provided here, these examples should give you a
simple introduction to one implementation. In this section we cover
two code exercises:

• SimpleClient

• SimpleServer

SimpleClient

In the first part of this exercise you implement portions of the
SimpleClient application.

The purpose of this exercise is to give you experience using
networking in PowerPlant—the functions you override and the
tasks you perform. This exercise is not intended as a tutorial on
general networking techniques. For more information on
networking in general you should consult a text on Internet
protocols and computer networking. A short list was mentioned
earlier in this chapter.

SimpleClient is just that, a simple client. It implements a Telnet-like
terminal that allows you to type characters which are sent to the
remote computer and are echoed back to the terminal and
displayed. Although you can connect to most any server, the
SimpleServer application (discussed below) is designed specifically
to be used with SimpleClient.

Let’s take a look at the important steps needed to implement client-
side networking in your application. In the first part of this exercise
you write the code to:

• Create a TCP endpoint for the client.

• Bind to the local endpoint.

• Open an outgoing connection.

• Send data to the remote computer.

• Receive data from the remote computer.
PowerPlant Advanced Topics PPA–129

Networking in PowerPlant
SimpleClient
• Disconnect from the remote computer.

• Unbind the TCP endpoint.

• Quit your application. Cleaning up when you’re through.

1. Create a TCP endpoint for the client.

StartSession() CClientConnection.cp

Before you can communicate via TCP you must create a TCP
endpoint. You use the
UNetworkFactory::CreateTCPEndpoint() function to do
this. As usual, in these exercises existing code is in italics.

mTCPEndpoint =
UNetworkFactory::CreateTCPEndpoint();
mTCPEndpoint->QueueSends();
mTCPClientThread = new
CTCPClientThread(mTCPEndpoint, mTerminalPane,
this);
mTCPClientThread->Resume();

Note that we also enable the “Queue Sends” mechanism at this
time. Because this is an option for the endpoint, this is the perfect
time to enable it.

You should also note that the existing code that follows creates a
thread for our endpoint and immediately “kick-starts” the thread by
calling the Resume() function which begins execution of the
thread’s Run() method. The Run() method is the heart of our
client implementation.

2. Bind to the local endpoint.

Run() CTCPClientThread.cp

After you have created your TCP endpoint, you must bind to it.
Binding “connects” you to the endpoint and allows you to properly
communicate through it. Because we are initiating the
communications we don’t care which local port we communicate
through, therefore we create an LInternetAddress object passing 0
for both the host address and host port. Once instantiated we pass
the address to the endpoint’s Bind() method.
PPA–130 PowerPlant Advanced Topics

Networking in PowerPlant
SimpleClient
LInternetAddress address(0, 0);
mEndpoint->Bind(address);

Because we are using threads, the Bind() method will block the
thread until the bind is complete. When it is complete the thread
will be resumed automatically and will continue to execute.

Note that if the bind fails for any reason, our try/catch block will
catch the exception and essentially abort the Run() method.

3. Open an outgoing connection.

Run() CTCPClientThread.cp

Once we have the port in our control we need to actually open an
outgoing connection using the port. This is a very simple task. First
we create an LInternetAddress based on the address that the user
entered when they initiated the connection. This might be in the
form of a dotted-decimal IP number (127.0.0.1) or a name
(www.metrowerks.com). Once we have the LInternetAddress object
created we can simply pass it to the Connect() method of the
endpoint. The Connect() method will automatically block our
thread, perform any needed DNS lookups, connect to the remote
computer and the resume our thread.

LInternetAddress* remoteAddress =
mClientMaster->GetRemoteAddress();
mEndpoint->Connect(*remoteAddress);

Note that if the connect fails for any reason, our try/catch block will
catch the exception and essentially abort the Run() method.

4. Send data to the remote computer.
InternalSend() CClientConnection.cp

Now that we have a connection open between our client and a
server on the remote computer, we can easily send and receive data
between the two processes. This is as simple as passing the data to
any of the numerous “send” functions supported by the endpoint.
In this case we use the Send() method passing in a pointer to the
data and the length of the data.
mTCPEndpoint->Send(theData, theLength);

Because we enabled the queue sends mechanism when we created
the endpoint, the Send() method will return immediately allowing
our program to continue with no delay. It will then send the data
“behind the scenes” as we continue other processing.
PowerPlant Advanced Topics PPA–131

Networking in PowerPlant
SimpleClient
5. Receive data from the remote computer.
Run() CTCPClientThread.cp

In order to receive data from the remote computer we first must
know what type of data we will be receiving. In this case we know
that the data is sent a character at a time and is echoed back to us in
the same format. Therefore, we can easily call the endpoint’s
ReceiveChar() method to receive a character of data at a time. In
our Run() method we simply loop, receiving characters, until we
either initiate a disconnect or the remote endpoint does so.

char theChar;
mEndpoint->ReceiveChar(theChar, 5);
mTerminalPane->DoWriteChar(theChar);

The ReceiveChar() method is called passing a buffer to store the
received character in as well as a timeout value. In this particular
case, if no characters are received within 5 seconds, the function will
return and our loop will continue. You will also note that once
received, we immediately write the character to our terminal pane
so the user can see it has been echoed.

6. Disconnect from the remote computer.
Run() CTCPClientThread.cp

When we are ready to disconnect from the remote computer we
simply call the Disconnect() method of the endpoint. Our thread
will block, the disconnect will take place, and our thread will
resume.
mEndpoint->Disconnect();

7. Unbind the TCP endpoint.
Run() CTCPClientThread.cp

Once the Disconnect() method resumes our thread we continue
the process by unbinding from the port. This is as simple as calling
the Unbind() method of the endpoint.
mEndpoint->Unbind();

One thing to note is that you don’t have to unbind at this point. If
you were going to open another connection immediately you might
choose to use the same port. In this case you may forego the unbind
and simply open a connection to another remote computer instead.

8. Quit your application.
PPA–132 PowerPlant Advanced Topics

Networking in PowerPlant
SimpleServer
main() CSimpleClientApp.cp

When your application quits, the most important thing you have to
do is call LCleanupTask::CleanUpAtExit(). This function
ensures that all tasks are cleaned up and are properly destroyed
before the application quits. Not calling this function can cause a
crash. Even if you don’t crash, other TCP/IP applications may not
function properly until you restart your computer.
LCleanupTask::CleanUpAtExit();

9. Build and run the application.

When the application builds successfully and runs, select New
Session… from the File menu and enter in the name and port
number of the remote computer you wish to connect to. Once
entered press the OK button.

Once connected you can type text into the terminal and it will echo
back to you. To disconnect simply close the terminal window.

Congratulations! You’ve implemented a network-savvy application
using the PowerPlant network classes.

SimpleServer

In the second part of this exercise you implement portions of the
SimpleServer application.

SimpleServer is just that, a simple server. It implements a Telnet-
like server that allows you to send characters to it which are
immediately echoed back to the sender.

Let’s take a look at the important steps needed to implement server-
side networking in your application. Much of what you see here
will be similar to what you implemented on the client side except
for a few important differences which we outline below. In the
second part of this exercise you write the code to:

• Create a TCP endpoint for the server.

• Bind to the local endpoint. So your server can “listen” for a
connection.

• Listen for an incoming connection request.

• Accept an incoming connection request.

• Handle the connection.
PowerPlant Advanced Topics PPA–133

Networking in PowerPlant
SimpleServer
1. Create a TCP endpoint for the server.
WaitForConnections() CSimpleTCPServer.cp

Before you can communicate via TCP you must create a TCP
endpoint. You use the
UNetworkFactory::CreateTCPEndpoint() function to do
this. As usual, in these exercises existing code is in italics.

mEndpoint =
UNetworkFactory::CreateTCPEndpoint();
mEndpoint->AddListener(this);

Note that we also add the CSimpleTCPServer object as a Listener to
the endpoint. This allows us to receive the T_LISTEN message from
the endpoint when a remote connection request is received. This
makes use of the standard Broadcaster/Listener relationship used
throughout the PowerPlant framework.

2. Bind to the local endpoint.
Run() CTCPServerThread.cp

Binding to the TCP endpoint is performed much the same as the
client side of the connection with two notable exceptions. The first
being that we must specify a local port number to bind to. This is so
the client application knows how to contact our server. Remember,
when you connect to a remote computer using TCP you not only
supply the address of the computer but also the port number on that
computer. When we actually call the Bind() method of the
endpoint we also pass in the maximum number of connections we
would like to listen for. This allows TCP to pass multiple connection
requests to our server simultaneously instead of simply turning
them away.

LInternetAddress address(0, mPort);
mEndpoint->Bind(address, mMaxConnections);
mServerMaster->BindCompleted();

You will also note that after the bind has completed (our thread is
blocked by the bind then resumed) we call a function of the master
server object called BindCompleted(). This is simply a
mechanism to pass a message back to the object that handles our
user interface to let it know that the bind has completed successfully
and it can safely display our server’s window.

3. Listen for an incoming connection request.
PPA–134 PowerPlant Advanced Topics

Networking in PowerPlant
SimpleServer
Run() CTCPServerThread.cp

There is actually nothing to do to begin our server listening for
incoming connection requests. Because we passed in a value to the
Bind() method specifying how many listeners we can handle, we
are automatically listening once the bind is complete. We do
however choose to suspend our thread until an actual connection
request is received.
Suspend();

When a connection request is received, you will remember that the
endpoint is set up to broadcast a T_LISTEN message to the
CSimpleTCPServer object. When this message is received by the
CSimpleTCPServer object it simply resumes the server thread. See
CSimpleTCPServer::ListenToMessage().

4. Accept an incoming connection request.
Run() CTCPServerThread.cp

Once our thread is resumed (by the reception of the T_LISTEN
message) we simply call the Listen() method of the server endpoint.
mEndpoint->Listen();

After this point we can easily create a new TCP endpoint, known as
the responder endpoint (see CTCPResponder::Accept()), create
a new responder thread (see CTCPResponderThread::Run())
and within it call the AcceptIncoming() method of the server
endpoint, passing our responder endpoint as the only parameter.
This effectively hands off the connection currently serviced by the
server endpoint to the responder endpoint and opens the
connection fully.

5. Handle the connection.

From this point onward you can perform the same tasks in the
responder as you did in the client. This includes sending and
receiving data, disconnecting, unbinding and quitting your
application. The responder, in many cases, can even descend from
the same base class as your client. What could be easier?

As extra credit, walk yourself through the code exercises again but
now looking for the UDP specific code as opposed to the TCP
specific code that we outlined above.

This program can be extended in many exciting ways. You could
easily send complex data across the connection, not just single
PowerPlant Advanced Topics PPA–135

Networking in PowerPlant
SimpleServer
characters. For example, you might have a picture display. You
could send a picture pasted into the display to the remote computer.

You might also consider using the Sound Manager to send live
audio across the connection. How about MIDI data? You could even
send Event Manager events to the remote computer. Whenever you
click the mouse in a window on your computer it causes a click to
occur on the remote computer! This could be the beginnings of a
collaborative drawing application. And how about Apple Events
across the Internet?

The possibilities are limitless. Good luck, and happy networking!
PPA–136 PowerPlant Advanced Topics

5
Internet Programming in
PowerPlant

This chapter discusses how to use the PowerPlant Internet classes to
create a variety of Internet-enabled programs.

Introduction to Internet Programming in
PowerPlant

The global collection of networks known as the Internet has grown
in size at a staggering rate. Businesses, schools, governments, and
individuals are making use of the interconnected nature of the
Internet to conduct their daily affairs. Many tools help in these
endeavors: electronic mail, the World Wide Web, and file transfer
being but a few.

The primary networking protocol stack used on the Internet is the
collection of protocols known as Transmission Control Protocol/
Internet Protocol (TCP/IP). On top of this foundation exists a large
collection of mostly standardized, task-specific protocols. These
protocols are specified in the Request For Comment (RFC)
documents which are the definitive source for implementation
details.

Several of these task-specific protocols have been implemented in
the PowerPlant library of classes. Electronic mail is represented
with classes covering the Simple Mail Transport Protocol (SMTP)
for sending messages to mail servers, and the Post Office Protocol
version 3 (POP3) for retrieving messages from mail servers. The
main protocol of the World Wide Web, the Hierarchical Text
Transfer Protocol (HTTP), is provided. File transfer is included with
the File Transfer Protocol (FTP) classes. Finally, a collection of
PowerPlant Advanced Topics PPA–137

Internet Programming in PowerPlant
Where to Learn More About Internet Protocols
helper classes exist to make preparing and interpreting data sent by
these protocols simpler to code.

The PowerPlant implementations of these classes are built on top of
the PowerPlant network classes documented elsewhere in this
manual. By using the network classes as the foundation, the Internet
classes work well with either MacTCP or Open Transport installed
on the target Macintosh.

WARNING! The Internet classes make use of the threaded version of the
PowerPlant network classes. You will need to check that the Thread
Manager is installed on the host computer for your application to
work properly.

This chapter's topics include:

• Internet Programming Strategy—PowerPlant's approach to
using Internet Protocols

• Internet Classes—a detailed examination of the PowerPlant
implementation of some Internet protocols

• Implementing an Internet Enabled Application—how to add
basic Internet protocols to your application

• Summary of Internet Protocol Usage in PowerPlant

• Code Exercise

Where to Learn More About Internet Protocols

The Internet is always changing, and even the protocols that are
described in this chapter are constantly evolving. This chapter
shows you how to make use of the protocol classes, but does not
teach you the intricacies and nuances of the protocols themselves.
For that, we recommend that you review the ultimate resource for
the protocols, the Request For Comment (RFC) documents. RFCs
describe in great depth how protocols function, and they explain
some of the implementation details that are useful to understand
when writing Internet software.

This chapter's descriptions of the PowerPlant Internet classes and
their application assumes that you have a basic familiarity with
Internet protocols and creating networking software. You should
PPA–138 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Software Requirements
also understand the fundamentals of using Mac OS Threads and the
PowerPlant classes that support them. There are many issues that
you must consider when implementing a robust communications
program, and experience is the best guide. There are many other
books and resources that you can read to learn about Internet
protocols and programming.

Comer, Douglas E. Internetworking with TCP/IP, Volume 1, Principles,
Protocols, and Architecture. Prentice Hall.

Comer, Douglas E. Internetworking with TCP/IP, Volume 3, Client-
Server Programming and Applications. Prentice Hall.

Stevens, W. Richard. TCP/IP Illustrated, Volume 1-3. Addison
Wesley.

Internet Engineering Task Force at http://
www.ietf.cnri.reston.va.us/ (for RFCs)

Software Requirements

The PowerPlant Internet classes require several pieces of system
software. MacTCP (also known as “classic networking”) or Open
Transport must be installed and properly configured for the
Internet classes to operate. If you want to be able to connect with
other machines, the computer on which your application runs must
also be connected to a network that supports TCP/IP. The Internet
classes will work just fine regardless of whether you are connected
via Ethernet, a serial connection using Point to Point Protocol (PPP),
or some other physical connection. However, you may want to
adjust the operation of your software depending on the
performance of the link.

Additionally, the Thread Manager must be installed if it is not
already part of the version of the Mac OS running on the target
computer.

Internet Programming Strategy
The PowerPlant Internet classes implement a general foundation
that easily supports Internet protocols modeled on a command and
response scheme. On top of this foundation is support for some of
PowerPlant Advanced Topics PPA–139

Internet Programming in PowerPlant
Generic Internet Protocol Interface
the most common Internet standard protocols. The different
protocol APIs provide a simple interface that allows you to
concentrate on the operation you wish to complete, not the
underlying details.

TIP Depending on your programming situation, you may want to use the
Internet classes apart from the rest of PowerPlant. The Internet
classes currently require the following other components of the
PowerPlant library: the Internet Class hierarchy, the Network
hierarchy, the Thread classes, LPeriodical, LArray, UMemoryMgr
utilities, LBroadcaster, LListener, and the ANSI library.

This section discusses the following topics:

• Generic Internet Protocol Interface—PowerPlant’s abstract
foundation for representing Internet protocols

• Specific Internet Protocol Interfaces—PowerPlant’s
implementation of popular Internet protocols

• Internet Messages—the general representation of data sent by
many Internet protocols

• General Utilities—PowerPlant’s tools for making Internet
programming easier

• Strategic Summary

Generic Internet Protocol Interface

Many Internet protocols follow the same general pattern in how
they communicate between two computers. The connection is
opened by the sending computer, the receiver acknowledges the
connection, then the sender starts writing command sequences with
optional data one at a time. The receiver accepts each command and
replies with a response code and optional data.

The Internet classes implement this generic behavior with two base
classes:

• LInternetProtocol

• LInternetResponse

LInternetProtocol is used to create the connection between your
program and the destination program on a remote computer. This
PPA–140 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Specific Internet Protocol Interfaces
base class provides the infrastructure for protocols that follow the
command and response model.

LInternetResponse embodies the typical format of a response that
you will receive from the remote program when it acknowledges
your program's commands.

Specific Internet Protocol Interfaces

The PowerPlant Internet classes implement several of the more
popular Internet protocols in use today. These classes all follow the
general command and response model of communication. The
classes currently implemented include:

• LSMTPConnection

• LSMTPResponse

• LPOP3Connection

• LPOP3Response

• LHTTPConnection

• LHTTPResponse

• LFTPConnection

• LFTPResponse

LSMTPConnection and LSMTPResponse implement the Simple
Mail Transport Protocol (SMTP) which is the primary transmission
protocol for electronic mail messages. The classes implement the
basic command set of the SMTP specification (RFC822).

LPOP3Connection and LPOP3Response implement the Post Office
Protocol version 3 (POP3). This set of classes can be used to retrieve
mail from a compliant mail server. The classes implement some of
the optional POP3 commands such as TOP and APOP, an alternate
authentication method (RFC1725).

LHTTPConnection and LHTTPResponse implement the
Hierarchical Text Transport Protocol (HTTP). HTTP is used most
frequently for communication with World Wide Web (WWW)
servers. These classes give you all of the necessary tools for using
the basic features of HTTP version 1 including the GET, POST, and
HEAD methods (IETF draft 4—see RFC web site).
PowerPlant Advanced Topics PPA–141

Internet Programming in PowerPlant
Internet Messages
LFTPConnection and LFTPResponse implement the File Transfer
Protocol. These classes allow you to send, retrieve, and manipulate
files as described in the FTP specification (RFC959).

NOTE This chapter does not describe the inner workings of the various
Internet protocols supported by the PowerPlant Internet class
library. The ultimate source of information for these protocols can be
found in their specifications in the Request For Comments
documents which can be found at the address given earlier in this
chapter.

Internet Messages

Some Internet protocols, such as SMTP and HTTP, require that data
be sent in a special format (RFC822). These encapsulated messages
are composed of two parts:

1. a collection of headers which provide protocol specific
information regarding the handling of the data, and

2. a message body that contains your data (perhaps encoded in
a certain way).

The PowerPlant Internet classes support this concept with a
collection of classes that implement messages:

• LInternetMessage

– LMailMessage

– LHTTPMessage

• LHeaderField

• LHeaderFieldList

• LMailMessageList

LInternetMessage is a base class that implements the basic behavior
of an RFC822 message. This class provides the ability to easily
manipulate the headers and body of a message.

LMailMessage is a message for electronic mail and is used by both
SMTP and POP3. It provides a simple interface for accessing mail
specific header fields. The class supports simple MIME
enhancements including multipart messages.
PPA–142 PowerPlant Advanced Topics

Internet Programming in PowerPlant
General Utilities
NOTE MIME stands for Multipurpose Internet Mail Extensions (RFC1521)
and is a specification for a set of message headers that describe a
variety of enhanced message body types and content. MIME
messages can include special encodings, multiple parts, binary
information, etc.. HTTP 1.0 is not fully MIME compliant. HTTP uses
the MIME headers to determine the content type of the message,
but only supports a small subset of the available types at this time.

LHTTPMessage is a message specifically formatted for HTTP. It
provides a simple interface to access header fields unique to the
protocol. The class implements the minimal MIME support required
by the HTTP specification.

LHeaderField is a utility class used by the message classes to store
and construct RFC822 style header fields.

LHeaderFieldList is another utility class that maintains an array of
header fields during the construction of a message.

LMailMessageList is a utility class that maintains an array of
pointers to LMailMessage objects.

General Utilities

The PowerPlant Internet classes make use of a number of general
utility functions and classes:

• LDynamicBuffer

• UInternet

• MD5

• UUEncode

LDynamicBuffer is used throughout the Internet classes to provide
storage buffers that can grow or shrink whenever you change their
contents.

UInternet contains a number of useful utility functions that includes
routines to encode data for a variety of different protocols.

MD5 is a collection of C functions that implement the MD5 message
digest encryption algorithm.
PowerPlant Advanced Topics PPA–143

Internet Programming in PowerPlant
Strategic Summary
UUEncode is a collection of C functions that implement the
uuencode character encoding algorithm (based on RFC1113).

NOTE The details of the different encoding routines are beyond the scope
of this chapter. You should refer to a standard text on character
encoding and encryption for more details.

Strategic Summary

Depending on which protocol you choose to use in your program,
there are really two levels of detail you can explore within the
PowerPlant Internet classes:

• Use the simple wrapper function in those protocols that support
it to encapsulate your task into one function call

• Use the detailed protocol functions to manage each step of the
transaction

The first choice gives you “fire and forget” functionality for the
most common tasks in each protocol. You should use this option
when you want to add basic Internet functionality to your program
and don't need fine control over the connection.

The second choice is more appropriate if you need a high degree of
control over the flow of the session. One example might be when
you are implementing a full client application for your chosen
protocol. In this kind of program, you want to manage the
transaction each step of the way. Adding an Internet protocol to
your program is still a relatively simple procedure. You open a
connection to the desired remote computer, alternate between
sending commands with optional data and receiving their
responses, and finally closing down the connection.

Internet Classes
Before reading this section, you should have a basic understanding
of the operation of the PowerPlant Internet class library. You should
read “Internet Programming Strategy” to review the general
concepts of the library. In this section, we will take a closer look at
the primary classes, and describe their more important functions
PPA–144 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Internet Classes
and behaviors. Figure 5.1 is an illustration of the classes that we will
cover and their relationship to one another.

The gray bar indicates an abstract class.

NOTE These classes were designed so that you can make use of them
with a minimal amount of PowerPlant. See “Internet Programming
Strategy” for a list of dependencies if you wish to use the Internet
classes in non-PowerPlant code.
PowerPlant Advanced Topics PPA–145

Internet Programming in PowerPlant
Internet Classes
Figure 5.1 The primary Internet classes

This section discusses the following classes:

• LInternetProtocol

– LSMTPConnection

– LPOP3Connection

– LHTTPConnection

– LFTPConnection

• LInternetResponse

– LSMTPResponse

– LPOP3Response

– LHTTPResponse

– LFTPResponse

• LInternetMessage

– LMailMessage

– LHTTPMessage
PPA–146 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetProtocol
• LDynamicBuffer

• LHeaderField

• Other Classes

LInternetProtocol

LInternetProtocol is the foundation on which PowerPlant's Internet
functionality is based. It is the base class for implementing those
protocols that follow a command and response model of
communication. It is a subclass of LListener so that it may capture
networking events generated from its LTCPEndpoint object.
LInternetProtocol also inherits from LBroadcaster and uses this
functionality to provide a progress notification mechanism for
clients of the protocol object.

LInternetProtocol is itself relatively simple, providing the basic
tools to implement specific protocols. This description outlines the
primary member functions you are likely to use in your code. For
more details, refer to the PowerPlant source code.

LInternetProtocol's data members are all protected from direct
access, you should make use of the provided accessor functions if
you need to get or change values.

NOTE By making use of accessor functions to manipulate shielded data,
you protect your code from being compromised by future changes in
the underlying PowerPlant Internet class architecture.

Table 5.1 Important LInternetProtocol functions

Function Purpose

LInternetProtocol() constructor, you must supply a
reference to the thread in which the
protocol is being implemented

Connection Management

Connect() manually opens a connection to
remote system addressed via a
DNS format address
PowerPlant Advanced Topics PPA–147

Internet Programming in PowerPlant
LInternetProtocol
LInternetProtocol is a base class that handles all of the details of the
network connection for you. Perhaps its most helpful trait is that it
hides (and handles) interaction with the lower level network
classes. It creates an LTCPEndpoint, handles addressing, binding,
connections, data transfer, and other minutia.

LInternetProtocol doesn’t implement a specific protocol, but rather
provides the basic tools with which HTTP, SMTP, POP3, and other

Disconnect() manually closes the connection to
remote system

Abort() stops the network operation

Data Transfer

SendData() sends data buffer in SendSize
chunks, reporting progress
periodically

Data Buffer Management

SetSendSize() sets the size chunks SendData()
will break a buffer into for
transmission

GetSendSize() returns chunk size

Thread Management

SetThread() sets the thread to yield to on data
arrival

Progress Notification

BroadcastProgress() sends a coded message and
SProgressMessage buffer to any
LListeners linked to the protocol
object

SetMinBroadcastTick
s()

sets the frequency of progress
notification in ticks

GetMinBroadcastTick
s()

gets the progress notification in
ticks

Function Purpose
PPA–148 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetProtocol
command and response protocols can be constructed. You will
rarely need to instantiate a plain LInternetProtocol object.

The protocols written on top of LInternetProtocol have many
convenience functions that are particular to the individual
protocols. You will most frequently make use of the convenience
functions and not need to worry about the functions implemented
at this level. One specific example is the connection management
functions. The wrapper functions are simple interfaces in the
protocols detailed below that handle the opening and closing of
connections for you.

An important aspect of this class is that LInternetProtocol and its
derivatives are intended to be created from within an LThread
object. The standard procedure is to create a thread for each instance
of the protocol (often for each separate connection), and within the
thread's body, create the protocol object. See the code exercises
below for an example.

NOTE The Internet classes make heavy use of threading. You should be
familiar with Mac OS threads in general, and the PowerPlant
LThread class hierarchy in particular. See the chapter on Threads
for more information about using threads in your projects.

A typical scenario for using a connection can be summarized like
this:

• Collect the connection information (DNS address and port of the
remote computer).

• Create a thread that will drive the connection.

• Create the connection object within the thread, and pass a
reference to the thread to the connection's constructor.

• Set the thread to be a listener to the connection object which will
allow the thread to capture progress messages broadcast from
the connection.

• Send any data you may have on the connection, and possibly
receive progress reports.

• When the transaction is done, let the thread run down and clean
up the objects previously created.
PowerPlant Advanced Topics PPA–149

Internet Programming in PowerPlant
LInternetProtocol
LSMTPConnection

LSMTPConnection implements the Simple Mail Transport Protocol
(SMTP). Internet clients usually use SMTP to send electronic mail
messages to SMTP aware servers. The current PowerPlant
implementation of SMTP is designed with this behavior in mind.
LSMTPConnection is a very simple class, providing member
functions that wrap the process of sending mail messages into one
function call.

Table 5.2 Important LSMTPConnection functions

The protocol command functions SendMessages() and
SendOneMessage() handle the opening and closing of a
connection. You will rarely need to use the Connect() function.

SMTP defaults to TCP port 25, and if you do not specify otherwise,
LSMTPConnection will use the standard port number.
LSMTPConnection implements the basic SMTP protocol as defined
in RFC821.

NOTE SMTP has been extended in later RFCs to provide more advanced
and efficient data handling (SMTP Service Extension--RFC1651).
LSMTPConnection does not currently support these extensions.

Function Purpose

LSMTPConnection() constructor

Connection Management

Connect() defaults to port 25

Protocol Commands

SendOneMessage() wrapper functions that sends one
LMailMessage object, defaults to
port 25

SendMessages() wrapper function that sends one or
more LMailMessages provided in an
LMailMessageList array object,
defaults to port 25
PPA–150 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetProtocol
LPOP3Connection

LPOP3Connection implements the Post Office Protocol, version 3
(POP3). POP3 is used to retrieve electronic mail messages from a
compliant mail server. It offers authenticated access to a remote
mail box and has the ability to retrieve all or portions of a mail drop.

When implementing a mail retrieval client, you will often want
more functionality than simply gathering mail messages from a
remote host. You may want to retrieve some messages and leave
others on the server. You may want to provide your user with
house-keeping functionality, such as the ability to just check mail
message headers, or to delete mail without downloading messages
first. LPOP3Connection provides both simple to use wrapper
functions for retrieving mail and functions for more detailed access
to the POP3 command set.

LPOP3Connection multiply inherits from both LInternetProtocol
and LPeriodical.

Table 5.3 Important LPOP3Connection functions

Function Purpose

LPOP3Connection() constructor

Connection Management

Connect() makes a connection with supplied
authentication credentials, defaults
to port 110

SpendTime() periodically calls NoopServer() to
maintain connection

Protocol Commands

GetOneMessage() wrapper function for connecting,
authenticating, and collecting one
LMailMessage from the designated
mail box and identified by a
message number, defaults to port
110
PowerPlant Advanced Topics PPA–151

Internet Programming in PowerPlant
LInternetProtocol
GetMessages() wrapper function for connecting,
authenticating, and collecting all
messages in the designated mail box
and returning them in an
LMailMessageList array of
LMailMessages, defaults to port 110

GetHeaders() wrapper function for connecting,
authenticating, and collecting all
message headers in the designated
mail box and returning them in an
LMailMessageList array of
LMailMessages, defaults to port 110

CollectAllMessages(
)

gets all messages from the open
connection and places them in an
LMailMessageList array of
LMailMessages

CollectAllHeaders() gets all headers from the open
connection and places them in an
LMailMessageList array of
LMailMessages

GetMailMessage() retrieves one message identified by
its session mail box message number

GetTop() retrieves one header identified by its
session mail box message number

DoList() retrieves an LList of POP3ListElem
structures culled from the results of
the LIST command

DoUIDL() retrieves an LList of POP3ListElem
structures culled from the results of
the UIDL command

DeleteMessage() removes the message identified by
its session mail box message number
from the remote computer

NoopServer() sends a NOOP command to the
remote computer

Function Purpose
PPA–152 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetProtocol
The protocol command functions GetOneMessage(),
GetMessages(), and GetHeaders() are wrapper functions that
handle the opening and closing of a connection. If the connection is
already open, they will not automatically close it. Likewise, if the
connection is closed, the connection will be closed on completion of
the function.

The lower level protocol command functions require that the
connection be open and the user be authenticated. If this is not true,
the functions will throw exceptions.

Many of the LPOP3Connection member functions require a
message number as one of their parameters. As described in the
POP3 specification, message numbers do not uniquely identify a
mail message across different connections to the mail server. Only
rely on a number during a single session. If you need a unique
identifier for a message, try to use the UIDL results to match the
unique id to the current message number. See the RFC for details.

POP3 defaults to TCP port 110, and all connection related functions
will use the standard port unless you supply another port number.
LPOP3Connection implements the standard POP3 version as
described in RFC1725. It includes implementations of the optional
commands UIDL, TOP, and APOP. Most, but not all, POP3 servers
support this optional command set. Your code should prepare for
the worst. Be especially careful when using the header related
functions—they use the TOP command, which is often not
implemented on older POP3 servers—and be sure to trap any
exceptions.

WARNING! POP3 connections are often open through a series of command and
response exchanges. Some servers will close the connection to

ResetServer() sends a RSET command to the
remote computer

ServerStatus() retrieves the mail box message count
and size from the server

SendQUIT() sends a QUIT command to the
remote computer

Function Purpose
PowerPlant Advanced Topics PPA–153

Internet Programming in PowerPlant
LInternetProtocol
your program if they reach some arbitrary time-out period. To
counter this, LPOP3Connection also inherits from LPeriodical.
When the SpendTime() member function reaches a designated
delay period, it tickles the server by sending a NOOP POP3
command. If you use the Internet classes outside of the normal
PowerPlant framework, you will have to account for this functionality
by periodically calling the SpendTime() function yourself.

LHTTPConnection

LHTTPConnection implements the Hierarchical Text Transfer
Protocol (HTTP) for connections to software such as Web server
programs. HTTP is a stateless protocol, it requests and potentially
receives its data in a single transaction with the remote computer.
The connection is opened and closed between each transaction.
Usually the remote system does not maintain information about
your program between these transactions (hence, the statelessness).

HTTP offers a variety of commands, called “methods” in the HTTP
specification. LHTTPConnection supports three of the more
popular commands: GET for retrieving a resource, HEAD for
retrieving information about a resource, and POST for sending
information.

Table 5.4 Important LHTTPConnection functions

Function Purpose

LHTTPConnection() constructor

Connection Management

Connect() defaults to port 80

Protocol Commands

RequestResource() one transaction wrapper for sending
an HTTP command and URL
specified resource, defaults to a GET
on port 80
PPA–154 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetProtocol
In most cases, you will want to allow the different functions that
implement the protocol commands (e.g. RequestResource(),
etc.) to handle the opening and closing of the connection. It is
relatively rare that you will need to use the Connect() and
Disconnect() member functions.

HTTP defaults to TCP port 80, and if you do not specify otherwise,
LHTTPConnection will use the standard port number.
LHTTPConnection implements HTTP version 1.0.

NOTE Uniform Resource Locators (URLs) are a way by which any item on
the Internet can be specified and found. Think of URLs as your
complete home address, by giving someone your URL they can
locate and go directly to your resource. See RFC1738 for a detailed
explanation of the URL format and how they can be used.

Get() one transaction wrapper for a GET
on the URL specified resource,
defaults to port 80

Head() one transaction wrapper for a HEAD
on the URL specified resource,
defaults to port 80

Post() one transaction wrapper for a POST
on the URL specified resource,
defaults to port 80

Protocol Data Accessors

SetCheckContentLeng
th()

set true (default) to have
LHTTPConnection verify that the
data returned in the LHTTPMessage
is the same length as the Content-
Length header field indicates

GetCheckContentLeng
th()

returns true if content length
checking is enabled

Function Purpose
PowerPlant Advanced Topics PPA–155

Internet Programming in PowerPlant
LInternetProtocol
LFTPConnection

LFTPConnection implements the File Transfer Protocol (FTP). FTP
offers authenticated access to a remote file system and it permits a
variety of file and directory manipulation operations. FTP is most
frequently used to send and retrieve files between computers.

FTP is a full featured protocol containing many different commands
to manipulate file system objects. FTP was designed to abstract
away the differences between file systems on different operating
systems. When implementing an FTP client, you may want to have
detailed control over the FTP session. Other times you may want to
simply retrieve or send a single file. LFTPConnection implements
easy to use wrapper functions for the simplest of cases while also
providing a rich set of functions for detailed manipulation of the
protocol.

LFTPConnection multiply inherits from both LInternetProtocol and
LPeriodical.

Table 5.5 Important LFTPConnection functions

Function Purpose

LFTPConnection() constructor

Connection Management

Connect() defaults to port 21

SpendTime() periodically calls NoopServer() to
maintain connection

Protocol Commands

PutFile() wrapper function for connecting,
authenticating, and sending one file
to a remote computer, defaults to
port 21

GetFile() wrapper function for connecting,
authenticating, and retrieving one
file from a remote computer,
defaults to port 21
PPA–156 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetProtocol
RenameRemoteFile() convenience function for renaming
remote files

ListFolder() retrieves an LDynamicBuffer
containing the full or name-only
directory listing of the target
directory

SendRETR() sends a RETR command to get a file
from remote computer

SendPASV() sends a PASV command to specify a
non-default port for the remote
computer to listen to for data
connections, default is for remote
computer to initiate data connection

SendSTOR() sends a STOR command to send a
file to remote computer

SendPORT() sends a PORT command to specify
non-default client address and port
to use by data connection

SendTYPE() sends a TYPE command to specify
the representation of the data to be
transmitted, default is ASCII

SendChangeDir() sends a CWD command to set a new
working directory on the remote
computer

SendChangeDirUp() sends a CDUP command to set the
working directory to the parent of
the current working directory

SendGetWorkingDir() sends a PWD command to retrieve
the current working directory (in an
LFTPResponse object)

SendDeleteRemoteDir
()

sends a RMD command to remove
the named directory

SendCreateRemoteDir
()

sends a MKD command to make a
specified directory

Function Purpose
PowerPlant Advanced Topics PPA–157

Internet Programming in PowerPlant
LInternetProtocol
The protocol command functions GetFile() and PutFile() are
wrapper functions that handle the opening and closing of a
connection. If the connection is already open, they will not
automatically close it. Likewise, if the connection is closed, the
connection will be closed on completion of the function.

The lower level protocol command functions require that the
connection be open and the user be authenticated. If this is not true,
the functions will throw exceptions.

SendSystemRequest() sends a SYST command to retrieve
the type of the remote operating
system (in an LFTPResponse object)

SendDelete() sends a DELE command to remove
the named file

SendRenameFileFrom(
)

sends a RNFR command to specify a
file to rename (must be immediately
followed by a call to
SendRenameFileTo())

SendRenameFileTo() sends a RNTO command to specify a
new file name for a previously
identified file (must call
SendRenameFileFrom()
immediately before this function)

NoopServer() sends a NOOP command to the
remote computer

SendQUIT() sends a QUIT command to remote
computer

SendLIST() sends either LIST or NLST to
retrieve the directory listing of the
current working directory

Protocol Data Accessors

GetLastResponse() returns a reference to an
LFTPResponse used by the last
command

Function Purpose
PPA–158 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetResponse
Unlike other protocols, FTP makes use of multiple connections
between the client and server computers. A control connection is
maintained throughout the lifetime of the FTP session and is used to
send commands and receive their status responses. FTP uses TCP
port 21 as the default command connection port for all commands
unless you specify otherwise. A separate connection—called the
data connection—is created when file system objects are transmitted
to or from the client. Data connections use a separate TCP port for
their connections.

LFTPConnection provides an abstraction of the entire FTP session.
The LFTPConnection object maintains the command and response
connection. An internal class, LFTPDataConnection, is used by
LFTPConnection to manage the data portion of a command
transparently.

LFTPConnection implements the basic subset of commands found
in RFC959.

WARNING! FTP connections are usually open through a series of command and
response exchanges. Some servers will close the connection to
your program if they reach some arbitrary time-out period. To
counter this, LFTPConnection also inherits from LPeriodical. When
the SpendTime() member function reaches a designated delay
period, it tickles the server by sending a NOOP FTP command. If
you use the Internet classes outside of the normal PowerPlant
framework, you will have to account for this functionality by
periodically calling the SpendTime() function yourself.

LInternetResponse

Internet protocols that follow the command and response model
tend to have a similar scheme for formatting their response data.
These responses are usually ASCII strings which start with a code
(often a numeric code), followed by a separator (a space), then
optional text that is often used to supply human readable
equivalents to the initial code. Most protocols terminate the
response with a standard delimiter, usually a carriage-return and
line-feed (CRLF).
PowerPlant Advanced Topics PPA–159

Internet Programming in PowerPlant
LInternetResponse
LInternetResponse is a simple class that encapsulates the response
concept.

Table 5.6 Important LInternetResponse functions

LInternetResponse is an abstract class. The Internet classes will
automatically create the proper response object for the protocol you
use. There are subclasses of LInternetResponse for each protocol
implemented in PowerPlant.

The specific LInternetResponse subclasses are:

• LSMTPResponse

• LPOP3Response

• LHTTPResponse

• LFTPResponse

NOTE The Internet classes rely on the standard C++ exception mechanism
to report errors and unexpected events during operation. When a
problem occurs, the classes will usually throw an
LInternetResponse derived object. You should be familiar with how
to use the C++ exception mechanism when using the Internet
classes. Remember that some protocols may signal a problem that
has to do with conditions of the transaction, and that you will want to

Function Purpose

LInternetResponse() constructor

Response Accessors

ResetResponse() clears out the internal storage of the
object

SetResponse() parses ASCII response into the
internal format, this is a virtual
member function

GetResponse() returns an LDynamicBuffer with the
text portion of the response

GetResponseCode() returns the numeric code portion of
the response
PPA–160 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetResponse
check the response codes to determine if your code can work
around the situation (such as remote computer being busy).

LSMTPResponse

SMTP responses use the same format as the one described in
LInternetResponse. SMTP uses numeric response codes with
optional text to relay the state of the transaction.

Table 5.7 Important LSMTPResponse functions

LPOP3Response

POP3 responses do not use a numeric status code, but rather a
simple success and failure indicator. Some POP3 commands are
requests for additional information. The protocol embeds the
resulting information in the response following the optional text
and the CRLF delimiter.

Table 5.8 Important LPOP3Response functions

Function Purpose

LSMTPResponse() constructor

Response Accessors

SetResponse() parses ASCII response into SMTP
response components

Function Purpose

LPOP3Response() constructor

Response Accessors

SetResponse() parses ASCII response into POP3
response components
PowerPlant Advanced Topics PPA–161

Internet Programming in PowerPlant
LInternetResponse
LHTTPResponse

HTTP uses numeric codes and optional text to indicate success or
failure. HTTP responses are used differently than mail (SMTP and
POP3) responses. In most cases, HTTP transactions are composed of
a single command and response cycle. The resulting response
contains the requested data (if any) or an error description which is
frequently in Hierarchical Text Markup Language (HTML).
LHTTPResponse builds an LHTTPMessage object to hold this data.

Table 5.9 Important LHTTPResponse functions

WARNING! Notice that the meaning of GetStatus() in LHTTPResponse and
LPOP3Response is different. In the former, it is an indication that
GetResponseCode() will return a supposedly valid code number.
In the latter, it returns true if the response code indicates success.

GetStatus() returns the success code cast to a
Boolean type

GetResponseData() returns an LDynamicBuffer
containing the response information
(if any)

Function Purpose

Function Purpose

LHTTPResponse() constructor

Response Accessors

SetResponse() parses ASCII response into HTTP
response components

GetStatus() returns true if ASCII response
contains an apparently valid
response code

GetReturnMessage() returns an LHTTPMessage
containing the response information
(if any)
PPA–162 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetMessage
LFTPResponse

FTP responses use a numeric code and optional text to indicate the
success or failure of a command. Some FTP commands are requests
for additional information. The protocol embeds the resulting
information in the response within the optional text area.

Table 5.10 Important LFTPResponse functions

LInternetMessage

Some Internet protocols encapsulate the data they transport inside
of specially formatted messages (RFC822). A message is composed
of two parts, a set of descriptive headers and a message body.
Headers are composed of one or more field/value pairs. Individual
protocols designate the desired order of fields in a header as well as
which fields are expected and valid.

LInternetMessage is the base class that implements a storage object
that models the RFC822 format. It has member functions that
maintain a generic set of headers and a message body. When your
program is ready to use the contents of the object, it builds a
correctly formatted, complete message on demand.

Function Purpose

LFTPResponse() constructor

Response Accessors

SetResponse() parses ASCII response into FTP
response components

CommandOK() returns Boolean true value if
response code equals FTP success
code

GetResponseData() returns an LDynamicBuffer
containing the response information
(if any)
PowerPlant Advanced Topics PPA–163

Internet Programming in PowerPlant
LInternetMessage
Table 5.11 Important LInternetMessage functions

There are two subclasses of LInternetMessage:

• LMailMessage

• LHTTPMessage

LMailMessage

LMailMessage adds support for electronic mail oriented header
fields. LMailMessage also provides basic MIME 1.0 functionality to
support standard and multipart message bodies.

Most of the member functions manipulate specific mail header
fields:

Function Purpose

LInternetMessage() constructor, can start from scratch or
take a buffer of a previously
received message

Message Accessors

ResetMembers() clears out message components

SetMessage() parses the supplied buffer into
header and body components

GetMessage() builds and returns an
LDynamicBuffer to a complete
message

SetHeader() parses the supplied buffer and store
header fields

GetHeader() returns LDynamicBuffer of the
combined header fields

SetMessageBody() stores a copy of the supplied body
buffer

GetMessageBody() returns LDynamicBuffer of the body

SetArbitraryField() adds or changes a header field

GetArbitraryField() gets a named header field if it exists
PPA–164 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetMessage
Table 5.12 Some Important LMailMessage functions

Function Purpose

LMailMessage() constructor

Message Accessors

SetTo() stores list of To: addresses

AddTo() appends to existing To: addresses

GetTo() returns LList of To: addresses

SetCC() stores list of CC: addresses

AddCC appends to existing CC: addresses

GetCC() returns LList of CC: addresses

SetDateTime() stores the message’s date and time in
internal format

GetDateTime() returns a pointer to the internal
DateTimeRec buffer

SetFrom() stores a copy of the From: string

GetFrom() returns a pointer to the From: string

SetSubject() stores a copy of the Subject: string

GetSubject() returns a pointer to the Subject:
string

SetMessageBody() stores a copy of the supplied body
buffer, handles multipart/mixed
contents

AddMessageBodySegme
nt()

appends an LMailMessage to
internal list of body segments

GetMessageBodyList(
)

returns an LMailMessageList
containing all body parts

MIME Management

SetIsMIME() set true if the message uses MIME
PowerPlant Advanced Topics PPA–165

Internet Programming in PowerPlant
LInternetMessage
LMailMessage has accessor functions for other mail related header
fields. Please see the PowerPlant source code for a complete list.

NOTE LMailMessage will support the MIME type multipart/mixed if you
supply multiple message bodies, otherwise it defaults to text/plain. If
you want to use another MIME type, you will need to set the MIME
content type yourself and handle the type's behaviors.

LHTTPMessage

LHTTPMessage implements support for HTTP 1.0 header fields.
This class implements the partial support for MIME that is expected
in standard HTTP exchanges. You will need to remember to supply
the correct MIME content type when you construct an
LHTTPMessage object from scratch. Set the user agent field if you
want to notify the remote computer of what kind of client it is
communicating with. LHTTPMessage implements the basic HTTP
authentication mechanism for you.

LHTTPMessage provides many functions to manipulate HTTP
headers:

Table 5.13 Some Important LHTTPMessage functions

GetIsMIME() returns true if message includes
MIME content

SetBoundary() sets multipart boundary string

GetBoundary() returns a pointer to boundary string

SetContentType() sets MIME Content-Type field value

GetContentType() return a pointer to content type
string

Function Purpose

Function Purpose

LHTTPMessage() constructor

Message Accessors
PPA–166 PowerPlant Advanced Topics

Internet Programming in PowerPlant
LInternetMessage
SetServer() stores Server type string

GetServer() returns a pointer to server type
string

SetUserAgent() stores User-Agent id string

GetUserAgent() returns a pointer to User-Agent
string

SetModSince() sets If-Modified-Since conditional
date buffer

GetModSince() returns a pointer to the DateTimeRec
buffer storing the If-Modified-Since
date

SetLastMod() sets Last-Modified resource age
buffer

GetLastMod() returns a pointer to the DateTimeRec
buffer storing the Last-Modified
date

SetAllow() sets Allow string (the HTTP
methods allowed)

GetAllow() returns a pointer to the allow string

SetWWWAuth() sets WWW-Authentication basic
realm

GetWWWAuth() returns a pointer to the basic realm
string

SetUserName() sets user name string used for
authentication

GetUserName() returns a pointer to the user name
string

SetPassword() sets password string used for
authentication

GetPassword() returns a pointer to the password
string

Function Purpose
PowerPlant Advanced Topics PPA–167

Internet Programming in PowerPlant
Internet Class Utilities
LHTTPMessage has accessor functions for other HTTP related
header fields. Please see the PowerPlant source code for a complete
list.

TIP HTTP is not really MIME compliant, but it uses some MIME fields to
indicate how to handle message contents. You should be sure to set
the content type value of LHTTPMessages you create. The default
type of text/plain will probably not be the type you are usually
sending.

Internet Class Utilities

You will encounter several utility classes while using any of the
PowerPlant Internet classes. Two classes are particularly prevalent:

• LDynamicBuffer

• LHeaderField

LDynamicBuffer

LDynamicBuffer encapsulates a generic resizable buffer that grows
or shrinks as its content changes. Since it is often difficult to predict
how much data will be returned when using a number of the
different Internet protocols, this class provides a simple, efficient
solution. Many of the functions that return arbitrary data in the
Internet classes will return LDynamicBuffer objects.

MIME Management

SetContentType() sets MIME Content-Type field value

GetContentType() returns a pointer to the content type
string

Function Purpose
PPA–168 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Internet Class Utilities
Table 5.14 Some Important LDynamicBuffer functions

LHeaderField

LHeaderField is a utility class that embodies the message header
field concept described in “LInternetMessage.” This class maintains
the title of the field and its value, and builds a standard header
string on demand.

Table 5.15 Some Important LHeaderField functions

Function Purpose

LDynamicBuffer() constructor

SetBuffer() stores data in the buffer, replacing
previous contents

CatBuffer() appends to the current buffer

ResetBuffer() clears out the buffer

GetBufferSize() returns the buffer size in bytes

GetBufferH() returns a Mac OS Handle to the
internal data buffer

Function Purpose

LHeaderField() constructor

SetField() parses and store the components of a
complete header

GetField() returns an LDynamicBuffer to a
header built from the
LHeaderField's title and body value

SetTitle() stores the title string

GetTitle() returns a pointer to the title string

SetBody() stores the body's value

GetBody() returns a pointer to the body value
string
PowerPlant Advanced Topics PPA–169

Internet Programming in PowerPlant
Implementing an Internet Enabled Application
Other Classes

LMailMessageList, LHeaderFieldList, and UInternet are utility
classes that are generally used internally to the PowerPlant Internet
class library. You may need to infrequently use their capabilities.
Please see the PowerPlant source code to learn details about these
classes.

Implementing an Internet Enabled Application
Adding support for an Internet protocol to your application
requires a simple set of tasks when you use the PowerPlant library.
The Internet classes abstract away many of the mundane details of
Internet programming, allowing you to focus on the actual
functionality you want to implement. Much as PowerPlant relieves
you of having to worry about standard user-interface issues when
you use the LPane hierarchy, the Internet classes implement the
underlying network code and give you an easy interface to the
Internet.

When it comes to working with Internet technologies, a vast
number of options are open to you. This chapter focuses on the
protocols currently implemented in PowerPlant. It shows you how
to use of some of the features of the Internet classes to implement
simple, frequently sought features. You can use these examples as a
guide in your own work, and can pattern more complicated
programming on the simple examples shown here.

NOTE The “Internet Example” sample code and this chapter’s exercise
(MIST) on your CodeWarrior CD both include an implementation of
a client that makes use of the protocols described in this chapter.

Many Internet protocols share the feature of one computer
establishing a connection to another, and then issuing a number of
commands. For each command, the receiving computer will usually
send back a response. The communication between computers is
often characterized as a client and server relationship (or sometimes
called a consumer and producer relationship). The originating
computer is the client, and its purpose is to either retrieve or send
information to another program. The remote computer is often
PPA–170 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Choosing a Protocol
labeled the server machine. In actuality, a client machine can
subsequently play the role of server, and vice-versa. Note also that it
is possible for the two programs to be on the same machine, in
which case, the relationship between the programs still remains the
same.

Programs that send mail messages via SMTP or retrieve messages
with POP3 are usually called mail clients (or user agents in mail
protocol lingo). A program that gets Web pages via HTTP is a web
client (or often a browser, depending on how it uses the
information). An FTP client will connect to an FTP server to retrieve
files to the client's computer or send files to the remote system. The
PowerPlant Internet classes do not restrict you in the types of
programs you can write. You can create clients, servers, or even
both within the same program.

This section describes the steps you will take to create a typical
client that uses an Internet protocol. The general procedure is the
same regardless of the protocol you use. The following topics are
included in this section:

• Choosing a Protocol

• Creating a Protocol Client

• Preparing Content

• Addressing the Remote Computer (server)

• Creating the Protocol Thread

• Creating a Connection

• Sending Content to a Server

• Receiving Responses From a Server

• Listening For Progress Messages

• Closing Down a Connection

• Handling Abnormal Conditions

Choosing a Protocol

Even before you can decide whether you are creating a client or
server program, you need to understand which protocol is
necessary to accomplish your desired task. If you know that you are
communicating with a particular kind of server, then the choice
PowerPlant Advanced Topics PPA–171

Internet Programming in PowerPlant
Creating a Protocol Client
may be trivial. If you are creating your own set of programs for both
ends of a communication link, then you may need to better
understand the features of the individual protocols to better match a
protocol to your project. You may find that none of the protocols
match your needs, and subsequently, you may need to create your
own. You should note, however, that the protocols that currently
exist in PowerPlant provide a rich set from which to start.

If you are dealing with electronic mail, then you will want to focus
on the SMTP and POP protocol classes. You should examine the
protocols to understand to what level of detail you need access. If
you are sending simple messages, or want to have a simple way to
check for waiting mail messages, you may be able to use the basic
wrapper methods to get functionality up and running quickly. If
you are creating a more complicated program--perhaps one that
will act as a full featured mail agent--you will want to look at the
advanced methods.

If you need to communicate with a web server, you will want to
examine the HTTP classes. These classes give you access to the most
common communication techniques for interacting with the servers
in place today. HTTP is a simple protocol, and much of its flexibility
derives from the fact that you can send pretty much any kind of
message embedded within its data stream. If you need to retrieve
resources from a web server, want to send feedback using an HTML
Forms-like mechanism, or want to tap into other Common Gateway
Interface (CGI) processing, this class will help you get started.

If you want to manipulate remote files at a more detailed level, then
FTP may be the protocol you are looking for. You can retrieve
remote files, send local files to the remote site, list, delete, and
rename remote files, and do many other tasks required to manage a
file system.

Creating a Protocol Client

Once you have decided which protocol you are going to use, you
will need to build the surrounding infrastructure in your program
to support the protocol classes. Generally you will want some kind
of user interface that provides a way to manipulate the data that
you will be interacting with on the server.
PPA–172 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Preparing Content
The client will be the originator of the communications link that you
are creating, regardless of the protocol. The client will also be the
code responsible for managing that connection. It constructs the
local content that may need to be sent, properly formats the
messages for transmission, gets the proper addressing information
to contact the remote system, creates the communications thread,
handles any errors that may occur, sends commands and data,
receives responses and requested data, and cleanly closes the
communications link when finished.

Preparing Content

You may choose to have your main client code create or gather the
data necessary for transmission over the protocol you have chosen.
The data may be text of an email message and its accompanying
email addresses or it may be something as simple as responses to a
dialog that you will send to an HTTP server for processing as an
HTML form.

You can decide to create a fully formed message within your client
code, or just collect the raw information. Minimally, you will need
to know the addressing information of the remote system in order
to establish the connection. Other data depends on your use of the
protocol.

If you are using a protocol that will send some kind of data to the
remote system, it is largely a matter of programming style and
knowledge of your program's resource requirements as to whether
your client just holds the raw data or creates an LInternetMessage
(or derivative) based object to hold the data.

Addressing the Remote Computer

The protocols represented by the PowerPlant Internet classes are all
well established Internet protocols, and as such, have assigned
TCP/IP port numbers. The classes default to these standard port
numbers. You will usually just need to provide an Internet address
in DNS format when establishing your connection. (DNS names
being in the form of “www.metrowerks.com”.) The Internet classes
require that the address be in the form of a pascal string (Str255).
PowerPlant Advanced Topics PPA–173

Internet Programming in PowerPlant
Creating the Protocol Thread
If your situation requires that you connect to the remote host using
a port number other than the standard number, you will also have
to supply that information when you create the connection.

Creating the Protocol Thread

Internet class connections rely on the threaded network mechanism
of the underlying network class hierarchy. You will need to create a
thread to drive each connection that you open. Depending on the
complexity of the communications task, creating a thread subclass is
a matter of subclassing LThread, and creating a Run() function
that implements your task. Listing 5.1 illustrates a simple function
used to request a resource via HTTP.

Once the thread is instantiated, it will handle all communications
duties. You can pass a client object pointer to the thread for easier
access to data stored within the client. The client object is frequently
where raw data is stored until an LInternetMessage based object
needs to be constructed.

Threads are usually responsible for deleting themselves once their
task is complete and this model is followed when using the Internet
classes. You can fire and forget the thread from your client code. If
you require more interaction with the thread during a session, you
will want to establish some kind of signaling mechanism between
the client and the thread. See the chapter on using the PowerPlant
Thread classes for more information on how to program with
threads.

If you are using a protocol to send data, such as an email message,
you will want to build a properly formatted message before you
start the connection. Depending on whether your client already
created the message, or has been holding raw data collected from
the program's user interface, the start of the thread is a good time to
construct the LInternetMessage based object.

Listing 5.1 Simple HTTP Thread Run() Method
void *
CHTTPSendMsgThread::Run()
{
 try {
 LHTTPResponse theResponse;
PPA–174 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Creating a Connection
 // connection will report progress to the thread
 // (this thread is an LListener)
 LHTTPConnection connection(*this);
 connection.AddListener(this);

 // constructs the message from raw data stored elsewhere
 LHTTPMessage theMessage;
 BuildMessage(theMessage);

 connection.Post("\pecho.metrowerks.com",
 "\p/cgi/register.cgi",
 theMessage,
 theResponse);
 connection.RemoveListener(this);
 // connection is cleaned up as we leave try scope
 }
 catch (...) {
 // errors and problems from the Post wrapper should be
 // handled here if possible
 }

return nil;
}

Creating a Connection

The PowerPlant Internet classes provide a number of different ways
to interact with the protocols they model. Frequently you will want
to accomplish a very simple task, such as sending a single mail
message, or retrieving one picture from a web server. Other times
you will need to manage each command as it is sent to the remote
computer, and work with each response given. To facilitate this
kind of need, the classes provide both simple, “one-shot” methods,
that wrap up all of the steps required to complete a task in that
protocol into one function call. In some of the classes—POP and FTP
in particular—you can work at a finer level of detail, and drive the
session by sending individual or small sets of commands.

When you are working with the complete transaction wrappers,
such as LSMTPConnection::SendOneMessage() or
LHTTPConnection::Get(), a connection will be opened for you
PowerPlant Advanced Topics PPA–175

Internet Programming in PowerPlant
Sending Content to a Server
and closed after all of the task's intermediate steps have completed.
When you use these commands, you do not need to worry about the
state of the connection, but rather you can think on the higher level
of your task.

On the other hand, all of the protocols provide the means for you to
open a connection to a remote computer using the classes’
Connect() functions. When you use this mechanism, you have a
finer level of control over whether the connection stays open after a
transaction completes—you can keep it open for subsequent usage.
When you open a connection manually, you supply a computer's
DNS address in the form of a Str255 (e.g.
“\pwww.metrowerks.com”) and can supply an optional port
number. If you omit a port number, the default port number for the
protocol is used.

Regardless of whether you then use the “one-shot” wrapper
methods or the more detailed functions, the link will stay open for
your use. This may be desirable for performance or other reasons.

NOTE If you want to use some of the more advanced connection methods
within a protocol—such as the individual commands within POP3 or
FTP—you will have to open the connection for yourself.

Sending Content to a Server

Whether you manually opened a connection or are relying on the
automatic mechanism, sending content to the remote computer is a
simple matter of properly formatting the data within the
appropriate LInternetMessage derived object (if applicable), and
passing it to one of the messaging functions.

Depending on the protocol, you will need to supply different pieces
of data when you build the message. The LInternetMessage class
accumulates the data you provide as you supply it within different
header fields and the message body itself. The class knows how to
assemble this data into a properly formatted data buffer for
transmission via the selected protocol. You can concentrate on
supplying the basic information and the class will do the rest.
PPA–176 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Receiving Responses From a Server
Receiving Responses From a Server

The protocols implemented with the PowerPlant Internet classes
follow the command and response model of communication.
Responses are issued by the remote computer after receiving—and
possibly acting upon—a command or piece of data from the local
computer. Of course, it is possible for this arrangement to be
reversed, think of the response as the acknowledgment given by the
receiving computer, whichever it may be.

Responses are generally of the form of some code which represents
the success or failure of the action, followed by additional data,
possibly including some form of embedded message. Responses in
this class library are derived from the base class LInternetResponse.

The protocol wrappers shield you from much of the details of the
protocol's transactions, but it is a good idea to understand the
general meaning of the responses that your client can receive. You
should look at the appropriate RFCs for a listing of possible
responses. In most cases, the connection classes will translate the
individual protocol’s response codes into the generic message codes
used when broadcasting progress messages to your client.

In protocols such as HTTP, where the transaction is only composed
of a single command, the response will include the requested
resource or some other server generated message—often in
HTML—that is supplied in the form of an LHTTPMessage. In POP3,
the response when using the GetOneMessage() includes an
LMailMessage object. Some protocols' responses are simple error
codes that indicate the state of the server and the results of the
command.

Listening For Progress Messages

Some function calls result in a series of commands being issued to
the remote computer, or perhaps transfer large quantities of data. In
these cases, the connection object will issue progress messages at
each stage of the transaction. With long data transfers, some of the
protocols will periodically notify you of the status of the transfer.
Your use of these progress messages is optional, but they can help
you keep your client abreast of the connection's state.
PowerPlant Advanced Topics PPA–177

Internet Programming in PowerPlant
Listening For Progress Messages
The progress mechanism broadcasts a generic message (see Table
5.16) and includes a pointer to the progress object. The progress
structure (see Listing 5.2) includes counts of the number items (mail
messages, files, etc.) that it is operating upon, and (where
appropriate) how many bytes are involved with the transmission.

Table 5.16 Generic Protocol Progress Messages

You should note that the message transmitted by the
BroadcastProgress() function is a standard code that is used in
all protocols to indicate what the Internet class library is currently
doing. The actual meaning of the codes are somewhat context
sensitive, some make more sense in certain protocols than in others.
The code does not necessarily reflect the protocol specific state or
response code of the active protocol. For that, you should refer to

Message Constant Generic Meaning

msg_OpeningConnection Connect() about to be called

msg_Connected Connect() succeeded

msg_Disconnected Disconnect() succeeded

msg_SendingData Sending data in progress

msg_ReceivingData Receiving data in progress

msg_SendItemSuccess Successfully sent one item

msg_SendItemFailed Failed sending one item

msg_RetrieveItemSuccess Successfully received one item

msg_RetrieveItemFailed Failed receiving one item

msg_DeleteItemSuccess Successfully completed a delete
command

msg_DeleteItemFailed Failed completing a delete
command

msg_SendingItem Starting to send an item

msg_ReceivingItem Starting to receive an item

msg_ClosingConnection Disconnect() about to be
called
PPA–178 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Closing Down a Connection
any LInternetResponse derived objects you may receive either
directly via the various function calls or indirectly by the exception
mechanism.

Listing 5.2 The Progress Structure
struct SProgressMessage {
 LInternetProtocol *theProtocol;// src protocol object
 LStr255 currentItem; // descriptive text for item
 // currently being manipulated
 UInt32 totalItems; // total items involved
 // in transaction
 UInt32 completedItems; // completed count in items
 UInt32 totalBytes; // total bytes in transaction
 UInt32 completedBytes; // completed count in bytes
};

To receive progress messages, you need to attach an LListener to the
LInternetProtocol you want to monitor. You will usually do this
when you create the protocol object. See Listing 5.1 for an example.

Closing Down a Connection

If you are using the simple wrapper functions for the
LInternetProtocol object in your program, and if you haven't
manually opened the connection, the protocol object will handle the
disconnection and cleanup of your communication link for you.

If you have manually opened the connection with Connect(), the
wrapper functions will not close down the connection. Use
Disconnect() to accomplish this task.

You should be sure to capture any exceptions during the use of both
the simple wrapper functions and the more detailed protocol
functions. Most of the communication-oriented functions do not
close the connection on an exception, so you will need to do that
yourself.

If you just destroy the LInternetProtocol object, its LEndpoint object
will be destroyed, but the proper protocol rundown procedure does
not occur. The correct closing sequence for each protocol is
implemented in its Disconnect() member function.
PowerPlant Advanced Topics PPA–179

Internet Programming in PowerPlant
Handling Abnormal Conditions
Handling Abnormal Conditions

When a problem occurs during the operation of a protocol, such as
an error message being returned from the remote computer, the
LInternetProtocol object will throw an appropriate
LInternetResponse based object. You should usually get into the
habit of surrounding your networking code with try and catch
blocks to capture these exceptions. Many times, you may be able to
correct the problem, or at least notify your user of the problems
existence, and then carry on with the operation.

The Internet classes are built on top of the PowerPlant network
classes and this leads to another source of possible exception codes.
The network classes will throw exceptions when they encounter
errors in the operating system networking code. In most cases, these
exceptions will be propagated up through the Internet classes. You
should be prepared to catch and handle these exceptions in your
code.

Serious errors coming from programming mistakes within your
client code will also frequently cause exceptions to be thrown. When
a protocol detects that it is in an illegal state for the operation you
are attempting, it will throw an exception based on the boolean
result comparing the current state with the expected state. One
example of this is when you forget to open a connection (or the
connection doesn't open properly) and you proceed to try to use a
function that sends data.

TIP You may want to have separate catch blocks for the different kinds
of exceptions thrown by the Internet classes. The first could catch
LInternetResponse objects, the second could check for exceptions
such as PowerPlant network class error codes or false assertions,
and a third should catch all other exceptions.

Summary of Internet Protocol Usage in
PowerPlant

Adding Internet awareness to your programs is becoming more and
more important each day. Whether you want to be able to register
your user over the Internet by taking advantage of your Web site, or
PPA–180 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Code Exercise
you want the user to send technical support questions via electronic
mail, there are an unlimited number of capabilities you can add to
your application by taking advantage of just a few standard Internet
protocols.

The PowerPlant Internet classes provide implementations of the
most frequently used protocols on the Internet today. By giving you
access to HTTP, SMTP, POP3, and FTP, you can concentrate on
inventing new features for your program that take advantage of this
foundation, and you can avoid the drudgery of constantly
reinventing the wheel.

Code Exercise
The Mini Internet Support Tool program (MIST) illustrates how to
build selective Internet protocol functionality into your application
to add common support features. It shows one use of each of the
main protocols provided by the PowerPlant Internet class library.
Although there are many different ways to use each protocol, this
example should give you a basic understanding of the classes, and
how simple it is to add Internet capabilities.

The purpose of this exercise is to give you experience using the
Internet classes in PowerPlant. You will learn about some of the
more common member functions and how to format, send, and
receive Internet messages. This exercise does not delve into the
details of the individual Internet protocols, nor is it a tutorial on
network programming in general. You should examine the topic
“Where to Learn More About Internet Protocols” for that kind of
information.

In this exercise, you will create portions of the Mini Internet Support
Tool program. As you gain experience with the Internet classes, you
will notice that many of the steps to add a protocol into your
program are similar for each of the other protocols.

Before we begin the exercise, there are some issues you should note.
This code is structured in a simple manner to make it easier to
understand the steps needed to add Internet functionality into your
application. The code avoids heavy error checking and does not
capture all of the possible return results from the remote computer.
This exercise also makes use of the precompiled header feature of
PowerPlant Advanced Topics PPA–181

Internet Programming in PowerPlant
Code Exercise
PowerPlant, so you will notice that header files for non-Internet
classes are not included in most files.

Let's look at the steps you will take to add simple Internet
functionality. In this exercise you will write code to:

• Create a thread to run HTTP. This allows the application to
continue operating while the protocol does its work.

• Build an HTTP message. This is the data you will send to the
web server.

• Post HTTP data to a web server. This is where you actually send
the message.

• Check the response code. This is how to verify your data was
processed correctly.

• Create a thread to run SMTP. You will use SMTP to send
electronic mail.

• Build a mail message. This is the format you will use for SMTP
and POP3.

• Send a mail message with an SMTP wrapper function. This is the
easiest way to send one mail message at a time.

• Capture an exception generated by the connection. This is how
you are notified of problems with an Internet protocol.

• Retrieve mail message headers via POP3. This is the way you
can grab just the header part of mail messages via POP3.

• Scan mail messages for arbitrary header fields. This is the way
you can look for header fields other than those directly support
by the Internet classes.

• Retrieve a directory listing via FTP. This is the way you can scan
a remote computer’s file system for a file to download.

• Download a remote file. This is how you can retrieve an
arbitrary data file using one of the FTP wrapper functions.

1. Create a thread to run HTTP.
SendRegistrationMessage() CRegisterViaHTTP.cp

The protocol code for each of the Internet classes expects to run
from within the body of an LThread derived object. You must
subclass a thread object and override its Run() method to make
your calls to the remote computer. You will usually instantiate the
PPA–182 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Code Exercise
thread object from within your client code and use
LThread::Resume() to get it started.

As usual, the existing code is in italic.
 mThread = nil;
 mThread = new CRegisterViaHTTPThread(this);
 if (mThread)
 mThread->Resume();

2. Build an HTTP message.
BuildMessage() CRegisterViaHTTP.cp

In the HTTP protocol, data is exchanged between computers using
LHTTPMessages to package the information into the format
specified in the protocol’s RFC. When you create an empty
LHTTPMessage object, you need to populate the minimum header
fields for the operation you are trying to complete.

MIST collects information from the user to send to an HTTP server
to complete an on-line registration form. The MIST program mimics
the operation of a Web browser’s form capabilities by using an
HTTP POST command to send data that has been specially
formatted using an HTML form encoding.

After setting the body data you need to set the content type of the
data, and to be helpful to the Web server, the type of client program
sending the data.

theMessage.SetMessageBody(*theFormH,theLength);
theMessage.SetUserAgent("MIST");
theMessage.SetContentType("application/x-www-form-urlencoded");

The LHTTPMessage automatically sets other headers when you
supply body data to correctly identify the length of the message.

3. Post HTTP data to a web server.
Run() CRegisterViaHTTP.cp

Your thread is now running and has some data to transmit to the
Web server. You need to create the protocol object, and tell it to send
the data using the wrapper function
LHTTPConnection::Post().

LStr255 theHost(STRx_HTTP, str_HOST);
LStr255 theResource(STRx_HTTP, str_URL);
LHTTPResponse theResponse;
LHTTPConnection connection(*this);
PowerPlant Advanced Topics PPA–183

Internet Programming in PowerPlant
Code Exercise
connection.AddListener(this);
connection.Post(theHost,
 theResource,
 theMessage,
 theResponse);

4. Check the response code.
DisplayResponse() CRegisterViaHTTP.cp

When the POST command completes, it returns a status value from
the remote computer in the LHTTPResponse object. You should
check the return value to determine the success or failure of the
POST command. An HTTP transaction is composed of one
command and response cycle. If you receive a status code that
indicates an error, you will need to reissue the command after
possibly correcting the message contents, host, or resource specifier.

SInt32 theResponseCode;
theResponseCode = theResponse->GetResponseCode();
if (kHTTPRequestOK == theResponseCode ||
 kHTTPRequestNoResponse == theResponseCode)
 mProgress->SetDescriptor(
 LStr255("Registration transmission was a success"));
else
 mProgress->SetDescriptor(LStr255("Failure"));

5. Create a thread to run SMTP.
SendRegistrationMessage() CSendQuestionSMTP.cp

Like the other protocol objects in the Internet class library, you need
to create an LThread based object to run the SMTP transaction. Once
the client code has gathered up all of the desired data, create your
thread, and start it running by calling its Resume() function.

mThread = nil;
mThread = new CSendQuestionSMTPThread(this);
if (mThread)
 mThread->Resume();

6. Build a mail message.
BuildMessage() CSendQuestionSMTP.cp

Electronic mail messages are modeled by LMailMessage objects.
Like the LHTTPMessage class, LMailMessage adds support for
setting the most frequently used header fields geared towards
PPA–184 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Code Exercise
email. LSMTPConnection sends LMailMessages to the destination
addresses you provide. Minimally, you need to specify a To and
From address to send a mail message. It is helpful to add a Subject
to the message as it both helps the recipient know what the mail
message is about, and the Subject string is used by
LSMTPConnection’s progress mechanism to notify you of which
message it is sending. In this exercise, you need to add a special
header field “X-Mailer” so that you can tag the message with the
type of email client that was used to send the message. You can use
the LInternetMessage::SetArbitraryField() function to
add any field that doesn’t have its own specific access function.

ThrowIfNot_(mExample->GetEmail(anEmailAddr));
p2cstr(anEmailAddr);
theMessage.AddTo((char *) anEmailAddr);
theMessage.SetFrom((char *) anEmailAddr);
theMessage.SetSubject("MIST: Tech Support Question");
theMessage.SetArbitraryField("X-Mailer", "MIST");

ThrowIfNot_(mExample->GetQuestion(aQuestionH));
UInt32 theQuestionSize = ::GetHandleSize(aQuestionH);
StHandleLocker theLock(aQuestionH);
theMessage.SetMessageBody(*aQuestionH, theQuestionSize);

7. Send a mail message with an SMTP wrapper function.
Run() CSendQuestionSMTP.cp

The bulk of the code to implement a protocol’s transaction is
frequently located in the thread’s Run() function. Once you have
constructed your LMailMessage and decided on its destination, you
can make use of the LSMTPConnection::SendOneMessage()
wrapper function. By using the simpler API of the wrapper
functions, you avoid all of the complicated details of running the
protocol.

LSMTPConnection connection(*this);
connection.AddListener(this);
connection.SendOneMessage(theHost, theMessage);
connection.RemoveListener(this);

8. Capture an exception generated by the connection.
Run() CSendQuestionSMTP.cp

The LInternetProtocol derived classes report status and error
information using two principal methods. They will throw an
PowerPlant Advanced Topics PPA–185

Internet Programming in PowerPlant
Code Exercise
exception when an unexpected event or error occurs and they can
report general status information through the progress mechanism.

You should be sure to place try and catch blocks around your
protocol function calls to handle the exceptions generated by them.

catch (ExceptionCode err) {
 SysBeep(30);
 if (err_AssertFailed == err)
 DisplayProgress("Message was not sent, no connection");
 else
 DisplayProgress("Connection failed due to unknown reason");
}

 If you are using the progress mechanism, you will need to add the
appropriate test for the progress message error codes in your
thread’s ListenToMessage() function. LSMTPConnection will
report a msg_SendItemFailed status code if the LMailMessage
can’t be sent.

switch (inStatusCode) {
 case msg_SendItemFailed:
 sprintf(statusMessage, "Failed to send: %#s",
 theMsg->currentItem);
 DisplayProgress(statusMessage);
 SysBeep(30);
 break;
 default:
 break;
}

9. Retrieve mail message headers via POP3.
Run() CCheckPOP.cp

You can make use of the various LInternetProtocol derived classes’
wrapper functions to help you make decisions about more
sophisticated processing. Suppose that you want to selectively
handle email messages depending upon the kind of mail client that
was used to send the message. You can retrieve mail headers
without having to download the potentially bulky message bodies
by using the LPOP3Connection::GetHeaders() function.

LMailMessageList theHeaderList;
POP3Connection connection(*this);
connection.AddListener(this);
connection.GetHeaders(
PPA–186 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Code Exercise
 theHost,
 theUsername,
 thePassword,
 &theHeaderList,
 mExample->GetUseAPOP());
connection.RemoveListener(this);

The GetHeaders() function returns an LMailMessageList of
LMailMessage objects. These LMailMessage objects do not contain
the body portion of the mail message.

10. Scan mail messages for arbitrary header fields.
ScanListForMIST() CCheckPOP.cp

Now you can scan through the list of LMailMessage headers
looking for messages sent using the MIST client. A header field that
describes the type of email client that sent a message is not always
supplied. Furthermore, the RFCs which define the format of mail
messages do not include a standardized header field that gives this
kind of information. Therefore, you will look for an experimental
field called “X-Mailer” which you always provide in any outgoing
mail messages sent by the MIST client. You use the
LInternetMessage::GetArbitraryField() function to find
fields that are not supported directly by the Internet classes’ access
functions.

SInt32 msgCount = 0;
LHeaderField tmpField;
LMailMessage *currMsg;
LArrayIterator iter(theMsgList);
while(iter.Next(&currMsg))
{
 if (currMsg->GetArbitraryField("X-Mailer", &tmpField))
 {
 if (0 == strcmp("MIST", tmpField.GetBody()))
 ++msgCount;
 }
}

11. Retrieve a directory listing via FTP.
CLoadListFTPThread::Run() CRetrieveUpdateFTP.cp

Suppose you have released a series of update files for your user and
you would like her to pick a file from a list that best meets her
PowerPlant Advanced Topics PPA–187

Internet Programming in PowerPlant
Code Exercise
needs. You can cull such a list from the files stored on your FTP
server. By using the LFTPConnection::ListFolder() function,
you gather the names of all of the files in a directory, and can use
that data to build a pick list in your user interface.

progress.currentItem = theHost;
connection.BroadcastProgress(msg_OpeningConnection,
 progress, true);
connection.Connect((ConstStr255Param) theHost);
connection.BroadcastProgress(msg_Connected,
 progress, true);

connection.ListFolder(&theListBuffer, p2cstr(theRemoteDir),
true);

progress.currentItem = theHost;
connection.BroadcastProgress(msg_ClosingConnection,
 progress, true);
connection.Disconnect();
connection.BroadcastProgress(msg_Disconnected,
 progress, true);

Because ListFolder() is not a wrapper function, you will need to
initiate the remote connection yourself. You might want to keep the
connection open after this call in anticipation of the user selecting a
file from the list and wanting to start a download. If you follow the
leave-it-open strategy and later use one of the wrapper functions to
download a file, you will have to remember to close the connection
manually. The wrapper functions leave connections in the state they
find them in. In this example, we are closing the connection so that
later use of a wrapper function will reopen the link.

TIP Notice the calls to BroadcastProgress() in the
CLoadListFTPThread::Run() function. Wrapper functions
contain calls to the progress mechanism to notify your code of the
state of a connection. However, if you manually open and close a
connection, and use various utility routines in-between, you will
have to insert your own calls to the BroadcastProgress()
function if you want your code to generate progress messages.

12. Download a remote file.
PPA–188 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Code Exercise
CRetrieveFTPThread::Run() CRetrieveUpdateFTP.cp

Now that a file has been picked for downloading, it is really easy to
initiate a file retrieval operation using the wrapper function
LFTPConnection::GetFile(). In this example, we are using the
username “anonymous” with a password that is equivalent to our
email address. This is the standard access information for a guest
connection on many FTP servers.

connection.AddListener(this);
connection.GetFile((ConstStr255Param) theHost,
 "anonymous", "MIST@metrowerks.com", "",
 FTPASCIIXfer, p2cstr(theRemoteFile),
 &theSaveFile);
connection.RemoveListener(this);

13. Build and run the application.

After the application compiles and runs successfully, you will be
able to make one of four choices in the Tools menu.

The Register… command brings up the window shown in Figure
5.2. Enter your correct Internet mail address in the email field, and
any other values for the rest of the form. When you press the
Register button, the window’s contents are packaged into an
LHTTPMessage and transmitted to the remote computer (a Web
server at Metrowerks, in this case). If you supplied a correct email
address, a mail message will be sent to you containing a display of
the values you supplied in the form.
PowerPlant Advanced Topics PPA–189

Internet Programming in PowerPlant
Code Exercise
Figure 5.2 Registration using HTTP

To use the next two tools, first go to the Preferences… command
(found under the Edit menu). Enter your SMTP and POP3 DNS host
names in the dialog and press OK. You will now be ready to run the
rest of the exercise code.

You can choose the Contact… menu item to send a simulated
technical support question via SMTP. The window in Figure 5.3
requires that you enter your own email address and a question. (If
you have set the appropriate server addresses in the Preferences
dialog, the message you send will be echoed back to you by the mail
server.) You could use a mail feature like this in one of your
programs to automatically send questions to a well know email
address (such as technical support) from within your application.
PPA–190 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Code Exercise
Figure 5.3 Technical Support Question via SMTP

Next, if you select the Check… menu item, you will be presented
with a window as shown in Figure 5.4. Here you should enter the
POP3 user name and password for your email account. If your POP
server is appropriately specified in the Preferences dialog, the
program will log on to your POP server and it will scan your
mailbox for any messages that were sent to you from the MIST
client. You can send one or two messages from either the Contact
Tech Support window or the Register window to give the scanner
something to look for. The code demonstrates a technique for
selectively finding and operating upon specific mail messages
waiting on a remote server.
PowerPlant Advanced Topics PPA–191

Internet Programming in PowerPlant
Code Exercise
Figure 5.4 Checking for MIST Mail via POP3

Lastly, if you select the Retrieve Update… menu item, you will see
a window as shown in Figure 5.5. If MIST can connect to the remote
FTP server, it displays a list of files in the target working directory.
If you double-click on a file from the list and press the Retrieve
button, MIST will download the file to your local hard drive. The
code demonstrates a technique for finding and retrieving specific
files on a remote server. You could use this technique in your own
program to provide a way for the user to automatically get updates
or enhancements to your application.

MIST is a simple collection of examples whose main purpose is to
illustrate just how easy it is to use the Internet protocols as
implemented in PowerPlant. With this new arsenal of tools, you
should be communicating across the Internet in no time!
PPA–192 PowerPlant Advanced Topics

Internet Programming in PowerPlant
Code Exercise
Figure 5.5 Downloading a file via FTP
PowerPlant Advanced Topics PPA–193

Internet Programming in PowerPlant
Code Exercise
PPA–194 PowerPlant Advanced Topics

6
Tables in PowerPlant

This chapter discusses how to display tabular data in a PowerPlant
application.

Introduction to Tables in PowerPlant
Tabular data is a feature of many applications. The ability to display
data in one or two dimensions is a common mechanism familiar to
users. Tables are so common that it makes little sense to reinvent
common table-related functionality, and that’s where PowerPlant
comes into play.

The PowerPlant table classes provide a framework for displaying
tabular data. Taken together, the PowerPlant table-related classes
provide all the basic functionality you expect from a table, and
much more. You can display data in individual cells. You can add
and remove rows and columns of cells. You can add, remove, and
modify data in cells. You can display any kind of data: words,
numbers, icons, pictures, and so forth. You can even create
hierarchical tables where you can expand or collapse the display of
sublevels of data to arbitrary depth.

These features mean that you can use the table classes as a powerful
list manager. Just think of a list as a table with one column.

In this chapter we discuss how you can use table classes in a
PowerPlant application. The topics discussed include:

• Table Strategy—the PowerPlant approach to tables

• Table Classes—the individual PowerPlant classes involved in
tables

• Implementing Tables in PowerPlant—working with
PowerPlant’s table classes
PowerPlant Advanced Topics PPA–195

Tables in PowerPlant
Table Strategy
Table Strategy
PowerPlant has gone through three iterations of support for tabular
data. For information on the original LTable class, see The
PowerPlant Book.

The classes that represent the second iteration for tabular data
center around LNTable. These classes are located in the
PowerPlant:• In Progress:• AppleEvent
Classes:Table & Text Classes:Table Classes folder. In
the future, they will move into the obsolete folder.

This chapter discusses the third and newest set of table classes.
These classes are based on the LTableView class found in the
PowerPlant:Table Classes folder. The LTableView design is
highly modular for flexibility and extensibility. It factors table-
related functionality into core table classes and three or four
associated helper classes. Some of the support classes are found in
the PowerPlant: • In Progress:• Table Classes folder.

With respect to the LTableView classes, in this section we discuss:

• Table Architecture—the overall design of the table classes

• General Table Implementation—issues related to how
PowerPlant counts and manages cells in a table

Table Architecture

A table cell has a geometry (its dimensions), can be selected, and
stores data. PowerPlant has families of helper classes to manage:

• geometry—the size of a cell

• cell selection—managing single and multi-cell selections

• data storage—the data stored in each cell

When you create a table, you associate an instance of each helper
classes with the table. By substituting a different kind of helper class
you can modify the behavior of the table.

For example, if you want every cell in the table to be the same
physical size, you use LTableMonoGeometry as the geometry
helper class. If you want cells that can vary in size, you use
LTableMultiGeometry. Likewise, if you want to allow only one cell
PPA–196 PowerPlant Advanced Topics

Tables in PowerPlant
Table Architecture
to be selected at a time, LTableSingleSelector serves the purpose. If
you want to allow multiple cells to be selected, LTableMultiSelector
will do.

While this strategy creates a large number of classes, the underlying
architecture is highly modular and flexible. By factoring out
behavior that relates to cell size, cell selection, and data storage, you
can use the same base table class for a variety of different kinds of
displays, with different levels of functionality.

This design also gives you the opportunity to replace individual
portions of table behavior with custom behavior designed to suit
your own purpose.

There is one more kind of helper class that can be a real benefit to
managing the display of tabular data, the collapsable tree.

PowerPlant supports hierarchical tables. In a hierarchical table, one
row in the table serves as a header or “node” in a tree that can
expand to reveal a sublevel of data, or collapse to hide all subsidiary
data. A familiar example of this functionality can be seen in a Finder
window using a list view. Each folder in the list is a node. By
clicking the expansion triangle to the left of the folder, you open the
folder to see its contents. The folder may contain other folders, and
so on to arbitrary depth.

The PowerPlant hierarchical tables support this same functionality.
You can have an expansion triangle appear to the left of a row in a
hierarchical table. PowerPlant manages most of the details. It
expands or collapses sublevels of data automatically, so you can
concentrate on the real work.
PowerPlant Advanced Topics PPA–197

Tables in PowerPlant
General Table Implementation
Figure 6.1 Nodes in a hierarchical list

General Table Implementation

When working with tabular data, several questions can arise
concerning how to address individual cells in a table. The answers
to these questions are essentially arbitrary. However, knowing how
to count cells is vital to success in managing tabular data.

A row is a horizontal set of cells. A column is a vertical set of cells.
PowerPlant uses 1-based counting for rows and columns in tables.
The top row of a table is row 1, not row 0. The left column of a table
is column 1, not column 0.

PowerPlant declares a data type, TableIndexT, for referring to
columns, rows, and cells by index. This is an unsigned 32-bit
integer. Tables in PowerPlant can have more than four billion cells.

Each cell in a table may be addressed by index number. Cells are
ordered by column (across) first, and then by row (down). In other
words, cell counting starts at the top left corner, then proceeds to the
right across all columns along the row. When the full width of the
table has been reached, the count wraps to the beginning of the next
row, as shown in Figure 6.2.
PPA–198 PowerPlant Advanced Topics

Tables in PowerPlant
Table Classes
Figure 6.2 Counting cells in a table

The table classes have a function for getting the index number of
any cell specified by row and column.

Finally, in PowerPlant a cell can be an object in its own right, an
instance of the STableCell class. Details about this class can be found
in “STableCell.” In brief, a cell object has a row and column, and a
series of behaviors that allow easy manipulation of cell location (but
not cell contents). Many of the member functions of the PowerPlant
table classes require or return a reference to an STableCell object.

Table Classes
There are many classes related to tables in PowerPlant. This chapter
does not discuss them all. This chapter concentrates on the latest
and most powerful implementation of tables in PowerPlant.

For information on the LTable class, see The PowerPlant Book chapter
on views. There is no formal documentation on the table classes
found in the Advanced Classes folder. Read the source files if
you’re interested in these classes.

The classes discussed in this chapter are those based on and
connected with LTableView. At the time of this writing, the source
files for these classes are located in the PowerPlant In Progress
folder.

These classes can be collected into two groups: the principal table
classes, and the table helper classes. Figure 6.3 shows the table class
hierarchy.
PowerPlant Advanced Topics PPA–199

Tables in PowerPlant
Table Classes
Figure 6.3 Table class hierarchy

LTableView is the base table class. It inherits from LView.
LColumnView supports a table with a single column. LTextColumn
describes a table with one column of text items. LHierarchyTable
supports nodes and multiple levels of data. LTextHierTable
displays text in a hierarchical table. STableCell represents an
individual cell in a table.

LSmallIconTable is a trivial implementation of LTableView to
display small icons, and is intended to be a simple demonstration.

Figure 6.4 shows the four helper class hierarchies.

Figure 6.4 The table helper class hierarchies
PPA–200 PowerPlant Advanced Topics

Tables in PowerPlant
Table Classes
The base class for each group of helper classes is an abstract class
that defines the interface for the helper. Concrete classes provide
various implementations.

LTableMonoGeometry provides a table where all cells are the same
size. LTableMultiGeometry provides a table where cells may vary in
size.

LTableSingleSelector provides a table where only one cell may be
selected at any moment. LTableMultiSelector provides a table
where multiple cells may be selected simultaneously, including
discontiguous selection.

The LTableArrayStorage class provides for data storage for each cell
in the table. You may use any subclass of LArray for data storage.
You may choose LArray where each cell has the same length data
storage. You may also use LVariableArray to support cells with
varying data lengths.

The LNodeArrayTree class, working with LDropFlag, provides a
standard implementation of a data hierarchy. The LDropFlag class
manages the expansion triangle used to display or hide sublevels of
data in a hierarchical table.

When you create a table, you instantiate a storage mechanism, a
selector, and a geometry and attach them to the table. If the table is
hierarchical, you also attach a tree helper object.

The remainder of this section discusses each table class in detail. The
classes are:

• STableCell•LTableGeometry

• LTableView•LTableMonoGeometry

• LColumnView•LTableMultiGeometry

• LTextColumn•LTableSelector

• LHierarchyTable •LTableSingleSelector

• LTextHierTable •LTableMultiSelector

• LSmallIconTable •LTableStorage

• LCollapsableTree•LTableArrayStorage

• LNodeArrayTree•LDropFlag
PowerPlant Advanced Topics PPA–201

Tables in PowerPlant
STableCell
STableCell

STableCell is defined in the UTables.h file. All the member
function definitions are in the header file, and are inline functions.

There are two data members, row and col. The constructor sets the
cell location to (0,0) unless you provide a row and column. You can
also pass a Point variable as an initializing value. PowerPlant sets
row to the vertical value in the Point, and col to the horizontal
value in the Point. Table 6.1 lists the member functions.

Table 6.1 STableCell member functions

In this context, cell location is the row and column location of the
cell in the table.

When you create a table, you typically do not create a complete set
of STableCell objects, one per cell. You create an STableCell object as
necessary to manipulate an individual cell in the table. Also, note
that none of the cell’s member functions relate to the contents of the
cell, only to cell location. You manipulate contents of the cell using
member functions in the table classes.

LTableView

LTableView is a complex class that forms the basis for the table
classes discussed in this chapter. The class data members store the
data you need to create and manage a table. The class member
functions implement standard table-related behavior.

Function Purpose

SetCell() set the cell’s row and column

IsNullCell() returns true if cell location is (0,0)

ToPoint() convert cell location to a Point value

operator
==()

returns true if cell locations are the same

operator
!=()

returns true if cell locations are not the same
PPA–202 PowerPlant Advanced Topics

Tables in PowerPlant
LTableView
LTableView derives from LPane via LView. Therefore it is a view
like any other. See The PowerPlant Book chapters on panes and views
for details of this aspect of LTableView.

Although LTableView is a concrete class, you do not typically
instantiate an LTableView object. The default behavior of
LTableView creates a table whose cells contain the row and column
number. At the very least you would typically override the drawing
routines to display the appropriate data for your table.

TIP LTableView is an excellent class to instantiate for study purposes
because it is a complete implementation of a default table (albeit
with demonstration data). You can create an LTableView object,
and then walk through the code as you perform table-related
operations to see how PowerPlant works.

LTableView has five data members, detailed in Table 6.2.

Table 6.2 LTableView data members

The number of rows and columns determines the dimensions of the
table. The number of rows and columns is set after the table has
been created.

The other data members correspond to the three helper classes
associated with every table. (Hierarchical tables also have a tree
helper object). Typically you create an LTableView descendant
based on a PPob resource built in constructor. After the view is
created, you instantiate helper objects and set the data members.
The member functions for setting these data members are:

Data member Stores

mRows number of rows in table

mCols number of columns in table

mTableGeometry pointer to the table geometry object

mTableSelector pointer to the table selector object

mTableStorage pointer to the table data storage
PowerPlant Advanced Topics PPA–203

Tables in PowerPlant
LTableView
• SetTableGeometry()

• SetTableSelector()

• SetTableStorage()

LTableView Services

LTableView has member functions designed to provide a wide
variety of services devoted to:

• Row, column, and cell management

• Accessing cells

• Cell geometry

• Cell selection

• Data storage

• Drawing and clicking

Row, column, and cell management

Table 6.3 lists some of the row, column, and cell management
functions and their purpose.

Table 6.3 LTableView cell management functions

There are no accessors to set the mRows and mCols data members
directly. You should only modify those values by calls to the
appropriate functions listed above.

Function Purpose

GetTableSize() provides number of rows and columns

IsValidRow() returns true if row exists in table

IsValidCol() returns true if column exists in table

IsValidCell() returns true if cell exists in table

InsertRows() adds rows and data to the table

InsertCols() adds columns and data to the table

RemoveRows() removes rows and data from the table

RemoveCols() removes columns and data from the table
PPA–204 PowerPlant Advanced Topics

Tables in PowerPlant
LTableView
Accessing cells

Table 6.4 lists some of the cell access functions and their purpose.
Use these functions to find a desired cell in the table

Table 6.4 LTableView cell access functions

Cell geometry

Table 6.5 lists some of the cell geometry functions and their
purpose. Use these functions to get or modify cell size.

Table 6.5 LTableView cell geometry functions

Each of these functions sends messages to the associated geometry
helper object.

You cannot modify the size of an individual cell. You must modify
the dimensions for an entire row or column. All cells in the same

Function Purpose

CellToIndex() given a cell location, provides index for cell

IndexToCell() given an index, provides location of cell

GetNextCell() provides next cell

GetNextSelecte
dCell()

provides next selected cell

Function Purpose

GetImageCellBo
unds()

provides bounds of cell in image
coordinates

GetLocalCellRe
ct()

provides bounds of cell in local coordinates,
returns true if cell is in frame (visible)

GetRowHeight() returns the height of the specified row

SetRowHeight() sets the height of the specified rows

GetColWidth() returns the width of the specified column

SetColWidth() sets the width of the specified columns
PowerPlant Advanced Topics PPA–205

Tables in PowerPlant
LTableView
row must have the same height. All cells in the same column must
have the same width. You may set the size of several contiguous
rows or columns in a single call.

Cell selection

Table 6.6 lists some of the cell selection functions and their purpose.
Use these functions to modify the selection range in a table.

Table 6.6 LTableView cell selection functions

Each of these functions (except SelectionChanged(), which is
empty) sends messages to the associated selection helper object.

Data storage

Table 6.7 lists some of the data management functions and their
purpose.

Table 6.7 LTableView data storage functions

Function Purpose

CellIsSelected() returns true if cell is selected

SelectCell() adds cell to current selection

SelectAllCells() selects all cells

UnselectCell() removes cell from current selection

UnselectAllCells() unselects all selected cells

ClickSelect() adjusts selection in response to a click

SelectionChanged() notification that selection has changed,
empty function

Function Purpose

SetCellData() sets the data for the specified cell

GetCellData() gets the data for the specified cell

FindCellData() provides the cell that contains specified data
PPA–206 PowerPlant Advanced Topics

Tables in PowerPlant
LTableView
Each of these functions sends messages to the associated storage
helper object.

When you get data, you must provide a pointer to storage that you
have allocated. In PowerPlant, storage helpers copy data from the
table into your storage. You do not get a pointer to the cell data
storage. Similarly, when you set data for a cell your data is copied
into the cell storage.

WARNING! The calls to GetCellData() and SetCellData() require a
reference to an STableCell to specify the cell. In the STableCell
you specify the row and column of the cell. In a hierarchical table,
those values must reflect the position the cell would occupy if the
table were fully expanded. This is called the wide-open table. For
more on the concept of a wide-open table, see “LHierarchyTable.”

Drawing and clicking

Table 6.8 lists some of the drawing and clicking functions and their
purpose. Use these functions to manage the visual appearance of
the table and its cells, and to manage clicks in cells.

Table 6.8 LTableView drawing and clicking functions

Function Purpose

RefreshCell() redraw cell during next update event

RefreshCellRange(
)

redraw a range of cells during next
update event

HiliteCellActivel
y()

draw or undraw active highlighting for
a cell

HiliteCellInactiv
ely()

draw or undraw inactive highlighting
for a cell

ActivateSelf() notification table is becoming active

DeactivateSelf() notification table is becoming inactive

DrawSelf() draw the table

DrawCell() draw a specified cell
PowerPlant Advanced Topics PPA–207

Tables in PowerPlant
LColumnView
LTableView and its descendants can properly handle both
foreground and background highlighting. If the only thing your
table does on activating or deactivating is modify highlighting, the
default functions take care of you. If you want to add functionality,
you can override HiliteCellActively and
HiliteCellInactively.

The DrawSelf() and ClickSelf() functions search for the cell(s)
involved and call DrawCell() or ClickCell().

You will override the DrawCell() and ClickCell() functions in
derived classes. The default DrawCell() function in LTableView
draws a string in the cell that contains the row and column number.
The ClickCell() function beeps on a double-click. You must
replace this behavior with functionality appropriate for the kind of
data you display in your table.

LColumnView

LColumnView is a simple class that derives from LTableView. It
also inherits from LDragAndDrop and LBroadcaster. The intent of
this class is to define an interface for a table that contains a single
column of data. Functions for adding and removing columns have
been overridden to do nothing but display a signal if signaling is on.

This class supports drag and drop in the table cells. It broadcasts a
message when a cell is double-clicked, or when the selection
changes.

LColumnView does not override LTableView::DrawCell(),
and so cannot be used directly. In typical use, you would subclass
LColumnView to display data of the appropriate type. The
LTextColumn class does that.

ClickSelf() handle a click in the table

ClickCell() handle a click in a particular cell

GetCellHitBy() identify cell containing a point

Function Purpose
PPA–208 PowerPlant Advanced Topics

Tables in PowerPlant
LTextColumn
LTextColumn

LTextColumn is a simple class that derives from LColumnView.
The intent of this class is to create a table that consists of a single
column of text. This is a common visual interface object: a simple list
of text items.

LTextColumn has a single text traits resource that applies to all cells
in the table. It uses a 'STR#' resource to specify the initial items in the
column.

WARNING! The constructor reads the data from the ‘STR#’ resource, but does
not release the resource. You should mark the resource purgeable if
you wish to free up the memory.

You can use functions inherited from LTableView to modify the
contents of the cells after creation. The only function LTextColumn
overrides is LTableView::DrawCell().

LSmallIconTable

LSmallIconTable is a simple class derived from LTableView. This
class serves as a demonstration of how to derive a class from
LTableView to display a unique kind of data—in this case, a small
icon.

This class uses the LTableMonoGeometry, LTableSingleSelector,
and LTableArrayStorage helper classes to create a table with cells of
a uniform size and that allows one cell to be selected.

This class has no additional data members or member functions. It
does override DrawCell() to plot an icon in the cell. It stores the
small icon ID and a name for each icon in a simple struct, which
serves as the data for each cell.

LHierarchyTable

LHierarchyTable is a moderately complex class that adds the ability
to display tabular data hierarchically to LTableView.
LHierarchyTable adds two new data members, listed in Table 6.9.
PowerPlant Advanced Topics PPA–209

Tables in PowerPlant
LHierarchyTable
Table 6.9 LHierarchyTable data members

The mCollapsableTree member is analogous to the geometry,
selection, and storage data members in LTableView. The table object
uses this value to access the services of the tree helper object.

The LHierarchyTable class uses an LNodeArrayTree as its tree
helper object. The LHierarchyTable constructor function creates an
LNodeArrayTree object for the table. See “LNodeArrayTree.”

The mFlagRect data member contains the size of the standard
expansion triangle (the drop flag). The
LHierarchyTable::ClickSelf() member function uses this
rectangle to determine if a click is in the expansion triangle or not,
and responds accordingly.

Table 6.10 lists several of the LHierarchyTable member functions.
You should not have to modify any of these functions. However,
use these functions to get the correct index number and to add rows
to the table at the proper level in the hierarchy.

Table 6.10 LHierarchyTable member functions

Data member Stores

mCollapsableTree pointer to the tree helper object

mFlagRect size of the drop flag

Function Purpose

GetWideOpenTableSi
ze()

provides number of rows and
columns in a fully expanded table

GetWideOpenIndex() translates exposed index into wide
open index

GetExposedIndex() translates wide open index into
exposed index

InsertSiblingRows(
)

add rows as siblings to row at the
insertion point
PPA–210 PowerPlant Advanced Topics

Tables in PowerPlant
LHierarchyTable
A hierarchical table may be partially or fully expanded. You may
need to get the index number of a cell in either situation. Use
GetWideOpenIndex() and GetExposedIndex() to convert an
index from one form to the other. Expanding and collapsing parts of
the table only affects rows. There is no way to hide columns of data.

When you insert a row or rows into a table, you specify the row
after which the new rows should appear. In a hierarchical table, the
new rows may be at the same level as the “after” row (a sibling), or
nested inside the “after” row (a child).

WARNING! The calls to insert child or sibling rows require that you specify the
wide-open index number of the row after which you want the new
rows to appear.

LHierarchyTable overrides InsertRows() so that it creates sibling
rows. This mimics the behavior of a non-hierarchical table.
LHierarchyTable also overrides RemoveRows(). You can only
remove one row at a time from a hierarchy table. If that row is a
parent row (one with children), all the children are removed as well.

LHierarchyTable also has functions that handle expanding and
collapsing levels in the hierarchy. If you click on the expansion
triangle, you expand or collapse that level. If you Option-click the
expansion triangle, you expand or collapse all levels below that
level (known as deep expand or deep collapse).

In a typical implementation of a hierarchical table you won’t have to
call or override the member functions concerned with expanding or
collapsing levels in the hierarchy. PowerPlant takes care of all the
housekeeping for you.

InsertChildRows() add rows as children to row at the
insertion point

AddLastChildRow() add one row as the last child of the
specified parent row

Function Purpose
PowerPlant Advanced Topics PPA–211

Tables in PowerPlant
LTextHierTable
LTextHierTable

LTextHierTable is a simple class derived from LHierarchyTable.
This class serves as a demonstration of how to derive a class from
LHierarchyTable to display text.

This class adds four data members, detailed in Table 6.11

Table 6.11 LTextHierTable data members

This class uses the text traits data members to control the
appearance of text. By default, they are the system font for child
rows, and the application font for parent rows.

This class adds no new member functions. It overrides
DrawCell(), HiliteCellActively(), and
HiliteCellInactively() to draw and highlight text without
including the expansion triangle.

LTableGeometry

LTableGeometry is an abstract class that specifies the interface for
the geometry helper objects. These functions provide behaviors to
maintain the location, width, and height of each cell in a table.

This class has one data member, mTableView. This is a pointer to
the table that owns this helper.

All of the functions in this class are pure virtual or empty. These
functions form the basis for interacting with a table’s geometry in
PowerPlant. Most of the time you will not need to concern yourself
with these functions. The PowerPlant table classes call these
functions to get or set required data. In general, you should call the
table functions, not the related geometry functions.

Data member Stores

mLeafTextTraits text traits for a child row

mParentTextTraits text traits for a parent row

mFirstIndent indent for first level text cell

mLevelIndent indent per additional level
PPA–212 PowerPlant Advanced Topics

Tables in PowerPlant
LTableMonoGeometry
For background purposes, Table 6.12 lists LTableGeometry
functions.

Table 6.12 LTableGeometry member functions

All the get and set functions are pure virtual.

The insert and remove functions are all empty. The purpose of these
functions in subclasses is to maintain the geometry, not to actually
add or remove cells from the table. See LTableMultiGeometry for an
example.

LTableMonoGeometry

LTableMonoGeometry is a concrete implementation of
LTableGeometry to support a table where all cells are the same size.

Function Purpose

GetImageCellB
ounds()

provides bounds of cell in image
coordinates

GetRowHitBy() returns index of row that contains a point

GetColHitBy() returns index of column that contains a
point

GetTableDimen
sions()

provides size of table in pixels based on
number of rows and columns

GetRowHeight(
)

return height of specified row

SetRowHeight(
)

set height of specified row(s)

GetColWidth() get width of specified column

SetColWidth() set width of specified column(s)

InsertRows() add row(s) after specified row

InsertCols() add column(s) after specified column

RemoveRows() remove specified row(s)

RemoveCols() remove specified column(s)
PowerPlant Advanced Topics PPA–213

Tables in PowerPlant
LTableMultiGeometry
This class has two data members, mColWidth and mRowHeight.

LTableMonoGeometry adds no new member functions, but
implements every pure virtual function listed in LTableGeometry.

The insert and remove rows and columns functions remain empty.

LTableMultiGeometry

LTableMultiGeometry is a concrete implementation of
LTableGeometry to support a table where rows and columns may
vary in size.

This class adds four data members, as detailed in Table 6.13.

Table 6.13 LTableMultiGeometry data members

LTableMultiGeometry adds no new member functions, but
implements every function listed in LTableGeometry.

The insert and remove rows and columns functions maintain the
arrays of heights and widths for the table.

LTableSelector

LTableSelector is an abstract class that specifies the interface for the
selector helper objects. These functions provide behaviors to
maintain the selection range in a table.

This class has one data member, mTableView. This is a pointer to
the table that owns this helper.

All of the functions in this class are pure virtual or empty. These
functions form the basis for interacting with selected cells in

Data member Stores

mRowHeights array of heights for rows in table

mColWidths array of widths for columns in table

mDefaultRowHeight height of new rows

mDefaultColWidth width of new columns
PPA–214 PowerPlant Advanced Topics

Tables in PowerPlant
LTableSingleSelector
PowerPlant. Most of the time you will not need to concern yourself
with these functions. The PowerPlant table classes call these
functions to get or set required data. In general, you should call the
table functions, not the related selector functions.

For background purposes, Table 6.14 lists LTableSelector functions.

Table 6.14 LTableSelector member functions

All the select functions are pure virtual.

The insert and remove functions are all empty. The purpose of these
functions in subclasses is to maintain the selection range, not to
actually add or remove cells from the table.

LTableSingleSelector

LTableSingleSelector is a concrete implementation of LTableSelector
for a table that may have one and only one cell selected at a time.

Function Purpose

CellIsSelected() returns true if cell is selected

SelectCell() adds cell to current selection

SelectAllCells() selects all cells

UnselectCell() removes cell from current selection

UnselectAllCells
()

deselects all cells

ClickSelect() adjust selection when clicking on a cell

DragSelect() adjust selection while user drags

InsertRows() add row(s) after specified row

InsertCols() add column(s) after specified column

RemoveRows() remove specified row(s)

RemoveCols() remove specified column(s)
PowerPlant Advanced Topics PPA–215

Tables in PowerPlant
LTableMultiSelector
This class has one data member, mSelectedCell. This is an
STableCell object representing the currently selected cell, if any.

LTableSingleSelector adds no new member functions, but
implements every function listed in LTableSelector.

LTableMultiSelector

LTableMultiSelector is a concrete implementation of LTableSelector
to support a table where multiple cells may be selected.
LTableMultiSelector supports discontiguous selection.

This class adds two data members: mSelectionRgn and
mAnchorCell. The anchor cell is the most recently selected cell.
The selection region describes the “region” occupied by selected
cells.

The use of the region in this instance is actually a neat trick. The
code that selects a cell adds a square 1-pixel in size to the region.
That square is defined by the cell’s row and column as the top left
coordinate, and adds one pixel for the bottom right coordinate.
Then, to determine if a cell is selected, the code simply checks
whether that row and column falls within the selection region.

LTableMultiSelector adds one new member functions,
SelectCellBlock() to select a range of cells.

TIP If you wish to operate on all selected cells, use the LTableView
function GetNextSelectedCell() to walk through the entire
table, stopping on selected cells.

LTableStorage

LTableStorage is an abstract class that specifies the interface for the
data storage helper objects. These functions provide behaviors to
maintain the data associated with a table.

This class has one data member, mTableView. This is a pointer to
the table that owns this helper.
PPA–216 PowerPlant Advanced Topics

Tables in PowerPlant
LTableArrayStorage
All of the functions in this class are pure virtual. These functions
form the basis for interacting with data in the table. Most of the time
you will not need to concern yourself with these functions. The
PowerPlant table classes call these functions to get or set required
data. In general, you should call the table functions, not the related
storage functions.

For background purposes, Table 6.15 lists LTableStorage functions.

Table 6.15 LTableStorage member functions

The purpose of the insert and remove functions in subclasses is to
add or remove data, not to add or remove cells from the table.

When inserting new rows and columns, the data for a single cell is
specified. All new cells receive the same data.

LTableArrayStorage

LTableArrayStorage is a concrete implementation of LTableStorage
to support a table where data is stored in an array (an LArray object,
or an object of a class that inherits from LArray).

This class has two data members, mDataArray and mOwnsArray.
The mDataArray member is a pointer to the array that holds the

Function Purpose

SetCellData() set data for an individual cell

GetCellData() copy data from an individual cell

FindCellData() search cells for specified data

GetStorageSize(
)

provides the number of columns and
rows for which data is stored

InsertRows() add data for specified rows

InsertCols() add data for specified columns

RemoveRows() remove data for specified row(s)

RemoveCols() remove data for specified column(s)
PowerPlant Advanced Topics PPA–217

Tables in PowerPlant
LCollapsableTree
data. The mOwnsArray member determines whether the array is
destroyed when the LTableArrayStorage object is destroyed.

The nature of the array can be specified using various
LTableArrayStorage constructors. There are three constructors. The
parameters and purpose of each are listed in Table 6.16.

Table 6.16 LTableArrayStorage constructors

LTableArrayStorage adds no new member functions, but
implements every function listed in LTableStorage.

LCollapsableTree

LCollapsableTree is an abstract class that specifies the behavior of a
hierarchical tree with expandable nodes.

This class has no data members.

All of the functions in this class are pure virtual. These functions
form the basis for interacting with a hierarchical tree. Most of the
time you will not need to concern yourself with these functions. The
PowerPlant hierarchy table classes call these functions to get or set
required data. In general, you should call the table functions, not the
related LCollapsableTree functions.

For background purposes, Table 6.15 lists some LCollapsableTree
functions.

Parameters Purpose

(LTableView*,
UInt32)

for cells with same size data, creates an
LArray object with items equal to size
provided

(LTableView*) for cells with varying size data, creates an
LVariableArray

(LTableView*,
LArray*)

user-specified subclass of LArray
PPA–218 PowerPlant Advanced Topics

Tables in PowerPlant
LNodeArrayTree
Table 6.17 Some LCollapsableTree member functions

There is no function in the table classes that corresponds to the
GetNestingLevel() function. If nesting level is a concern, you
can send the message directly to the tree helper object through the
mCollapsableTree data member of the table. See “Drawing a
Cell.”

There are also functions to expand and collapse nodes, and to
perform other node-related functions.

LNodeArrayTree

LNodeArrayTree is a concrete implementation of LCollapsableTree.
It uses an array to track the hierarchy of rows and nested rows.

This class has two data members, mHierarchyArray and
mExposedNodes. The mHierarchyArray member is a pointer to
the array that holds the nested hierarchy of nodes. The
mExposedNodes member is the number of exposed nodes at any
moment.

Function Purpose

GetWideOpenIndex() translates exposed index into wide
open index

GetExposedIndex() translates wide open index into
exposed index

GetParentIndex() gets index of parent row

GetNestingLevel() gets nesting depth of specified row

InsertSiblingNodes
()

add nodes as siblings to the node at
the insertion point

InsertChildNodes() add nodes as children to the node at
the insertion point

AddLastChildNode() add one node as the last child of the
specified parent row

RemoveNode() delete a node and its descendants
PowerPlant Advanced Topics PPA–219

Tables in PowerPlant
LDropFlag
LDropFlag

LDropFlag manages the expansion triangle in a hierarchical table. It
has two static functions, Draw() and TrackClick(). The
hierarchy table classes use these functions to draw the expansion
triangle and to determine whether the user has clicked in the
triangle.

WARNING! To use LDropFlag you must also include the DropFlags
Icons.rsrc file in your project.

Implementing Tables in PowerPlant
This section discusses how to work with the PowerPlant table
classes from a task-based perspective. While the collection of table-
related classes appears very complex, in fact they hide an
underlying elegance in design. Using these classes is actually a
straightforward process. The specific table classes, LTableView and
LHierarchyTable, provide almost all the functionality you need.

You will occasionally direct messages to helper objects, but by and
large the complexity of the geometry, selection, storage, and tree
classes is hidden.

Each topic reflects a table-related task you must perform. This
section includes the following topics:

• Creating a Table

• Managing Rows and Columns

• Setting Cell Data

• Getting Cell Data

• Handling Clicks in a Cell

• Responding to Selections

• Drawing a Cell

• Finding Cells

• Finding Data in a Table

• Scrolling a Table
PPA–220 PowerPlant Advanced Topics

Tables in PowerPlant
Creating a Table
Creating a Table

The simplest way to create a table is to use Constructor when you
generate the visual interface for the window containing the table.
Use an LTableView object or one of its descendants (either a
standard PowerPlant class or a custom class you created). See the
Constructor Manual for details.

A table built in this way does not have any of the necessary helper
objects, not does it have any cells or data.

Creating helper objects

You need to create three helper objects and attach them to the table
after the table object is instantiated. They are the geometry helper,
the selection helper, and the storage helper. Create objects of the
class you choose for the functionality you desire—uniform cell size
or not, single or multiple cell selection, the type or array for storage.

You can create these helper objects in the table constructor function,
in the table’s FinishCreateSelf() function, or in an initializer
function called from the table constructor. Use operator new and
specify the appropriate class constructor for each helper. Store the
pointer to the objects in the table’s mTableGeometry,
mTableSelector, and mTableStorage data members,
respectively.

Adding rows and columns

After creating the helper objects, you need to insert the appropriate
number of rows and columns. See “Managing Rows and Columns”
for details. The order of events is important. The process of adding
rows and columns may affect the geometry, selection, and storage
objects, so those objects should exist and be attached to the table
before adding rows and columns.

You should also initialize the contents of each cell as necessary. See
“Setting Cell Data.”
PowerPlant Advanced Topics PPA–221

Tables in PowerPlant
Managing Rows and Columns
Managing Rows and Columns

Every table has rows and columns of cells. There are three things
you can do with rows and columns. You can insert them into the
table, remove them from the table, or manage their size.

Inserting columns

Use the InsertCols() function. It has five parameters.

Table 6.18 Parameters for InsertCols()

The inDataPtr parameter points to one cell’s data. Each cell
receives the identical data initially. You can then set each cell’s data
as necessary. See “Setting Cell Data.”

Inserting rows

The InsertRows() function matches InsertCols() described in
Table 6.18. You specify the row after which new rows appear.

WARNING! For hierarchical tables, the inAfterRow parameter in the call to
InsertRows() must specify a wide-open index value. That is, it is
the index number the row would have if the table were fully
expanded.

For hierarchical tables, a call to InsertRows() creates non-
collapsable sibling rows. You can also call
InsertSiblingRows(). It has one additional parameter that

Data type Parameter Purpose

UInt32 inHowMany number of columns to add

TableIndex
T

inAfterCol row after which new columns
appear

void * inDataPtr pointer to data put in a cell

UInt32 inDataSize number of bytes of data

Boolean refresh whether to refresh the table
PPA–222 PowerPlant Advanced Topics

Tables in PowerPlant
Managing Rows and Columns
specifies whether the row is collapsable or not. If you want to create
a collapsable row, you must use InsertSiblingRows().

Table 6.19 Parameters for InsertSiblingRows()

The inDataPtr parameter points to one cell’s data. If you are
inserting more than one cell, each cell receives the identical data
initially. You can then set each cell’s data as necessary. See “Setting
Cell Data.”

To insert child rows under a row, call InsertChildRows(). The
parameters are the same as those for InsertSiblingRows(),
except that the second parameter specifies the parent row under
which the new child rows will appear.

Removing rows and columns

Call the LTableView functions RemoveRows() and
RemoveCols(). Each call has three parameters, detailed in Table
6.20.

Table 6.20 Parameters for removing rows and columns

Data type Parameter Purpose

UInt32 inHowMany number of rows to add

TableIndexT inAfterRow row after which new rows
appear

void * inDataPtr pointer to data put in a cell

UInt32 inDataSize number of bytes of data

Boolean inCollapsable whether rows are
collapsable

Boolean refresh whether to refresh the table

Data type Parameter Purpose

UInt32 inHowMany rows or columns to remove
PowerPlant Advanced Topics PPA–223

Tables in PowerPlant
Managing Rows and Columns
Removing a row or column also removes the associated data from
the table storage.

You can only remove one row at a time from a hierarchical table.
However, if that row is a parent row, all of its children are removed
along with it.

Changing row and column size

Call the LTableView functions SetRowHeight() and
SetColWidth(). Each call has three parameters, detailed in Table
6.21

Table 6.21 Parameters for changing row and column size

For tables that use LTableMonoGeometry, the range of rows or
columns is ignored. All rows or columns are set to the new size.

For tables that use LTableMultiGeometry, the range specified is
inclusive. The rows or columns at the beginning and end of the
range are resized, along with all rows or columns in between.

Use GetRowHeight() or GetColWidth() to get the size of an
individual row or column.

TableIndex
T

inFromRow
inFromCol

row or column after which rows
and columns are removed

Boolean refresh whether to refresh the table

Data type Parameter Purpose

Data type Parameter Purpose

UInt16 inHeight
inWidth

the new height or width

TableIndex
T

inFromRow
inFromCol

first row or column to have the
new size

TableIndex
T

inToRow
inToCol

last row or column to have the
new size
PPA–224 PowerPlant Advanced Topics

Tables in PowerPlant
Setting Cell Data
Setting Cell Data

A table usually has associated data storage. Storage is not
mandatory. For example, the default implementation in
LTableView has no storage. It draws the row and column number
directly in each cell.

Use SetTableStorage() to provide a pointer to an
LTableStorage helper object to the table.

If there is storage, then you can set each cell’s data individually
using the LTableView function SetCellData(). This function
takes care of all the interaction between you and the data storage. It
determines where in the storage to place the data you provide.
There are three parameters, as detailed in Table 6.22

Table 6.22 Parameters for setting cell data

You specify the cell by row and column number in the inCell
parameter. PowerPlant copies the data into storage. You can
dispose of the original data after the call returns if you wish.

Getting Cell Data

It is frequently necessary to retrieve data associated with a cell. If
there is storage, then you can get each cell’s data individually using
the LTableView function GetCellData(). This function takes care
of all the interaction between you and the data storage. It
determines where in the storage your data is located, and retrieves a
copy of it for you. The three parameters are detailed in Table 6.22

Data type Parameter Purpose

STableCell inCell the wide-open cell

void* inDataPtr pointer to data put in a cell

UInt32 inDataSize number of bytes of data
PowerPlant Advanced Topics PPA–225

Tables in PowerPlant
Getting Cell Data
Table 6.23 Parameters for getting cell data

You specify the row and column number of the cell in the inCell
parameter.

You must allocate the data buffer before making this call. The buffer
must be large enough to hold the data. You provide the size of the
buffer in the ioDataSize parameter. However, if you use an
LArray object in the LTableArrayStorage (as opposed to
LVariableArray), LArray ignores this parameter. LArray copies
data that is the size of each item in the array regardless of the size of the
buffer.

WARNING! If the data buffer you provide is smaller than the size of an item in an
LArray attached to LTableArrayStorage, PowerPlant will raise a
signal. Ignoring this problem can lead to crashes.

PowerPlant copies the data from storage and places it in the buffer,
thus giving you a copy of the data, not a pointer to the data in
storage. If the data for this cell changes in storage, your copy will be
outdated until you get the data again.

TIP Actually, there is a way you can access table data directly. Create
an array object ahead of time, and keep a pointer to the object. Use
that object when you create the LTableArrayStorage object that you
attach to the table. You then have two paths into the table storage:
the LTableView calls, and LArray calls such as GetItemPtr().
With a pointer to the array item, you can modify table storage
directly. This may be optimal when you have continuously-updated
data and speed is an issue.

Data type Parameter Purpose

STableCell inCell the cell in question

void* outDataPtr pointer to data buffer

UInt32 ioDataSize number of bytes of data
PPA–226 PowerPlant Advanced Topics

Tables in PowerPlant
Handling Clicks in a Cell
Handling Clicks in a Cell

In most circumstances, when the user clicks in a cell you respond to
the click. The LTableView::ClickSelf() function handles all
cell selection automatically using the selector helper object you
attach to the table. LHierarchyTable::ClickSelf() also
handles expanding and collapsing levels in a hierarchical table.

You may want to implement additional behavior beyond simply
selecting the cell. You may want to allow the user to select part of
the contents of a cell (such as a range of text). Exactly how you
implement these additional features is application dependent and
beyond the scope of an application framework.

However, the framework does provide the hook. Declare a subclass
of the appropriate table class (LTableView or LHierarchyTable).
Override the ClickCell() function. PowerPlant calls this function
whenever a click occurs inside a cell.

You can use GetClickCount() (an LPane function) to determine
if a click is a single or multiple click.

Responding to Selections

If you wish to perform some action when the selection range in a
table changes, override the SelectionChanged() function. The
selection could change because a new cell is selected, a cell is added
to an extended selection, a cell is removed from the selection range,
selected cells are removed from a table, and so on. Whatever the
cause, PowerPlant calls SelectionChanged() whenever the
selection range changes.

What you do is, of course, up to you. You might want to walk the
cells and perform some action based on which cell or cells are
currently selected. You might want to update menus based on
whether cells are selected. PowerPlant provides the hook. You
provide the application-specific functionality.
PowerPlant Advanced Topics PPA–227

Tables in PowerPlant
Drawing a Cell
Drawing a Cell

There are several issues that arise when it comes time to draw a cell.
Of course, you must draw the contents. In addition, you must
occasionally refresh the contents explicitly, or highlight the cell.

Drawing a cell

Precisely what you do to draw the data in your cell is, of course,
data dependent. PowerPlant includes two example classes to
demonstrate how it’s done—LSmallIconTable (for LTableView) and
LTextHierTable (for LHierarchyTable). The code exercise in this
chapter implements DrawCell() to draw both an icon and text.

PowerPlant calls DrawCell() whenever you should render the
contents of the cell. You override this function in your own table
class, and provide the necessary code to draw the data in the cell.
Typically you perform some pixel-based calculations to determine
precisely where the data should appear in the cell, and then use Mac
OS Toolbox calls to draw the data.

In a hierarchical table, the nesting level can affect where you draw
the data.

Nesting level

The nesting level is the number of levels down from the top level a
particular cell occupies. Top level nodes are at nesting level zero.

If you stagger your data according to nesting level, then you must
take a row’s level into account before you draw data. This is one
case where you address a helper object directly. Use the table’s
mCollapsableTree data member and send the tree helper object a
GetNestingLevel() message. This call returns the nesting level.
You can then use the nesting level and a standard indent of some
amount to adjust the horizontal location of the information you
draw in the cell.

The code exercise in this chapter demonstrates this technique.

The Drop Flag

In a hierarchical table, the first cell in an expandable row should
have an expansion triangle. To display this flag, call
PPA–228 PowerPlant Advanced Topics

Tables in PowerPlant
Finding Cells
DrawDropFlag(). You provide the cell, and the wide-open index
value for the row. PowerPlant handles the rest.

Highlighting a cell

PowerPlant usually takes care of highlighting automatically.
However, you may wish to control highlighting. For example, you
should not highlight the drop flag area in a hierarchical table.

To modify highlighting behavior, override
HiliteCellActively() and HiliteCellInactively(). You
should not need to override HiliteCell() or
HiliteSelection().

WARNING! At the time of this writing, LTableView::HiliteSelection()
has two separate implementations, one of which is inactive. The
inactive code calls HiliteCellActively() and
HiliteCellInactively(). The actual code handles highlighting
directly, and therefore overrides of these two functions will not be
called! Until the code stabilizes, you may need to override
HiliteSelection() directly. Examine the source code for further
enlightenment.

Refreshing a cell

PowerPlant usually handles updating the screen for you. However,
there may be times when you want to explicitly mark a cell or range
of cells for refreshing during the next update event. Use
RefreshCell() or RefreshCellRange() for this purpose. You
specify the cell or range of cells to refresh.

Finding Cells

Managing tabular data frequently requires that you walk through
each cell, a range of cells, or each selected cell, in a table. As you go
through the cells, you perform some operation on each cell.

PowerPlant provides two functions for walking the cells in a table.
They are GetNextCell() and GetNextSelectedCell(). Each
begins the walk at the cell you specify. Each returns a boolean value
PowerPlant Advanced Topics PPA–229

Tables in PowerPlant
Finding Data in a Table
false when there is no next cell. You can use calls to these
functions in a while loop to walk through the desired cells.

Cells are ordered by column (across), and then by row (down). Row
zero is before the first cell. The next cell after row zero and any
column is cell (1,1). Column zero is before column one. The next cell
after row “r” and column zero is Cell (r,1).

To look for all cells in a table, you would write code like this:
STableCell theCell (0,0); // start with first cell
while (GetNextCell (theCell))
{
// operate on cell
}

What you do when you find the cell is up to you. You can set or
retrieve data, select or deselect the cell, search for data, and so forth.

Finding Data in a Table

PowerPlant provides a search mechanism for locating a cell that
contains specified data. Call FindCellData(). This call has three
parameters, detailed in Table 6.24

Table 6.24 Parameters for finding cell data

You specify the data to search for and the length of the data. If a cell
is found that contains the data, the call returns true and puts the
cell location in outCell. Otherwise the call returns false.

FindCellData() always begins the search at the first cell in the
table, and returns the first cell it encounters that contains the
specified data. If you wish to search for multiple hits, you can’t use
FindCellData(). You’ll have to write code to walk the cells and

Data type Parameter Purpose

STableCell outCell cell that contains the data

void * inDataPtr pointer to data to look for

UInt32 inDataSize number of bytes of data
PPA–230 PowerPlant Advanced Topics

Tables in PowerPlant
Scrolling a Table
look in each cell’s data individually. You could also create a custom
data storage class with a different search mechanism.

Using the LTableArrayStorage class, storage is an array where each
element in the array matches the corresponding index value of a cell
in the table. The LTableArrayStorage uses an LArray function to
search for the data in the array. The search goes from the beginning
of the array to the end. The search terminates as soon as a matching
data item is found. If you use a custom data storage class, the results
of FindCellData() will depend upon your implementation of the
search.

Scrolling a Table

Tables do not have built in scroll bars. If the table image area is
larger than the table frame, you should embed the table inside an
LScroller or LActiveScroller view. See The PowerPlant Book chapter
on views for information on scrolling.

Summary of Tables in PowerPlant
A table is a familiar mechanism for displaying lists or matrices of
data in rectangular cells arranged by row and column. PowerPlant
implements a well-factored, and elegant representation of tabular
data. Because each table uses helper objects for cell geometry, cell
selection, and data storage, it is possible to mix and match from a
variety of options to create a table that has the functionality you
need.

The resulting collection of table classes therefore appears complex.
However, with a few exceptions, every function you need to use
and understand is in either the LTableView or LHierarchyTable
classes.

PowerPlant’s ready-made helper classes for geometry, selection,
storage, and trees provide most of the table-related functionality
you need indirectly. LTableView and LHierarchyTable use these
helper classes extensively, but the complexity in those classes is
hidden from you, the PowerPlant programmer.
PowerPlant Advanced Topics PPA–231

Tables in PowerPlant
Code Exercise for Tables
Actually creating and using a table in PowerPlant turns out to be
fairly straightforward. There are specific functions to manage rows,
columns, and cells. You can set or get data, draw data, handle clicks
and cell selection, walk through cells in the table, and search for
data. You perform many of these tasks in the code exercise
accompanying this chapter.

Code Exercise for Tables
In this exercise you create an application that displays a hierarchical
table. The table groups a list of items, in this case URL bookmarks.
This isn’t a full-featured application. It doesn’t save data, open files,
or support copy and paste. However, it does show you how to
create, manage, and use a table in PowerPlant.

Figure 6.5 The bookmarks table

The table is one column wide with an arbitrary number of rows.
There are two types of items that can occupy a cell, a group item
and a data item. Each item displays a small icon and a label.

A group item is like a folder that contains either data items or other
group items. You can expand and collapse a group item. In other
words, the group item is a parent and can have children.

A data item cannot be expanded, because a data item cannot have
children. Each data item is, in theory, a URL to some location on the
World Wide Web. This particular little application does not have a
mechanism for connecting to the web site. However, the potential
for that functionality is built into the design, as you’ll see when you
go through the code exercise.
PPA–232 PowerPlant Advanced Topics

Tables in PowerPlant
Code Exercise for Tables
The necessary PPob resource has been built for you. It describes a
standard window containing two panes. One is a scrolling view to
contain the table. The other is a CBookmarksTable. CBookmarks–
Table inherits from LHierarchyTable to support expandable groups.

With this brief overview behind us, let’s get into the code.

1. Examine the SBookmarkItem.
Struct declaration CBookmarksTable.h

The purpose of this step is to give you a little background into the
kinds of data you will put into cells in this table. This has nothing to
do with tables in general, but will help you understand what’s
going on in this exercise.

At the end of the CBookmarksTable header file there is a short struct
declaration for an object of type STableItem. This struct represents
an item in the table—that is, the contents of a single cell.

Here’s the code for quick reference. You do not need to enter this
code. It already exists and has been provided for you. As usual,
existing code is shown in italic style.

struct STableItem {
DataIDT mType;
Str31 mName;
Str255 mLocation;

// Some constructors to make things easier.
STableItem();
STableItem(DataIDT inType);
STableItem(DataIDT inType, Str31 inName,Str255
inLocation);
};
// Bookmark table item types.
const DataIDT kGroupItemType = 'Grup';
const DataIDT kBookmarkItemType = 'Book';

The same struct serves for both group and bookmark items. Each
item has a type, a name, and a location. The name is the text that
appears in the cell. The location is the URL associated with the item.
For a group item, the mLocation field is typically empty.

In subsequent steps you will install items of each type as the data
associated with cells in the table. All the remaining steps in this code
exercise take place in CBookmarksTable.cp.
PowerPlant Advanced Topics PPA–233

Tables in PowerPlant
Code Exercise for Tables
2. Examine the CBookmarksTable constructor.

CBookmarksTable() CBookmarksTable.cp

In the design of this application, the real work of setting up a table
occurs in InitBookmarksTable(). You write that function in the
next step. However, the process begins in the table constructor.

The CBookmarksTable constructor sets up a series of constants for
cell height, indents for sublevels, text traits for the two kinds of
items, and an icon ID for each kind of item. Once again, this code is
provided for you. You don’t have to type it in.

const SInt16 kCellHeight = 16;
const SInt16 kFirstIndent = 20;
const SInt16 kLevelIndent = 16;
const ResIDT kGroupTextTraits = 131;
const ResIDT kBookmarkTextTraits = 132;
const ResIDT kGroupIconID = 1001;
const ResIDT kBookmarkIconID = 1000;

You could set up a CPPb resource in Constructor so that you could
specify these values as part of the PPob data stream.

3. Create a table.

InitBookmarksTable() CBookmarksTable.cp

This is the step where you begin real work. As you know, to fully
create a table you must attach helper objects, insert columns, insert
rows, and install data.

a. Create helper objects.

The existing code in this function does some of the setup. It
initializes the data members for indents, text traits, and icon IDs.
It also creates two STableItem items: one group item and one
bookmark item. These will be the default table entries.

After that, you can create the helper objects and store the
pointers to the objects in the appropriate data members. There
are three helper objects: the geometry, the selector, and the
storage.

Use LTableMonoGeometry, and specify the width and height of
a cell. Because this table will have a single column, the width of a
cell should be the width of the table frame,
PPA–234 PowerPlant Advanced Topics

Tables in PowerPlant
Code Exercise for Tables
mFrameSize.width. The height is in the parameter
inCellHeight.

Use LTableSingleSelector as the selection helper.

Use LTableArrayStorage as the storage helper. The size of the
data is sizeof(STableItem). Use the constructor to create an
LArray for storage (as opposed to LVariableArray).

b. Insert a column.

The table has been created, and the helper objects have been
attached to the table. Now you can insert columns and rows.
Insert a single column in the table. Call InsertCols(). This
column appears after column zero, there is only one column,
with no data. There is no need to refresh the screen. The startup
code will draw the window after creation.

c. Insert rows and install data.

So that there will be some default information, add two rows to
the table. You have two items to add to the table,
theGroupItem and theBookmarkItem.

Add the group item first as a sibling row. Call
InsertSiblingRows(). You are adding one row, after row
zero. Also pass the address of theGroupItem, the size of
STableItem, a boolean value true (this is an expandable row),
and a boolean value false (no need to refresh).

Then add the bookmark item as a child row of the group. Call
InsertChildRows(). You are adding one row, as a child of
row 1. Also pass the address of theBookmarkItem, the size of
STableItem, a boolean value false (this is not an expandable
row), and a boolean value false (no need to refresh).

The code for all three of these substeps is listed here. The remaining
code adds an attachment that allows the user to use the page keys
on an extended keyboard to scroll the view.

// Create helper objects for this table.
mTableGeometry = new LTableMonoGeometry(this,
 mFrameSize.width, inCellHeight);
mTableSelector = new
LTableSingleSelector(this);
mTableStorage = new LTableArrayStorage(this,
 sizeof(STableItem));
PowerPlant Advanced Topics PPA–235

Tables in PowerPlant
Code Exercise for Tables
// Insert a single column.
InsertCols(1, 0, nil, nil, false);

// Insert default items.
InsertSiblingRows(1, 0, &theGroupItem,
 sizeof(STableItem), true, false);
InsertChildRows(1, 1, &theBookmarkItem,

 sizeof(STableItem), false, false);

You have just created a table one column wide, two rows deep, with
data in each cell. All cells are the same size, you can select one cell at
a time, and the data storage for each cell is the same size.

4. Draw a cell.

DrawCell() CBookmarksTable.cp

For the table data to appear on screen, you must draw the contents
of each cell. In this step you do the table-related setup work. The
code that does the actual drawing is provided for you because it has
no direct relevance to the table classes.

In a hierarchical table, any expandable item might be collapsed. As
a result, a cell has two index values, one for a fully-expanded or
wide open table, and one for its position among all the exposed
cells. In this situation you need the wide open index.

To prepare for drawing, you need to do four things: get the wide
open index, draw the expansion triangle, get the data for the cell,
and get the nesting level of the cell.

a. Get the wide open index.

What you want is the index number for the row. The
DrawCell() function receives the cell to be drawn through the
inCell parameter. Call GetWideOpenIndex() and get the
inCell.row index. This gives you the index for the row.

b. Draw the expansion triangle.

Call DrawDropFlag(). Pass inCell and the wide open index.
PowerPlant takes care of the rest.

c. Get the cell data.

Call GetItemFromCell(). This is a custom function declared
as part of the CBookmarksTable class. You write this function in
the next step. The existing code declares an STableItem
variable, theItem. This serves as the data buffer into which the
PPA–236 PowerPlant Advanced Topics

Tables in PowerPlant
Code Exercise for Tables
cell’s data will be placed. When you call GetItemFromCell(),
pass inCell and theItem.

d. Get the nesting level.

Existing code later in this function uses the nesting level to
determine how far to indent the cell’s data so that child items
appear indented under parent items. Existing code declares a
UInt32 variable, theNestingLevel. Call
GetNestingLevel() to get that value. This is an
LCollapsableTree function. You have a pointer to the tree helper
object in mCollapsableTree.

The code for all substeps is listed here.

// Get the wide open index for the row.
TableIndexT theWideOpenIndex;
theWideOpenIndex =
GetWideOpenIndex(inCell.row);

// Draw the cell drop flag.
DrawDropFlag(inCell, theWideOpenIndex);

// Get the cell data.
STableItem theItem;
if (GetItemFromCell(inCell, theItem)) {

// Get the nesting level.
UInt32 theNestingLevel;
theNestingLevel = mCollapsableTree->

GetNestingLevel(theWideOpenIndex);

The remaining code in this function, provided for you, positions the
icon (using the nesting level) for each item and draws the icon. It
then draws the name of each item to the right of the icon.

5. Get data from a cell.

GetItemFromCell() CBookmarksTable.cp

In this step you complete GetItemFromCell() to retrieve the data
from a particular cell. Existing code set theDataSize for an
STableItem, and ensures that the data is valid.

To complete this function, you must do three things: get the wide
open index for the row, create an STableCell object for the
desired cell, and then get the data.
PowerPlant Advanced Topics PPA–237

Tables in PowerPlant
Code Exercise for Tables
a. Get the wide open index for the row.

The value in inCell may contain the row and column for the
exposed cell, as opposed to the wide open cell. You want the
index value for the wide open row. Call
GetWideOpenIndex(), pass inCell.row.

b. Create an STableCell for the cell.

Declare an STableCell variable. The solution code uses the
name theWideOpenCell. Set its row to the wide open index
value for the row. Set the column to 1.

c. Get the data from the cell.

Call GetCellData() for this wide open cell. The data buffer is
the outItem parameter received by the call.

// Get the wide open index for the row.
TableIndexT theWideOpenIndex;
theWideOpenIndex =
GetWideOpenIndex(inCell.row);

// Create an STableCell object for the cell.
STableCell theWideOpenCell(theWideOpenIndex,
1);

// Get the cell data (the bookmark item).
GetCellData(theWideOpenCell, &outItem,

 theDataSize);

GetCellData() copies the data from storage into the outItem
buffer. All the data in storage is the size of an STableItem, and the
buffer is declared in the caller to be an STableItem.

6. Insert an item in the table.

InsertNewItem() CBookmarksTable.cp

This is a complex step, because there are several situations that this
function must handle. The item might be a group or a bookmark.
Either item might be placed as a sibling or a child.

The algorithm implemented in this function decides how to place
the new item based on whether there is a selected row. If the
selected row is a group and the group is expanded, the new item is a
child of the group. If the selected row is a bookmark or a collapsed
PPA–238 PowerPlant Advanced Topics

Tables in PowerPlant
Code Exercise for Tables
group, the new item is a sibling of the selected row. If there is no
selected row, the new item is placed at the top level of the hierarchy.

Existing code does three things.

It creates a new default item of the correct type, either a group or
bookmark, and stores that in theNewItem.

It sets a boolean value collapsable to the correct value for the
type of item. Groups can be expanded, bookmarks cannot. You’ll
use this value when you create a new row.

Existing code sets an STableCell variable, theCell, to (0,0). This
variable ultimately holds either the selected cell, or the default value
if no cell is selected. You start your search for a selected cell at (0,0).

a. Find a selected cell.

In the existing but empty if statement, call
GetNextSelectedCell(). Pass theCell as the only
parameter. The code you write in substeps b through f go inside
this if statement and execute if a selected cell is found.

b. Get data from the selected cell.

Call GetItemFromCell() for the selected cell. Pass theItem
as the data buffer. This variable is declared in existing code at
the start of the function.

c. Get the wide open index for the row.

Call GetWideOpenIndex() for the selected cell’s row.

d. Determine if the selected item is an open group.

There is an existing but empty if statement. Inside that if
statement, perform two tests. First, look at the mType field of
theItem. This variable now holds the data retrieved from the
selected cell. The desired type is kGroupItemType.

Also, determine if the group is expanded. Call the
LCollapsableTree function IsExpanded(). Use the wide open
row index.

If both tests pass, you execute the code in substep e. If either test
fails, you execute the code in substep f.

e. Create a child item.

If both tests in substep d pass, then the selected item is an open
group. Create a child row under that group. Call
PowerPlant Advanced Topics PPA–239

Tables in PowerPlant
Code Exercise for Tables
InsertChildRows() and pass in the appropriate parameters.
The data is in theNewItem. The collapsable variable holds
the appropriate boolean value for either group or bookmark
items.

f. Create a sibling item.

If either test in substep d fails, then the selected item is either not
a group or not open. Create a sibling row immediately after the
selected row. Call InsertSiblingRows(). This code goes in
the first existing else statement.

g. If no cell is selected, create an item at the start of the table.

All of the previous substeps related to a selected cell. If there is
no selected cell, create a sibling row at the start of the table. This
code goes inside the second existing else statement. Additional
existing code inside this statement also sets theCell.column
to the value 1 so the new cell can be properly selected in the next
substep.

To create the sibling row, call InsertSiblingRows().

h. Select the new cell.

After the if/else check for a selected cell, in all cases you want
to select the new cell.

Call UnselectAllCells() to eliminate any existing selection.

Then, increment theCell.row by one, because the new row is
one greater than the previous selected row. If there is no selected
cell, theCell.row is zero, so incrementing makes the cell (1,1).)

Then call SelectCell(). You should check to ensure that the
new cell is a valid cell by calling IsValidCell() before calling
SelectCell().

NOTE The call to UnselectAllCells() is not really necessary if you
use LTableSingleSelector. However, it is necessary for
LTableMultiSelector.

The code for all these substeps is listed here.

STableCell theCell(0, 0);

// If we find a selected cell.
if (GetNextSelectedCell (theCell)){
PPA–240 PowerPlant Advanced Topics

Tables in PowerPlant
Code Exercise for Tables
// Get data from cell, assume it's valid.
GetItemFromCell(theCell, theItem);

// Get the row wide open index.
theWideOpenIndex =
GetWideOpenIndex(theCell.row);

// If selected row is a group and is open.
if (theItem.mType == kGroupItemType &&
mCollapsableTree-
>IsExpanded(theWideOpenIndex)){

 InsertChildRows(1, theWideOpenIndex,
 &theNewItem, sizeof(STableItem),
 collapsable, true);

} else { // not a group or not open

// create sibling right after this one
 InsertSiblingRows(1, theWideOpenIndex,
 &theNewItem, sizeof(STableItem),
 collapsable, true);
}

} else { // nothing selected

// We enter here with theCell at (0,0).
theCell.col = 1;

// Add a sibling row at start of list
InsertSiblingRows(1, 0, &theNewItem,
sizeof(STableItem), collapsable, true);
}
// Unselect all cells and select the new cell.
UnselectAllCells();
theCell.row++;
if (IsValidCell(theCell)) {
SelectCell(theCell);

}

7. Remove a row from the table.
PowerPlant Advanced Topics PPA–241

Tables in PowerPlant
Code Exercise for Tables
HandleKeyPress() CBookmarksTable.cp

The last important task to accomplish is to remove a row from a
table. In the example application interface, the selected row is
removed when the user types the Delete key.

The existing code identifies the keypress, searches for a selected cell,
and gets the wide open index for that row. You have already written
code to perform the same tasks in previous steps.

After getting the wide open index, call RemoveRows(). Remember,
with a hierarchical table you can only remove one row at a time.
However, if that is a parent row, all children are removed as well.

theWideOpenIndex=
GetWideOpenIndex(theCell.row);
RemoveRows(1, theWideOpenIndex, true);

8. Examine other table features.

various functions CBookmarksTable.cp

You have performed all the principal tasks associated with tables in
PowerPlant. The code provided for you performs some additional
tasks worthy of a brief look.

CBookmarksTable overrides both HiliteCellActively() and
HiliteCellInactively() to exclude the expansion triangle
area from the cell highlighting. This is a common feature of
hierarchical tables.

The application enables or disables some items in the Bookmarks
menu based on selection. CBookmarksTable overrides
SelectionChanged() to update menus when the selection
changes. There is nothing table-specific going on here, but this does
point out the function you override if you need to respond to a
changed selection.

CBookmarksTable also overrides ResizeFrameBy(). This is an
LView function. Because this table has a single column, that column
fills the width of the frame. When the user resizes the window (and
the table view contained therein), this function sets the column
width to match the frame width. It uses SetColWidth().

Finally, take a peek at ClickCell(). CBookmarksTable overrides
this function so that when the user double-clicks a bookmark cell,
the OpenLocation() function is called. The OpenLocation()
function just beeps. However, this gives you a hook to implement
PPA–242 PowerPlant Advanced Topics

Tables in PowerPlant
Code Exercise for Tables
code that would go out across the network and connect to the URL
stored in that bookmark. Cool!

Finally, the code to edit the contents of a table cell has been
completely provided for you. Most of that code concerns managing
dialogs in which you edit the contents of the table cell. You have
already mastered any table-related calls used in that code.

9. Build and run the application.

You’re all done! When the application builds successfully and runs,
the window shown in Figure 6.5 appears with one group, “Cool
Sites,” and a bookmark for the Metrowerks web page.

Use the Bookmarks menu to add new rows (items) to the table.
Experiment with all the possibilities.

With no item selected, create a new group. It appears selected and
open (with no contents yet) as the first item in the window. Add a
new bookmark. It appears selected as a child of the new group.
Create another new group. It appears as sibling to the bookmark
you just made.

Click the expansion triangle to collapse a group. Select that closed
group, and make a new group. It appears as a sibling to the selected
group.

Continue to experiment with adding and removing table items. To
remove an item, select the item and type the Delete key. If it is a
parent row, all the children disappear.

When you are through playing with the demo, quit the application.
There is plenty of room for further exploration on your way to
mastery of the PowerPlant table classes.

For example, when there is no item selected a new row appears at
the beginning of the table. Make the item appear at the end of table.

Change the currently selected cell in response to arrow keys.

Use LTableMultiSelector instead of LTableSingleSelector to manage
cell selection in the table. Simply attach a different helper object.
However, if you want to manage multiple selections, such as
deleting multiple selected rows properly, you’ll have to write some
additional code.
PowerPlant Advanced Topics PPA–243

Tables in PowerPlant
Code Exercise for Tables
Use LTableMultiGeometry so you can make the group rows taller
than item rows. You can also design an interface to allow the user to
set the height of selected rows.

Add a second column of data. Instead of resizing the table cell to
match the width of the table frame, let the table become wider than
the window. The horizontal scroll bar should then activate, so you
can scroll left and right as well as up and down the table.

As always, have a good time exploring. PowerPlant’s table classes
can give you a real head start when you need to display tabular
data.
PPA–244 PowerPlant Advanced Topics

7
Apple Events in
PowerPlant

This chapter discusses how to work with Apple events in
PowerPlant. The focus of this chapter is on how to create a
scriptable application using Apple events. In the process,
PowerPlant’s Apple event classes are explained thoroughly.

Introduction to Apple Events in PowerPlant
As an experienced PowerPlant programmer, you know how easily
PowerPlant handles the visual interface of a Macintosh application.
The visual interface dispatches user interface events to operations
on your application’s data.

However, every System 7-savvy application should also have a
second interface—an Apple event interface. The Apple event
interface dispatches messages to the same set of operations as the
visual interface, but without direct user action. The events come
from a script or another application.

Apple events allow your users to automate lengthy tasks, exchange
data between applications, or perform custom configurations.
Apple events and the related AppleScript programming language
are perhaps the most valued breakthrough of System 7, and are
even more important in Mac OS 8.

PowerPlant makes coding the Apple event interface as easy as
coding the visual interface. In fact, any PowerPlant application is
already partially scriptable—PowerPlant’s application, window,
and document classes already support some Apple events. In this
chapter, you will learn how to use PowerPlant classes to extend
these built-in features to include your specific application content.
PowerPlant Advanced Topics PPA–245

Apple Events in PowerPlant
Where to Learn More About Apple Events
The discussion assumes that you are familiar with the purpose of
Apple events, and all the basic AppleEvent Manager data
structures: AEDesc, AERecord, and AppleEvent. You should also be
familiar with the core suite of the Apple event registry (e.g. make
new, clone, move, delete, get data, set data). Experience with
scripting an application that supports the AppleEvent Object Model
(such as BBEdit, CodeWarrior, FileMaker Pro, or Eudora) will speed
your comprehension.

Where to Learn More About Apple Events

Apple events are a very big topic, occupying most of Inside
Macintosh: Interapplication Communications. This chapter cannot
possibly cover all the details of how Apple events work. This
chapter is limited to those aspects of PowerPlant that you will need
to use immediately to support Apple events in your application.

To learn more about Apple events, consult the following references.

Apple Computer, Inc. Inside Macintosh: InterApplication
Communication. Addison-Wesley (1993).

Apple Computer, Inc.Apple Event Registry: Standard Suite. This
document is on the Developer Reference CD (1992).

Berdahl, E. M. “Better Apple Event Coding Through Objects.”
develop, 12, 58-83 (1992).

Clark, R. “Apple Event Objects and You.” develop, 19, 8-32 (1992).

Roschelle, J. “Powering Up AppleEvents in PowerPlant.” MacTech
Magazine, 11(6), 33-46 (1995).

Simone, C. “According to Script: Steps to Scriptability.” develop, 24,
27-29 (1995).

Apple Event Strategy
Let’s begin with a bird’s eye view. Apple events are basically a way
of describing the actions that users will perform in your application,
such as:
PPA–246 PowerPlant Advanced Topics

Apple Events in PowerPlant
Apple Event Strategy
• set a word’s font to Helvetica

• make a graphic line thicker

• enter a formula in a spreadsheet

An Apple event is a purely descriptive message. It says what to do,
not how to do it. Your application must parse and interpret this
message. When you are finishing parsing and interpreting, you will
call a normal C++ function to execute the operation. This suggests
the main programming problem—translating an external message
to internal classes and functions. Your Apple events code translates
“what” into “how” and then executes the appropriate code.

To make this problem of translation easier, Apple events present
messages in a fairly standard format. An event message has a verb
that describes the operation to perform, and a direct object that
describes the noun on which to perform the operation. The event
may also have a number of parameters which, like adjectives and
adverbs, specify how the operation is to be performed. For example,
“set” (verb) “color of word 1” (noun) to “red” (adjective).

The Mac’s visual interface is insanely great because Apple adopted
strong user interface guidelines. Similarly, the Mac’s Apple event
interface is insanely great because Apple provided strong semantic
guidelines for the Apple event interface. These guidelines are called
the Apple Event Object Model (AEOM). AEOM is a generic
vocabulary for modeling any application. You customize it to
describe your application.The concepts in the AEOM vocabulary
are:

• Classes—kinds of objects (nouns) in your application

• Events—actions (verbs) that can be performed

• Parameters—attributes of an action (adverbs)

• Properties—attributes of objects that can take on a value

• Elements—the hierarchical relationship between a class and the
items it contains

NOTE In the context of Apple events and the AEOM, the word “parameter”
has a specific meaning. A parameter is one kind of data attached to
an Apple event. Unfortunately, the word “parameter” also means
data passed to a function. To avoid confusion, we will use the term
PowerPlant Advanced Topics PPA–247

Apple Events in PowerPlant
Apple Event Strategy
“argument” when we are discussing data passed to a function, and
the word “parameter” when discussing attributes of an Apple event.

These abstractions become concrete with the specifics of each
application. For example, a spreadsheet document (class) contains
elements which are cells (another class) and a cell has a formula,
value, color, and border (properties). Similarly a graphics document
(class) can contain rectangles (class) which have a fill color and line
width (properties). You might sort (event) the cells in ascending
order (parameter). Or move (event) the rectangle to the back
(parameter).

The central task with Apple events is translating these messages
into actions you can execute. In PowerPlant, the LModelObject class
is the center of translation. The translation proceeds roughly like
this:

• AEOM class—C++ class derived from LModelObject

• event—C++ member function of the class

• parameter—C++ argument to a member function

• property—C++ data member in the class

• elements—LList of contained LModelObjects in the class

Thus the message “set the line width of rectangle 3 of window 1 to
2” might be translated to C++ as:

theRectangle->SetLineWidth(2);

Line width might be stored in the member variable mLineWidth,
and rectangle 3 could be the third pane in the mSubPanes of the
first LWindow.

NOTE Once again, there is potential confusion because of terminology. In
the AEOM, the word “class” is a generic term referring to an object
in your application. In C++, the word “class” means a formal
description of a C++ object. There is usually a 1:1 relationship
between these two kinds of classes. For every AEOM class, there is
usually a corresponding C++ class that (in PowerPlant) inherits from
LModelObject.
PPA–248 PowerPlant Advanced Topics

Apple Events in PowerPlant
Apple Event Classes
Apple Event Classes
In your Apple-event-savvy PowerPlant application, the center of
attention is a mix-in class called LModelObject. LModelObject lets
you “model” the data in your application as a tree of objects. You
inherit from LModelObject in your main content-specific classes,
and you override functions to respond to AppleEvents for each
class.

The dirty work of translation between Apple event messages and
C++ functions involves some helper classes in addition to
LModelObject. The classes discussed in this section include:

• LModelObject—the principle PowerPlant class for
implementing Apple events

• LModelDirector—wrapper for the low-level Apple event
interface

• LModelProperty—helps LModelObject handle properties

• UExtractFromAEDesc—contains routines for decoding Apple
events to C++ data types

• StAEDescriptor—manages AEDesc structures

• UAEDesc—encodes more complicated types of Apple event
descriptors

• UAppleEventsMgr—contains routines for encoding C++ data
types to Apple events

LModelDirector or LModelProperty are internal to PowerPlant. You
will not usually use either class directly. However, you will use the
classes and functions in UAppleEventsMgr and
UExtractFromAEDesc because you will need to encode and decode
Apple events.

If you find yourself encoding or decoding large or complex Apple
events, you may find it worthwhile to study the classes in
UAEGizmos. UAEGizmos has faster routines for encoding and
decoding AEDescs. These classes are not discussed in detail in this
chapter, because they are unsupported. See “UAEGizmos.”

Finally, to use Apple events, you will also have to edit two
resources: the terminology resource and the dispatch table. The
terminology resource (of type ‘aete’) has two purposes. First, it
PowerPlant Advanced Topics PPA–249

Apple Events in PowerPlant
LModelObject
describes your application’s particular AEOM vocabulary. Second,
it specifies the mapping between English-like terminology and
codes that your C++ member functions can use. The other resource
is the ‘aedt’ resource, which declares the numeric codes you use to
represent Apple events.

LModelObject

A model object is a C++ class that handles a particular AEOM class
in your application’s Apple event interface. In PowerPlant, all
model objects inherit from LModelObject. You inherit from
LModelObject in the content-related classes in your application,
which might be graphics shapes, spreadsheet cells, or word
processing paragraphs. You will also find LModelObject already
mixed into LWindow and LDocument (Figure 7.1). This is because
windows and documents are part of the core suite in the Apple
event registry, and PowerPlant does most of the work of supporting
that suite for you.
PPA–250 PowerPlant Advanced Topics

Apple Events in PowerPlant
LModelObject
Figure 7.1 Classes that inherit from LModelObject

The grey bar indicates that LDocument is an abstract class.

NOTE You can refer to LWindow and LDocument as excellent examples of
Apple event handling in PowerPlant. Beware, however, that both
classes handle the elements relationship (finding a particular
window or document) idiosyncratically. This is because lists of
windows are stored in the Mac OS and the list of documents can be
stored globally. Most of your classes will have to support the
elements relationship differently.

LModelObject has three data members of interest.

Table 7.1 Some LModelObject data members

The mModelKind member is a 4-byte code that describes the AEOM
class ID of an object. You typically set this member only when you
first create an object. In advanced situations, you can change the

Data member Stores

mModelKind the type of the AEOM class of this object

mSuperModel this object’s containing LModelObject

mSubModels an optional LList of contained elements
PowerPlant Advanced Topics PPA–251

Apple Events in PowerPlant
LModelObject
member to allow one C++ class to support many AEOM classes. The
next two members, mSuperModel and mSubModels, support the
AEOM elements relationship. Since every LModelObject can have a
list of other LModelObjects, you can establish a model object
hierarchy. At any level in the hierarchy, the mSuperModel member
refers to the immediate container of the given LModelObject, and
the mSubModels member is an LList of its elements.

NOTE The mSubModels LList is optional. To use it, call
SetUseSubModelList(true) in your object’s constructor. You
will not use mSubModels if your object contains no elements or you
implement custom storage of elements. For example, an application
might store the elements in a hash table. In this case mSubModels
would be nil. You would have to override some of the member
functions of LModelObject such as AddSubModel() and
GetSubModelBy().

LModelObject has more than 50 member functions. Many are
internal to PowerPlant’s handling of Apple events. The member
functions that you are likely to call or override fall into three
categories:

• Managing elements—the contents of an object

• Handling properties—the attributes of an object

• Handling events—the actions performed on objects

Managing elements

The AEOM specifies a containment hierarchy according to the
elements relationship. LModelObject provides several functions for
managing this relationship.

Table 7.2 Basic LModelObject functions for managing elements

Function Purpose

constructor sets model kind and location in hierarchy

SetUseSubModelL
ist()

initializes mSubModels member
PPA–252 PowerPlant Advanced Topics

Apple Events in PowerPlant
LModelObject
In the recommended LModelObject constructor, you provide both a
pointer to a containing LModelObject and a class ID. In one step,
you create an object of a particular AEOM class in a particular
containing model. Alternatively, you can create an LModelObject
with the default constructor, and later set the AEOM class ID with
SetModelKind(). You can change the containment at any time by
calling SetSuperModel() with a new containing LModelObject.

If your object will have elements, you might want to use the
mSubModels member to store them. If so, your constructor
implementation should also call SetUseSubModelList(true).

NOTE When you add an element, you cannot directly specify its position in
the list of elements. After you call SetSuperModel(), you can
change the position using the MoveItem() function of the
mSubModels LList.

Table 7.3 Advanced LModelObject functions for managing elements

SetModelKind() changes an LModelObject’s AEOM class
ID

GetModelKind() returns an LModelObject’s AEOM class ID

SetSuperModel() changes an LModelObject’s container

GetSuperModel() returns an LModelObject’s containing
LModelObject.

IsSubModelOf() tests this object for membership in
container

GetPositionOfSu
bModel()

returns the index of this object in its
container

Function Purpose

Function Purpose

AddSubModel() adds an element to this container

RemoveSubModel() removes an element from this
container
PowerPlant Advanced Topics PPA–253

Apple Events in PowerPlant
LModelObject
You might not want to use the mSubModels list to store your
elements. For example, you might have a very large collection of
elements that are accessed by name. In this case, storing your
elements in a hash table would provide more efficient lookup.
However, if you do not use the mSubModels list, you have to
override the member functions listed above so that PowerPlant can
find your elements.

The AddSubModel() and RemoveSubModel() functions are
called by SetSuperModel() and by the recommended
constructor. Your overrides should insert or delete the specified
LModelObject in your data structure.

CountSubModels() should return the number of elements of the
desired class of your data structure. It is called when an Apple event
asks for information like the “number of rectangles in window 1.”
This function is also called when an Apple event requests the “last
rectangle of window.” PowerPlant counts the number in the list and
translates the request into a request for an indexed item.

The GetSubModelByPosition() and GetSubModelByName()
member functions should find the desired element in your data
structure. They are called when an Apple event requests something
like “rectangle 4 of window 1” or “rectangle “fred” of window 1.”
GetPositionOfSubModel() should return the index number of
an element in your storage.

In addition to these functions, LModelObject provides many more
functions you can override to support more complex accessors for
your elements. You can allow users to name an object by a unique
identity or by a “whose” clause. You can support comparisons

GetSubModelByPositi
on()

returns an element by an integer
index

GetSubModelByName() returns an element by its name

GetPositionOfSubMod
el()

returns the index of an element

CountSubModels() returns the number of submodels

Function Purpose
PPA–254 PowerPlant Advanced Topics

Apple Events in PowerPlant
LModelObject
between objects. You can find the appropriate functions to override
in LModelObject.h.

Handling properties

Properties are the attributes of an object, such as color, line width,
location, size, font, and so forth. LModelObject has functions that
are, effectively, accessors for properties.

Table 7.4 LModelObject functions for handling properties

To support any properties in your LModelObject-based classes, you
override these two functions. Note that in both functions, the first
argument is the property descriptor. Typically, you store each
property in a data member of your class. Your implementation of
both GetAEProperty() and SetAEProperty() will contain a
switch statement that maps the property descriptor to a particular
data member.

NOTE PowerPlant translates the “Get Data” and “Set Data” Apple events
into calls to GetAEProperty() and SetAEProperty() with a
property ID of pContents. Therefore an Apple event like “set
rectangle 4 to {10,0,50,100} ” results in a call to
SetAEProperty().

Handling events

PowerPlant handles Apple events through a central dispatcher.
When an event is received, PowerPlant first identifies the
LModelObject (the direct object) to which the event applies. The
HandleAppleEvent() member function of this object will be
called. HandleAppleEvent() decodes the event ID and
dispatches to an appropriate function to further decode and execute

Function Purpose

GetAEProperty() returns a property value to an Apple
event

SetAEProperty() sets a property value from data in an
Apple event
PowerPlant Advanced Topics PPA–255

Apple Events in PowerPlant
LModelObject
the event. PowerPlant already dispatches the following Apple
events:

• make new (create element)

• clone

• move

• delete

• get data

• get data size

• set data

• count elements

If you support other events, you must override
HandleAppleEvent() to dispatch to your functions.

Table 7.5 LModelObject functions for handling events

If you allow users to create new elements by an Apple event, you
will have to override HandleCreateElementEvent(). Your
implementation should create an LModelObject of the appropriate
class and insert it in the right spot in its container. (Implementation
details for HandleCreateElementEvent() and other member
functions are discussed in “Implementing Apple Events in
PowerPlant.”

Function Purpose

HandleAppleEvent() dispatches Apple events

HandleCreateElement
Event()

override to create a new
LModelObject

GetImportantAEPrope
rties()

gets the data to be cloned

HandleMove() moves an element

HandleClone() clones an element

HandleDelete() deletes an element

HandleCount() counts elements in a container
PPA–256 PowerPlant Advanced Topics

Apple Events in PowerPlant
LModelDirector
GetImportantAEProperties() is called by HandleClone().
HandleClone() works by translating the clone request into a
“Create Element” Apple event. To replicate the properties of the
target object, it calls GetImportantAEProperties() and puts
them into the properties field of the “Create Element” Apple event.
If you want cloning to replicate your properties, you must
implement GetImportantAEProperties() to build a Apple
event record containing all properties of your object.

HandleMove() works by cloning the object into the new location,
and deleting it from the old location. As mentioned above, cloning
works by creating a new element. HandleDelete() arranges for
the delete operator to be applied to your object. The LModelObject
destructor will remove your object from its container.
HandleCount() calls CountSubModels().

In most cases you do not need to override HandleMove(),
HandleClone(), HandleDelete(), or HandleCount(). You
would only override these member functions if you can provide
more efficient implementations.

LModelDirector

LModelDirector is used internally by PowerPlant. You will usually
not need to call any LModelDirector member functions yourself,
although LModelDiretor::Resolve() may be useful.

In a running PowerPlant application, there is one instance of
LModelDirector, created at launch time. This instance installs
callback handlers into the Toolbox Apple Event Manager. When
your application receives an event, LModelDirector performs the
initial decoding of the event, and dispatches to an appropriate
LModelObject class to be handled.

LModelProperty

LModelProperty is used internally by PowerPlant to handle
properties of classes. You will typically not need to make
LModelProperty instances yourself, nor call LModelProperty
member functions.
PowerPlant Advanced Topics PPA–257

Apple Events in PowerPlant
UExtractFromAEDesc
PowerPlant transiently creates LModelProperty instances as they
are needed, to represent an AEOM property in an Apple event. A
property is always contained by an LModelObject instance.
LModelProperty dispatches back to this instance to execute its set or
get property Apple events. Thus, you always handle property-
related Apple events in the GetAEProperty() and
SetAEProperty() member functions of your LModelObject-
based class.

UExtractFromAEDesc

The UExtractFromAEDesc class decodes Apple event descriptors to
C++ data types. It consists entirely of static functions, one per data
type.

NOTE UAEGizmos has this functionality as well, in the
LAESubDesc::To...() functions.

Table 7.6 UExtractFromAEDesc functions

For example, if you want to extract a long integer from an Apple
event descriptor named inDesc, you can call:

Function Purpose

TheInt32() decodes an SInt32

TheInt16() decodes an SInt16

ThePoint() decodes a QuickDraw Point

TheRect() decodes a QuickDraw Rect

TheBoolean() decodes a boolean

TheType() decodes a class ID (DescType)

TheEnum() decodes an enumeration constant
(DescType)

TheRGBColor() decodes a QuickDraw color

ThePString() decodes an Str255
PPA–258 PowerPlant Advanced Topics

Apple Events in PowerPlant
StAEDescriptor
SInt32 myInteger;
UExtractFromAEDesc::TheInt32(inDesc, myInteger);

The virtue in using these functions to decode data from an Apple
event is that they will automatically coerce Apple event data into
the desired type. Thus if your application wants an SInt32, but the
Apple event supplied an SInt16, your code will still get data.
(Incidentally, it is because of coercion that TheType() and
TheEnum() are both provided. Even though they produce the same
C++ data type, they might perform different coercions.)

If coercion fails, these member functions throw an exception. In
most cases, this does the right thing for you automatically. The
exception will get caught by PowerPlant code in LModelDirector
and translated into an error code. The error code will be returned in
the Apple event reply. From there, the sending application can deal
with the error gracefully. Script Editor, for example, will tell the
user in which line of AppleScript the error occurred.

StAEDescriptor

Whereas UExtractFromAEDesc gets a value out of a descriptor,
StAEDescriptor gets a descriptor corresponding to a particular
parameter out of an Apple event. You can also use StAEDescriptor
for constructing Apple event descriptors that are needed
temporarily.

StAEDescriptor (in UAppleEventMgr.h) wraps an Apple event
descriptor with a stack-based C++ class. When the local block of
code completes, StAEDescriptor will be destructed and will
properly dispose of the Apple event descriptor. This is necessary
because the AppleEvent Manager copies the parameter from the
Apple event into an Apple event descriptor. Programmers are
responsible for disposing of this new descriptor. StAEDescriptor
does this for you automatically. Because it is a stack-based class, it
works even when an exception is thrown.
PowerPlant Advanced Topics PPA–259

Apple Events in PowerPlant
StAEDescriptor
Table 7.7 Some StAEDescriptor functions

Every parameter in an Apple event has a keyword that identifies it.
StAEDescriptor finds a descriptor by keyword and makes it
available for your use. You can then use a UExtractFromAEDesc
function to decode the value of the parameter. For example, if you
received an Apple event that had an “index” parameter containing a
long integer, you could retrieve the data as follows:

StAEDescriptor indexDesc;
SInt32 mylong;
indexDesc.GetParamDesc(theAppleEvent,keyIndex,typeLongInteger);
UExtractFromAEDesc::TheInt32(indexDesc,myLong);

You should use GetParamDesc() for a parameter that is required,
and GetOptionalParamDesc() for a parameter that is optional.
The only difference is that the former member function will throw
an exception if the required parameter is not found. Under normal
PowerPlant handling, this exception will cause the Apple event to
return an error to its caller.

As a safety check, after you retrieve all the required and optional
parameters of an event you should call
UAppleEventMgr::CheckForMissingParameters(). This
function throws an exception if you forgot to retrieve a parameter
from the message.

The StAEDescriptor class also has a second usage. You can use it to
encode C++ data while building an Apple event. StAEDescriptor
has an overloaded set of constructors, each of which encodes a
descriptor from a different class of C++ data type. Moreover,
because StAEDescriptor defines some cast operators, you can use an
StAEDescriptor anywhere that the AppleEvent Manager needs an
Apple event descriptor. For example, to add the long integer
myLong to an Apple event you could use code like this:

StAEDescriptor aeLong(myLong);
::AEPutParamDesc(myAppleEvent,keyIndex,aeLong);

Function Purpose

GetParamDesc() retrieves an Apple event parameter

GetOptionalPar
amDesc()

as above, but doesn’t throw an error if not
found
PPA–260 PowerPlant Advanced Topics

Apple Events in PowerPlant
UAEDesc
This conveniently first constructs the Apple event encoding of the
data in myLong, and then disposes the Apple event descriptor for
aeLong after it is added to the event.

WARNING! Classes that have two, incompatible uses are dangerous.
Unfortunately StAEDescriptor is just such a class. If you are
decoding an Apple event, you must use the no-argument
constructor and call either of the functions listed above. If you are
encoding an Apple event, you generally use the constructor that
takes an argument, and do not call other StAEDescriptor functions.

UAEDesc

The UAEDesc (in UAppleEventMgr.h) class encodes more
complicated types of Apple event descriptors. The static member
functions in this class simplify the process of encoding lists and
records.

Table 7.8 UAEDesc functions

The three “Add” functions will create a list or record if necessary,
and then add an item. For example, to create a list of the integers
from 1 to 10 you could write:

StAEDescriptor myList;
for(long i = 1; i <= 10; ++i)
{

Function Purpose

AddPtr() adds a C++ variable to a list

AddDesc() adds an Apple event descriptor to a list

AddKeyDesc() adds an Apple event descriptor to a
record

MakeRange() encodes a range descriptor

MakeInsertionLoc(
)

encodes an insertion location

MakeBooleanDesc() encodes a boolean
PowerPlant Advanced Topics PPA–261

Apple Events in PowerPlant
UAppleEventsMgr
UAEDesc::AddPtr(myList,i,typeShortInteger,&i, sizeof(short));
}

MakeRange() is used to encode an object descriptor that denotes a
set of objects. An example is “characters 1 through 5 in word 1.”
MakeInsertionLoc() encodes a description of a place where an
object should be created, cloned, or moved.

TIP Once again, refer to the UAEGizmos package if you intend to work
with complex descriptors.

UAppleEventsMgr

The UAppleEventsMgr class contains functions for sending an
Apple event to your own application, as well as some other utilities.

Table 7.9 Some UAppleEventsMgr functions

The general procedure for sending an Apple event is to:

1. Make a descriptor for the Apple event using StAEDescriptor.

2. Call MakeAppleEvent() to encode the event class and ID
into the descriptor.

3. Add parameters to the descriptor using AEPutParamPtr()
or AEPutParamDesc(). (You usually want to build the
parameters with StAEDescriptor and UAEDesc.)

4. Send the Apple event.

5. If appropriate, decode the reply.

WARNING! SendAppleEvent() and SendAppleEventWithReply() are
inconsistent. The former disposes the Apple event for you, the latter

Function Purpose

MakeAppleEvent() creates an event

SendAppleEvent() sends an event

SendAppleEventWit
hReply()

sends an event and receives a reply
PPA–262 PowerPlant Advanced Topics

Apple Events in PowerPlant
Apple Event Resources
does not. The best policy is to create the AEDesc for your Apple
event and its reply using StAEDescriptor. This will ensure that the
descriptors are deallocated exactly once.

Apple Event Resources
In order to build a scriptable application, you must modify two
resources. This section has the following topics:

• The ‘aete’ Resource—Apple event terminology extension

• The ‘aedt’ Resource—Apple event dispatch table

• Editing Apple Event Resources—starter files and Resorcerer

The ‘aete’ Resource

The terminology resource describes the AEOM classes of objects
and events that your application supports. It also enables
AppleScript to translate English-like verbs and nouns into four-
letter codes that your application can easily process. The English-
like terms are called “user terminology” or “user terms” for short.
The four-letter codes are of type DescType, and are stored in a
single long integer. Figure 7.2 shows the features of an ‘aete’
resource.
PowerPlant Advanced Topics PPA–263

Apple Events in PowerPlant
The ‘aete’ Resource
Figure 7.2 Terminology resource

The terminology is organized by suites, with each suite covering a
standard kind of functionality. The standard suites are described in
the AppleEvent Registry, available on the Apple developer program
Reference CD. Standard suites cover text, graphics, and tables, for
example. You are free to invent your own suites, but if a standard
suite fits your application you should strive to use it.

Within each suite, you describe a set of events and a set of classes.

Each event description gives the user terminology and the event ID
for the event, as well as a descriptive comment. Within the event is a
list of parameters, again described both with a user term and a code.

Each class description gives the user term, class ID code, and
descriptive comment for the class. Within the class description,
there is a set of properties. Each property has both a user term and a
code, as well as a description.

A class can also have a set of elements. These are described simply
by listing the class IDs of the objects that can be contained within
this class.
PPA–264 PowerPlant Advanced Topics

Apple Events in PowerPlant
The ‘aedt’ Resource
Here are a few tips for editing terminology resources:

1. Mappings from user term to application codes must be one to
one. Never have two user terms for the same code or vice
versa, even if they are in different suites.

2. AppleScript does not support static type checking of a script
(in contrast to C or Pascal). Thus upon checking syntax,
AppleScript reports correct syntax for any property with any
class, and for any element in any class. Even though your
terminology describes a data type for each property and
parameter, AppleScript lets the user send a different data
type. AppleScript has no way to indicate that certain events
only apply to certain classes. Because AppleScript is weakly
type checked, your application may report errors at run-time
even thought the script was “correct” at compile time.

3. AppleScript caches terminology resources. If you change
your terminology, you must quit and re-launch Script Editor
or its equivalent if you want to use the new terminology.

The ‘aedt’ Resource

The ‘aedt’ resource simply maps two pieces of information to one.
The event class and event ID are mapped to a single long integer
code. You use the long integer code inside your implementation. If
you add any events to any suite, you must supply an entry in an
‘aedt’ resource, or PowerPlant will not dispatch your event.

Editing Apple Event Resources

The file <PP Starter Resource>.rsrc includes both “aete”
and “aedt” resources for basic PowerPlant operations. You can use
these resources as a starting point for your own scriptable
application. You can find these files in the Project Stationery
support folder.

The starter ‘aete’ resource can also be found in the file PP Copy &
Customize.rsrc. The starter ‘aedt’ resource can also be found in
the file PP AppleEvents.rsrc. See the “Resource Notes” chapter
of The PowerPlant Book for more information on these files.

To edit an ‘aete,’ you can use ResEdit, Rez, or the Resorcerer
resource editor. The instructions in this chapter youse Resorcerer. A
ResEdit template for aete editing is currently available at:
PowerPlant Advanced Topics PPA–265

Apple Events in PowerPlant
Implementing Apple Events in PowerPlant
ftp://ftpdev.info.apple.com/Developer_Services/
Tool_Chest/Interapplication_Communication/
AE_Tools_/ResEdit_’aete’_Editor_1.0b4.sit.hqx

For a Rez version of these resources, see the file PPSuites.r and
its siblings.

Implementing Apple Events in PowerPlant
Apple event implementations can vary widely in sophistication.
Beginners should start with the basics to avoid being overwhelmed.
The basic steps for any implementation are:

• Adding Classes—add AEOM classes (and their elements) to the
AEOM hierarchy for your application. Support Handle–
CreateElementEvent() so users can create new elements.
The other core events (e.g. clone, move, delete) will be handled
for you by PowerPlant.

• Adding Properties—so that users can get and set the state of
each object in your application.

• Adding Custom Apple Events—add any needed events to
HandleAppleEvent(), so users can perform application-
specific actions with your objects.

After mastering these steps, you may want to read:

• Beyond the Basics—a peek at more advanced Apple event
techniques

Adding Classes

The standard PowerPlant terminology resource includes classes for
the application, and its documents and windows. You will probably
want to add additional classes that describe the objects within your
documents and windows.

The first step involves editing the terminology resource.

1. Add an entry for each new class and assign it an appropriate
code. Edit the containing classes (e.g. window) so they list
your classes as elements.
PPA–266 PowerPlant Advanced Topics

Apple Events in PowerPlant
Adding Classes
In the next two steps you modify your C++ objects that implement
each AEOM class.

2. Add LModelObject as a public ancestor of your C++ class.

3. Redefine the constructor so that it takes an LModelObject
reference to its container. Pass this pointer to the
LModelObject constructor.

In the third step you add your object to its container when it is
constructed. Obviously, you have to change each place you call the
constructor too, so you pass in an appropriate container.

In the last two steps, you also have to modify the container.

4. In each container (e.g. a window), call
SetUseSubModelList(true) in the constructor to
activate PowerPlant’s default mechanism for handling
contained elements.

5. In each container, implement HandleCreateElement-
Event().

A typical implementation of HandleCreateElementEvent()
uses a switch statement to translate between a class ID and
operator new.

Listing 7.1 Typical HandleCreateElementEvent() code
LModelObject* YourContainer::HandleCreateElementEvent(
DescType inElemClass,
DescType inInsertPosition,
LModelObject* inTargetObject,
const AppleEvent& inAppleEvent,
AppleEvent& outAEReply)
{
LModelObject *result = nil;
switch(inElemClass) {
 case myClassID:
 result = new myClass(this);
 break;

 case myOtherClassID:
 result = new myOtherClass(this);
 break;
PowerPlant Advanced Topics PPA–267

Apple Events in PowerPlant
Adding Properties
 default:
 throw(errAEEventNotHandled);
 break;
 }
 return result;
}

Note that the constructor for each object passes a reference to the
container (i.e. this). Your constructor calls LModelObject’s
constructor with this reference, so the new object is added to the
container.

After constructing the new object, you might want to adjust its
position in the list. To do this, use the inInsertPosition and
inTargetObject arguments to locate the desired location. Then
move the object there with MoveItem().

You might also want to parse the Apple event for the “with data”
and “with properties” parameters. Use these to configure the new
object. Finally you probably need to cause your object to display
itself in the visual interface.

Adding Properties

To enable users to get and set the value of properties for your
classes, follow these steps.

1. Edit the ‘aete’ resource, adding property names and codes for
each of your AEOM classes. Make sure each property name
has a consistent code within the entire terminology, and vice
versa.

2. Override GetAEProperty() to encode your C++ data into
an Apple event descriptor.

3. Override SetAEProperty() to set your C++ data to the re-
sult of decoding an Apple event descriptor.

Both functions typically have a switch statement that handles each
possible property as a case. Remember that the property with code
pContents should correspond to the central datum in your class.
Examine the implementation of LWindow for examples of how to
write these two functions.
PPA–268 PowerPlant Advanced Topics

Apple Events in PowerPlant
Adding Custom Apple Events
Adding Custom Apple Events

You should be able to get some functionality working using only
the core events that PowerPlant already dispatches. The next step is
to support standard events. Standard events such as make, delete,
copy, move, duplicate, get, and set are common and familiar to
scripters.

Eventually, you may need to add an event that is specific to your
application. As before, you start by editing resources.

1. Edit the ‘aete’ resource, adding the new event and its
parameters to an appropriate suite.

2. Edit the ‘aedt’ resource, mapping the event class and ID into
a unique long integer.

3. Override HandleAppleEvent() in those classes that sup-
port the event.

A typical implementation of HandleAppleEvent() uses a switch
statement to dispatch on the long integer that represents your event.
You typically call a handler function, and pass it the Apple event.
The handler function should extract the required and optional
parameters it needs from the event, and then execute the
appropriate application-specific action. Examine
LModelObject::HandleAppleEvent() as a typical
implementation of this function.

NOTE Remember to call the inherited HandleAppleEvent() function in
the default case so that standard events will be handled for you.

Beyond the Basics

After you get classes, properties and events working, there is much
you can do to improve your Apple event interface. PowerPlant has
hooks for many other features. Some of those features are:

• Laziness

• Default submodels

• UAEGizmos

• Whose clauses
PowerPlant Advanced Topics PPA–269

Apple Events in PowerPlant
Beyond the Basics
• Recordability

Laziness

The “laziness” feature of LModelObject can be used in cases where
it would require too much space to create a C++ object for every
model object. Suppose you have a scientific plotting program. You
might not be able to feasibly keep an individual C++ object for
every data point (a large array for all the points would be more
efficient). In this case, you can create an LModelObject transiently,
as needed to interpret a particular Apple event. This type of model
object is called a “lazy” object.

To implement a lazy object strategy, you override the object
accessor functions like GetSubModelByPosition() to actually
create a new LModelObject to represent the desired data point.
After creating the object, call SetLaziness(true). At the end of
the execution of the Apple event, PowerPlant will automatically de-
allocate the lazy object. Examine LModelProperty as an example of
a lazy object.

Default submodels

The “default submodel” and “set tell target” features of
LModelObject allow you to simplify your scripting vocabulary. You
might find that it takes very long chains of references to identify a
particular object. In some cases, you can reduce this effort by
making a particular object a default submodel of a particular
container. The script author can then leave out the reference to the
default object, and the script will still work. SetTellTarget()
allows you to modify how AppleScript records your application,
enabling it to use “tell” directives to make the script more readable.

UAEGizmos

You may want to use UAEGizmos to encode and decode Apple
event descriptors. UAEGizmos is faster and easier to use than
UAEDesc. UAEGizmos provides C++ wrappers for and relies on
the AEGizmos library. The AEGizmos library is not a Metrowerks
product, and Metrowerks does not support either AEGizmos or the
UAEGizmos classes. However, they are useful for Apple event
programming. Read the AEGizmos documentation. You can find
PPA–270 PowerPlant Advanced Topics

Apple Events in PowerPlant
Code Exercise for Apple Events
this material in the AEGizmos folder. The path to this folder is
PowerPlant:• In Progress:• AppleEvent Classes.

You might also be able to implement a more efficient way of storing
elements in containers. You could override LModelObject’s
functions that use mSubModels.

Whose clauses

Further down the line, you might want to support “whose” clauses.
A “whose” clause allows a script author to refer to a whole
collection of objects at once (e.g. every word whose font size is 12).
To implement a whose clause strategy, you override
GetSubModelByComplexKey().

Recordability

You probably will also want to make your program recordable. In a
recordable application, every user interface event sends an Apple
event that represents the transaction. All changes to your data
model thus occur through Apple events.

Recordability should be a primary goal right from the start. Design
your application to be recordable. Users can learn how to script
your application much more quickly by looking at the script
recordings.

LWindow is recordable. You can look at how it translates user
interface events like dragging the window position into Apple
events. LModelObject also has a SendSelfAE() function to make
it easier to send an Apple event to yourself.

Code Exercise for Apple Events
In this exercise you create a scriptable PowerPlant application that
draws rectangles in windows and moves them around. To keep
things simple, the application focuses entirely on scripting a freshly
created window. There is no way to create or modify the objects in
the window other than by scripts. The application’s window is
shown in Figure 7.3.
PowerPlant Advanced Topics PPA–271

Apple Events in PowerPlant
Code Exercise for Apple Events
Figure 7.3 The Apple event test window

To make this exercise even easier, the application includes a Script
menu. Scripts that demonstrate the scriptable features of the
application are included for your use, and appear automatically on
the Script menu. The scripts let you create, delete, rotate, change the
line size, and change the fill type of a rectangle within the window.

As a bonus, the Script menu code is included in the sample project.
You can attach any script to the application simply by placing the
script in the Script Menu Items folder. The application scans this
folder at launch time and adds each script file to the Script menu.

The required code is provided whole and complete, and requires no
work on your part. Feel free to examine it, and use it in your own
projects. The strategy used to implement the Script menu is the
same used to implement a Window menu in Chapter 15 of The
PowerPlant Book. The menu is an attachment to the application.

Being example code, there are a couple of things about the code that
you may wish to avoid in your own projects.

First, this code assumes the presence of the AppleScriptLib. You
might want to import weak for this library, check for AppleScript at
runtime, and display a friendly alert if AppleScript is not present.

Second, this code relies on the use of PowerPlant precompiled
headers. The prefix to include the precompiled header is set in the
PPA–272 PowerPlant Advanced Topics

Apple Events in PowerPlant
Edit Apple Event Resources
C/C++ Language preferences. As a result, the source files do not
include many PowerPlant files that would otherwise be required.

Now that we have those little caveats out of the way, let’s look at
what you do in this exercise.

To implement Apple event support in this code exercise, you will
edit the resources and write the code necessary to create the
rectangle as an AEOM class. You also give each rectangle a property
for its line width and fill. Finally, you add a custom event that
rotates the rectangle by 90 degrees.

This exercise has four major sections. These sections mirror the basic
tasks you must accomplish when creating a scriptable application.
In this code exercise you:

• Edit Apple Event Resources—steps 1-5

• Create a Model Object in the Application—steps 6-10

• Add Model Properties to the Class—steps 11-12

• Add a Custom Event to the Application—steps 13-14

In addition, there is an optional section:

• Improve HandleCreateElementEvent()—steps 15-17

Let’s get started.

Edit Apple Event Resources

You begin the process by editing the ‘aete’ and ‘aedt’ resources to
expose the correct Apple event terminology for this application. The
outline below describes what your edit should accomplish:

• Core Suite

– Events—unchanged

– Document class

add shape element (step 1)

• Add shape suite (step 2)

– add rotate event (step 2)

– add shape class (step 3)

add line width property (step 4)
PowerPlant Advanced Topics PPA–273

Apple Events in PowerPlant
Edit Apple Event Resources
add filled property (step 4)

• Edit the ‘aedt’ resource for the rotate event (step 5)

Steps 1-5 require that you use Resorcerer, a commercial resource
editor. If you do not own Resorcerer, you have three alternatives.

1. You can skip steps 1-5. Instead, copy the AETest.rsrc file
from the solution code and replace the file of the same name
in the start code. This file contains the project-specific ‘aete’
and ‘aedt’ resources you create in steps 1-5. You can get an
‘aete’ editor for ResEdit from

2. You can use ResEdit if you add an ‘aete’ editor to ResEdit.
You can find such an editor at:

ftp://ftpdev.info.apple.com/Developer_Services/
Tool_Chest/Interapplication_Communication/AE_Tools_/
ResEdit_%27aete%27_Editor_1.0b4.sit.hqx

3. You can derez the resource file, make the modifications in
Rez, then rerez the file.

In steps 1-5, as you edit the ‘aete’ resource you specify the codes that
apply to the new AEOM class, properties, and event. The file
AETestDef.h defines constants for the codes you use for class,
property and event IDs. If you use the values specified in the steps,
you won’t have to worry about changing the corresponding
definitions in AETestDef.h, and everything should work fine.

1. Add a shape element to the window class.

‘aete’ resource AETest.rsrc

The window class already exists in the start code ‘aete’ resource.
Open the ‘aete’ resource in Resorcerer, and then locate the window
class. To simplify navigation, you may wish to turn on the Show
Index Popups item in the Resorcerer Custom menu.

If you do, use the index popups to go to the second suite. Go to the
end of that suite’s events to see that suite’s classes. Go to the second
class, the window class. Go to the end of the window class’s
properties. Elements are listed after properties. There are currently
no elements allowed in this window. In this step you add an
element.

When you locate the right spot, the Resorcerer window should look
something like Figure 7.4. Be careful you’ve got the right spot. You
PPA–274 PowerPlant Advanced Topics

Apple Events in PowerPlant
Edit Apple Event Resources
want to add an element to the window class. This window will
contain rectangles. The ID code for the AEOM shape class is ‘cShp.’

To create a new element, drag the insertion point triangle (on the
left side of the window) down to the No Items entry under the
Elements category. Then click the New button. An Element Class
Code appears with the default value of AEList. There is a popup
menu with other predetermined options. You are creating a custom
object, so the code for that object does not appear on the popup
menu.

Figure 7.4 The Resorcerer ‘aete’ window before changes

Double click the Element Class Code item to edit its value. In the
resulting dialog, set the class code to ‘cShp’ and close the dialog.

Under the Element Class Code item is a list of Key forms indicating
there are none. Move the insertion point triangle to that location,
and create a new key form. When you do, you get an entry for the
Form Code. The default value is “Absolute position.” This is just
what you want. There is no need to change this value. When you are
finished, the aete resource looks like Figure 7.5.
PowerPlant Advanced Topics PPA–275

Apple Events in PowerPlant
Edit Apple Event Resources
Figure 7.5 After completing step 1

You haven’t actually created the ‘cShp’ class yet. You do that in Step
3. In this step you have said that objects of the ‘cShp’ class can go
inside a window in this application.

2. Create a new suite and add a rotate event.

‘aete’ resource AETest.rsrc

Scroll to the very end of the ‘aete’ resource, and move the insertion
point triangle to the very end of the file as well. Then click the New
button to create a new suite. This is Suite #5.

You can edit the name of the suite. In the solution code, this is the
Shape Suite.

By default, the suite code is ‘reqd.’ You must edit this value. You are
adding a custom suite. Double click the Suite code item. In the
resulting dialog set the code to ‘sShp,’ then close the dialog.

To add a rotate event, move the insertion point to the empty list of
events for this suite. Click the New button. When you do, all the
fields and bits of information related to a single event appear with
default values. Set the values to match those shown in Figure 7.6.

Of special importance are the Event class code and Event ID. You
can assign any event class and ID values you like, but remember the
values that you use. We recommend you use the values shown in
Figure 7.6 for compatibility with the solution code and further steps
PPA–276 PowerPlant Advanced Topics

Apple Events in PowerPlant
Edit Apple Event Resources
in this exercise. However, the codes you use are essentially
arbitrary.

For the rotate event, the only parameter is the direct object (e.g. the
shape you wish to rotate). The type of direct object parameter
should be “object specifier.”

Figure 7.6 Adding a rotate event

3. Add a shape class to the new suite.

‘aete’ resource AETest.rsrc

In this step you create the AEOM class for the shape you add to the
window. Classes are listed after events in the ‘aete’ resource. Move
the insertion point to the empty list of classes, and click the New
PowerPlant Advanced Topics PPA–277

Apple Events in PowerPlant
Edit Apple Event Resources
button. When you do, all the bits of information associated with a
class appear, with default values.

Edit the class name, ID, and description. The ID must match the
code you used as an element in the window class, in this case ‘cShp.’

When you are through, the shape class should look like Figure 7.7.
The properties and elements are empty. That’s the next step.

Figure 7.7 The new shape class

4. Add properties to the new class.

‘aete’ resource AETest.rsrc

In this code exercise, you modify the rectangle’s line width, and
whether or not the shape is filled. The shape class should have two
properties: line width and filled. The former should be a short
integer, and the latter a boolean.

Move the insertion point to the empty properties list, and click the
New button. When you do, all the information associated with a
property appears in the resource, with default values. Set the values
to match those in Figure 7.8.
PPA–278 PowerPlant Advanced Topics

Apple Events in PowerPlant
Edit Apple Event Resources
Figure 7.8 Values for line width and fill properties

Note particularly the Readable/writable attribute of the property.
Make sure this is set to On so that you can write this information.
PowerPlant Advanced Topics PPA–279

Apple Events in PowerPlant
Edit Apple Event Resources
Repeat the process for the second property, the fill. In this case, all
you will specify is whether the rectangle is filled, not what the fill is.
All you need for that is a boolean value.

Remember the property ID codes you assigned to each property.
You will use these in the code you write.

TIP One advantage of Rez is that you can use a header file to define
constants for things like property ID codes, and then include that file
in your source code. Then you don’t have to remember.

5. Create the ‘aedt’ resource.

‘aedt’ resource AETest.rsrc

In this step you map the event class and ID (from step 2) to a unique
long integer that identifies the event inside your code. There is no
‘aedt’ resource in the file, so you must create one. Use the New
Resource item on the Resource menu to create a new ‘aedt’
resource. Give it an ID number of 10000.

Then, add a new item to the ‘aedt’ resource. After you create the
item, specify the Event class and Event ID (from step 2). Then
assign an Internal code number. In this case, use the number 10000
again. Figure 7.9 shows the result.

Figure 7.9 The new ‘aedt’ resource

The Internal Code is the number you use inside your application to
identify the event when you receive it. The file AETestDef.h
defines the constant ae_Rotate to be the value 10000.
PPA–280 PowerPlant Advanced Topics

Apple Events in PowerPlant
Create a Model Object in the Application
You have completed editing the resources. Save your work. You can
check your work, if you like, by opening the dictionary in Script
Editor. Use the Script Editor’s Open Dictionary command to open
the resource file. The information you set in these steps should
appear.

Create a Model Object in the Application

Now you are ready to add the shape class to your implementation
of Apple events.

The start code comes with a basic shape class, called CShapeRect,
that has members for a rectangle, a line width, and a filled flag. The
start code also comes with a CShapeWind class that inherits from
LWindow.

You need to make the CShapeRect into an LModelObject.

6. Modify CShapeRect to inherit from LModelObject.

class declaration CShapeRect.h

In order to support Apple events, an object must inherit from
LModelObject. In the class declaration, use public inheritance so
that objects of the CShapeRect class descend from LModelObject.

The required code is listed here. As usual, existing code is in italics.
class CShapeRect : public LModelObject {

The necessary include statement for LModelObject.h has been
provided for you.

7. Specify a container for the shape when created.

class declaration CShapeRect.h

CShapeRect() CShapeRect.cp

When you create an object, you must specify the object’s AEOM
container. In this case, the container is the window in which the
rectangle shape appears.

In the header file, change the prototype for the constructor for
CShapeRect to take a single argument. This argument is a pointer to
a CShapeWind (CShapeWind *).
PowerPlant Advanced Topics PPA–281

Apple Events in PowerPlant
Create a Model Object in the Application
CShapeRect (CShapeWind *inSuperModel);

In the implementation for the constructor (in the source file), you
must receive the new argument (the CShapeWind pointer). Then
call the LModelObject constructor. Pass the shape window and the
class ID for the shape. The AETestDef.h file defines cShapeRect
for the class ID.

CShapeRect::CShapeRect(CShapeWind
*inSuperModel)
: LModelObject(inSuperModel,cShapeRect),
 mFilled(false),mLineWidth(1),mRotateState(0)

Steps 6 and 7 make CShapeRect into an Apple-event-savvy object,
and prepare for it to be contained by CShapeWind. Next you need
to make CShapeWind aware of CShapeRect.

8. Activate the window’s submodel list.

CShapeWind() CShapeWind.cp

In the CShapeWind constructor, activate its use of the built-in
submodel list.

SetUseSubModelList(true); // to hold the shapes

SetModelKind(cWindow); // this object is window

The window will now store a list of its contents (as LModelObjects)
in the mSubModels data member.

9. Create a shape in response to an Apple event.

HandleCreateElementEvent() CShapeWind.cp

The object that receives an Apple event telling it to create an
element is the container. In this case, that’s the CShapeWind object.
The class declaration overrides HandleCreateElementEvent().
In this step you respond to the event that directs you to create a
rectangle.

If this function receives the CShapeRect class ID, you should
construct a new CShapeRect. Pass a pointer to the current object
(this), because it is the containing CShapeWind.

switch (inElemClass) {
 case cShapeRect:
 result = new CShapeRect(this);
 break;
PPA–282 PowerPlant Advanced Topics

Apple Events in PowerPlant
Create a Model Object in the Application
 default:

This code creates a default object at the end of the current list of
elements in the window. In optional steps 15-17, you have the
opportunity to improve HandleCreateElementEvent() so that
it utilizes the “with data,” “with properties,” and “insert here”
parameters of the Apple event.

10. Refresh the screen when contents change.

AddSubModel() CShapeWind.cp

RemoveSubModel() CShapeWind.cp

When you add or remove a rectangle from the window, you should
refresh the screen. The AddSubModel() and RemoveSubModel()
functions are called by PowerPlant when an element is added or
removed from a container. You must override AddSubModel()
and RemoveSubModel(). The existing code calls the inherited
version of the function.

PowerPlant adds and removes properties to the mSubModels list
during execution of an Apple event. You want to refresh only when
a CShapeRect is added or removed. You should call Refresh()
only if inSubModel->GetModelKind() returns the CShapeRect
class ID. The required code is shown here.

You want to add the identical code to both AddSubModel() and
RemoveSubModel(). In both cases, this code appears after the call
to the inherited function.

if (cShapeRect == inSubModel->GetModelKind())
{
 Refresh();

}

Imaging is not a focus of this code exercise, so drawing routines
have been provided for you. CShapeWind::DrawSelf() draws
each rectangle in the mSubModels list. It performs a cast from
LModelObject to CShapeRect. This assumes that there is nothing in
the window except a CShapeRect.

To make this typecast safer, you could add a test. You could use
dynamic_cast(), or compare the model->GetModelKind() to
PowerPlant Advanced Topics PPA–283

Apple Events in PowerPlant
Add Model Properties to the Class
the class ID you assigned to CShapeRect. The solution code does the
latter.

Add Model Properties to the Class

Now that you have made CShapeRect into an LModelObject, you
are ready to give it some properties. When you edited the ‘aete’ you
specified “line width” and “filled” properties. Now you need to get
and set the C++ members corresponding to those properties.

11. Get properties from an object.

GetAEProperty() CShapeRect.cp

There are two properties: the line width, and whether the rectangle
is filled. In addition, you may receive a message asking for the
contents of the object (pContents).

The existing code sets up a switch statement, and the default case
calls the inherited GetAEProperty() function. You create a case
for each of the three possible property requests. In each case, call the
Toolbox routine AECreateDesc() to create the AEDesc containing
the information. Specify the data type, a pointer to the data, the size
of the data, and a pointer to the outPropertyDesc argument.

The messages received are pContents, pFilled, and
pLineWidth. (The latter two are defined in AETestDef.h.) For the
contents property, provide the bounds of the rectangle, as a
typeQDRectangle. The data members involved are mBounds,
mFilled, and mLineWidth.

switch (inProperty) {
 case pContents:
 err = ::AECreateDesc(typeQDRectangle,
&mBounds,sizeof(mBounds), &outPropertyDesc);
 FailOSErr_(err);
 break;
 case pFilled:
 err = ::AECreateDesc(typeBoolean,&mFilled,
sizeof(mFilled),&outPropertyDesc);
 FailOSErr_(err);
 break;
 case pLineWidth:
 err = ::AECreateDesc(typeShortInteger,
&mLineWidth,sizeof(mLineWidth),
PPA–284 PowerPlant Advanced Topics

Apple Events in PowerPlant
Add Model Properties to the Class
 &outPropertyDesc);
 FailOSErr_(err);

 break;

12. Set properties for an object.

SetAEProperty() CShapeRect.cp

This step is the converse of the previous step. In response to the
same message, you retrieve a value from the AEDesc received as an
argument by the function, and set the data member.

The existing code sets up a switch statement, and the default case
calls the inherited SetAEProperty() function. The inherited
function simply throws an unknown property exception.

In this step, you create a case for each of the three possible property
requests. In each case, you call the appropriate PowerPlant routine
in UExtractFromAEDesc to extract information of the correct data
type. The new value is in the parameter inValue. Set the correct
data member.

The property messages received are pContents, pFilled, and
pLineWidth. For the contents property, set the bounds of the
rectangle. The data members involved are mBounds, mFilled, and
mLineWidth.

Finally, because you are changing the rectangle properties, you
should refresh the screen after setting the property.

switch (inProperty) {
case pContents:
 UExtractFromAEDesc::TheRect(inValue, mBounds);
 Refresh();
 break;
case pFilled:

UExtractFromAEDesc::TheBoolean(inValue,mFilled)
;
 Refresh();
 break;
 case
pLineWidth:UExtractFromAEDesc::TheInt16(inValue
, mLineWidth);
 Refresh();

 break;
PowerPlant Advanced Topics PPA–285

Apple Events in PowerPlant
Add a Custom Event to the Application
The code for Refresh() is provided for you. In that code, there is a
cast to a CShapeWind. This is safe because the CShapeRect
constructor required a reference to a CShapeWind, which was
subsequently stored as mSuperModel in the CShapeRect.

For a complete implementation of properties, you must also
override GetImportantAEProperties(). This should call the
inherited version first, to build an AERecord with the contents
property. Then add the line width and filled properties of your
object.

We do not provide the code here to accomplish this task. You can
peek at LModelObject::GetImportantAEProperties() for
hints in the comments for that function. Also look at the solution
code to see how it is done. HandleClone() uses this function to
determine which properties of your object should be cloned.

Add a Custom Event to the Application

Finally, you need to add an implementation for the rotate event.

13. Identify and handle Apple events.

HandleAppleEvent() CShapeRect.cp

The object receiving the Apple event is the CShapeRect. As a
descendant of LModelObject, it has a HandleAppleEvent()
function. This function should identify the event and dispatch
control to the application code that implements the requested
action. In this case, you want to detect the Apple event code for the
rotate event.

Remember that you assigned a long integer to this event in the
‘aedt’ resource. If you followed the solution code, that value is
10000. The file AETestDef.h defines ae_Rotate as a constant for
that value. The long integer identifying the nature of the event is
received in the inAENumber argument.

Use a switch statement. If you detect a rotate event, call the
Rotate() function. The Rotate() function has been provided for
you. For any other event, call the inherited HandleAppleEvent().
In this way the superclass’s (LModelObject or a descendant) Apple
event handling routines get called.
PPA–286 PowerPlant Advanced Topics

Apple Events in PowerPlant
Add a Custom Event to the Application
switch (inAENumber) {
case ae_Rotate:
 Rotate();
 break;

default:
 inherited::HandleAppleEvent(inAppleEvent,
 outAEReply, outResult, inAENumber);
 break;

}

In a more complicated event, you might also have to retrieve some
required and optional parameters.

14. Build and run the application.

At this point, you can run and debug your code. You have fully
implemented basic Apple event support.

When the application builds successfully and runs, an empty
window appears. If you look in the File menu, there is only one
item, Quit. You don’t want to do that just yet.

There is also a Script menu. This menu contains all the sample
scripts provided for you. These scripts implement all the application
functionality. To perform an operation, choose the corresponding
script. You may want to set breakpoints in the code you wrote to see
how all the pieces fit together.

WARNING! Don’t choose the delete first rect script unless there is a rectangle in
the window. This sample doesn’t handle errors very gracefully, and
might crash if you attempt to remove a non-existent object.

Because the window is empty, choose the make new rect item. A
rectangle appears in the window. Choose the rotate item, and the
rectangle rotates. Choose the other items, and watch what happens.
You can add several rectangles to the window if you wish.

What happens if you have several rectangles and you choose rotate?
On which rectangle does the script you choose operate? Why?

When you are through exploring, quit the application and read on.

We provided several scripts for you to use. At this point you may
want to write your own script that drives the AETest application.
PowerPlant Advanced Topics PPA–287

Apple Events in PowerPlant
Improve HandleCreateElementEvent()
For example, use Script Editor or your favorite script authoring
environment to write a script that creates three rectangles
automatically. Or, set the line width to an arbitrary value. Add your
new script or scripts to the Script Menu Items folder. Then launch
the application again.

Your script should appear in the Script menu. Choose your new
script, and see if the application behaves properly.

TIP By the way, feel free to examine the Script menu code provided for
you, and to use that code in your own projects. It demonstrates how
easy it is to attach a menu to an application, and how to build that
menu out of the contents of a folder.

As you play with the scripts, either your own or those provided for
you, you may notice that you cannot write a script that creates a
rectangle according to specification. You get a default rectangle
every time. A fully-scriptable application should allow the scripter
to create an item with complete specifications. That’s what we do in
the next section.

Improve HandleCreateElementEvent()

You can improve your handling of the create element event to deal
with data, properties, and the “insert here” specifier. The solution
project provides a very thorough implementation of
HandleCreateElementEvent(). If you are feeling brave, try to
add three additional features to your implementation without
peeking! You want to create a rectangle with specified bounds, with
specified properties, and in an arbitrary position in the window
contents list.

15. Create a rectangle with specified bounds.

HandleCreateElementEvent() CShapeWind.cp

In this step you modify HandleCreateElementEvent() to
decode the “with data” parameter and use it to set the new
CShapeRect’s bounds.

After you successfully create an object, you can then set its
properties. You must retrieve the appropriate property from the
Apple event. The key for this parameter is keyAEData. You can get
PPA–288 PowerPlant Advanced Topics

Apple Events in PowerPlant
Improve HandleCreateElementEvent()
it using StAEDescriptor::GetOptionalParamDesc(). If you
succeed (e.g. your descriptor record’s dataHandle field is not
empty), call SetAEProperty() to set your new object’s content.

(The solution code is in brackets to control the scope of the local
StAEDescriptor variables).

if (result) {
{
 StAEDescriptor data;

data.GetOptionalParamDesc(inAppleEvent,keyAEDat
a,typeWildCard);
 if (data.mDesc.dataHandle) // has a value
 {
 StAEDescriptor ignore;
 result->SetAEProperty(pContents,
data,ignore);
 }

}

16. Create a rectangle with specified properties

HandleCreateElementEvent() CShapeWind.cp

In this step you modify the same function as in Step 15, but this time
you decode the “with properties” parameter.

The key for this parameter is keyAEPropData. The parameter is a
record that may contain any or all of the contents, fill, and line
width properties. You can count the items in the record with the
Toolbox routine ::AECountItems(). You can then iterate through
the record with ::AEGetNthDesc(). Then call your new
CShapeRect’s SetAEProperty() function with each key and
descriptor.

StAEDescriptor props;
props.GetOptionalParamDesc(inAppleEvent,keyAEPr
opData,typeAERecord);
if (props.mDesc.dataHandle) { // has a value
 OSErr err;
 long max;
 err = ::AECountItems(props,&max);
 FailOSErr_(err);
 for(long i = 1; i <= max; ++i) {
 DescType theKeyword;
PowerPlant Advanced Topics PPA–289

Apple Events in PowerPlant
Improve HandleCreateElementEvent()
 StAEDescriptor theValue, ignore;
 err = ::AEGetNthDesc(props, i,typeWildCard,
&theKeyword, theValue);
 FailOSErr_(err);
 result->SetAEProperty(theKeyword,theValue,
ignore);
 }

}

17. Move the shape to the correct position in mSubModels.

HandleCreateElementEvent() CShapeWind.cp

In this step you specify the position of the new rectangle in the list
of existing rectangles. The arguments inInsertPosition and
inTargetObject tell you the destination location. The value of
inInsertPosition can be kAEBeginning, kAEEnd,
kAEBefore, kAEAfter, or kAEReplace. In the latter three cases,
inTargetObject is the CShapeRect that your new object goes
before, goes after, or replaces.

You can use these arguments to calculate the target position of the
new object in the LList of contents in the window. Remember, the
mSubModels data member is an LList object. You’ll need the
current position of the new object. You can use
LList::FetchIndexOf(). By default, the initial target position
should be the current position.

You must then calculate the correct target position. Switch on the
value of inInsertPosition. As you know, LList is a one-based
array, so position 1 is the beginning. The constant
arrayIndex_Last specifies the last position. In the before, after,
or replace cases, use FetchIndexOf() again to get the position of
the inTargetObject. Set the target position appropriately (add 1
to the inTargetObject’s position to go after inTargetObject).

Finally, move the object to the correct position in the list. You do
this using LList::MoveItem(). If you are replacing an existing
rectangle, don’t forget to delete it.

SInt32 currentPosition =
mSubModels->FetchIndexOf(&result),
targetPosition = currentPosition;
switch (inInsertPosition) {
PPA–290 PowerPlant Advanced Topics

Apple Events in PowerPlant
Improve HandleCreateElementEvent()
case kAEBeginning:
 targetPosition = 1;
 break;

case kAEEnd:
 targetPosition = arrayIndex_Last;
 break;

case kAEBefore:
case kAEReplace:
 targetPosition = mSubModels-
>FetchIndexOf(&inTargetObject);
 break;

case kAEAfter:
 targetPosition = 1 + mSubModels-
>FetchIndexOf(&inTargetObject);
 break;
}
mSubModels->MoveItem(
currentPosition,targetPosition);
if (inInsertPosition == kAEReplace)
{
 delete inTargetObject;

}

Congratulations, you’re done!

If you’ve done everything correctly, you should be able to write
scripts that specify the properties and position of a rectangle when it
is created. Go ahead, give it a try. If your scripts do not work
correctly, fire up the debugger and trace the execution of your code.

Tracing execution with the debugger is a good idea, even if your
code does work. By tracing the Apple event handling process, you’ll
learn more about how LModelDirector, LModelObject, and
LModelProperty work than could be discussed here.

As we mentioned at the beginning of this chapter, Apple events in
PowerPlant is a very big subject. This chapter is intended to get you
over the initial hump. You now know how to create a basic
scriptable application in PowerPlant.
PowerPlant Advanced Topics PPA–291

Apple Events in PowerPlant
Improve HandleCreateElementEvent()
There is plenty of room for further learning and exploration. As you
apply these concepts to your own projects, you will learn much
more about PowerPlant’s handling of Apple events. Whatever
direction you choose, good luck, and have fun. PowerPlant should
help make your task easier.
PPA–292 PowerPlant Advanced Topics

8
Actions in PowerPlant

This chapter discusses how to implement undo and redo
functionality using PowerPlant action classes.

Introduction to Actions in PowerPlant
From a user’s perspective, the ability to undo an action is a
wonderful feature in an application. We all make mistakes, and it is
very nice when we can wipe out the mistake with a single keystroke
or menu command. In addition, the ability to easily undo and redo
an action lets the user toggle quickly between two alternate states.
The user can then compare the two options and decide which is
best.

In this chapter we discuss how you can implement undo
functionality in a PowerPlant application. The ability to undo
implies the ability to redo. In PowerPlant the two go hand-in-hand.

Implementing undo functionality in PowerPlant is remarkably
straightforward, once you understand the strategy behind the
PowerPlant approach. The topics discussed include:

• The Undo Strategy—the PowerPlant approach to undo

• Action Classes—the individual PowerPlant classes involved in
undo

• Implementing Undo in PowerPlant—working with
PowerPlant’s action classes

The Undo Strategy
PowerPlant’s undo strategy is based on the concept of an action. An
action is a command or option that causes the state of the
PowerPlant Advanced Topics PPA–293

Actions in PowerPlant
Action Classes
application to change. For example, if you issue a command to sort a
list, you have changed the state of the data in the application.

PowerPlant encapsulates the concept of an action in the LAction
class. An LAction object has both undo and redo capability, and
preserves whatever data is necessary to restore the state of the
application to its previous condition. For example, if you change a
selected font, an LAction object might preserve the previous and the
new font numbers or names. The object can then toggle between
then two fonts as the user issues undo or redo commands.

As you know, commander objects handle commands in a
PowerPlant application. When the user issues a command, the
commander posts an action instead of acting directly. The process of
posting the action also causes the action to occur for the first time.
The action can then be undone and redone repeatedly.

The bridge between the LCommander object and the LAction object
is an LUndoer object. The undoer is an attachment hosted by a
commander. The undoer owns the action object. In response to the
commander’s messages, the undoer attachment tells the action to
do, undo, or redo.

A commander typically has one undoer attachment. An undoer
attachment may have one and only one action.

For more information on commanders, see Chapter 10 of The
PowerPlant Book., “Commanders and Menus.”

For more information on attachments, see Chapter 15 of The
PowerPlant Book, “Periodicals and Attachments.”

Action Classes
There are four major classes involved in PowerPlant’s
implementation of undo functionality. They are:

• LCommander—posts an action

• LAction—preserves state and implements do, undo, redo

• LUndoer—provides bridge between commander and action

• LTETextAction—implements actions for TextEdit operations
PPA–294 PowerPlant Advanced Topics

Actions in PowerPlant
LCommander
In addition, LTETextAction has four subclasses for cut, copy, paste,
and typing actions, as shown in Figure 8.1.

Figure 8.1 LAction class hierarchy

Both LAction and LTETextAction are abstract classes.

The LUndoer class inherits from LAttachment. There are no classes
in PowerPlant derived from LUndoer.

LCommander

The LCommander class is fully discussed in Chapter 10 of The
PowerPlant Book. With respect to actions and implementing undo,
there are two functions of the LCommander class of interest. They
are:

• PostAnAction()

• PostAction()

PostAnAction() is a static member function that posts an action
to the current target. Because it is a static function, it is available to
any object that needs to post an action. If there is no current target,
the function attempts to execute the action and then deletes the
action. No undo is possible in this circumstance, because undo
functionality requires an LUndoer object attached to a commander.

PostAction() is the function a commander uses to post an action.
This function sends a msg_PostAction message to attachments.
This gives the LUndoer an opportunity to respond. If no attachment
intercepts this message (for example, because there is no attached
undoer), then the function attempts to execute the action and then
deletes the action. Again, no undo is possible in this circumstance,
PowerPlant Advanced Topics PPA–295

Actions in PowerPlant
LAction
because undo functionality requires an LUndoer object attached to a
commander.

LAction

LAction is an abstract base class that encapsulates do, undo, and
redo behavior together with the data required to restore state.

LAction has three data members, listed in Table 8.1

Table 8.1 LAction data members

When you implement undo, you typically modify the text of the
Undo item in the Edit menu to reflect the nature of the command
being undone or redone. For example, if your most recent action
was to change the size of an object, the Undo item might read Undo
Size. If you choose the Undo command, the text for the item would
change to Redo Size.

When you create an LAction object, you specify the resource ID for
the redo item text. The undo item text must be in a resource with an
ID one greater than mStringResID. If your redo strings are in an
'STR#' resource with ID 1000, your undo strings must be in an
'STR#' resource with the ID 1001.

There are no data members used for storing application state. The
information you preserve depends upon the nature of the action
and the structure of your application. You would typically provide
additional data members in subclasses derived from LAction.

Data member Stores

mStringResID resource ID of 'STR#' resource containing
text for redo menu item(s)

mStringIndex index number in the 'STR#' resource for
redo item related to this action

mIsDone a boolean value to determine if the action is
currently done or undone
PPA–296 PowerPlant Advanced Topics

Actions in PowerPlant
LAction
Table 8.2 LAction member functions

The IsPostable() function always returns true in LAction. You
should override this function to return false if an action cannot be
undone (that is, the action is not undoable).

If you post a new action to an undoer, the previous action is deleted.
Before deleting the action, PowerPlant calls Finalize(). This
gives you an opportunity to do something with the action before it
disappears. For example, you might want to preserve it to
implement a multilevel undo.

Concrete subclasses of LAction must override RedoSelf() and
UndoSelf() to implement the correct behavior.

You do not typically modify or override other functions in LAction.
In fact, you do not even call any of these functions directly in a
typical application.

Function Purpose

Redo() calls RedoSelf(), also used for doing
action first time

Undo() calls UndoSelf()

CanRedo() returns true if action is currently undone

CanUndo() returns true if action is currently done

IsDone() returns value of mIsDone

GetDescription(
)

returns strings for undo and redo items

IsPostable() returns true

Finalize() called before deleting action, empty

RedoSelf() pure virtual function

UndoSelf() pure virtual function
PowerPlant Advanced Topics PPA–297

Actions in PowerPlant
LUndoer
LUndoer

If LAction is the core of PowerPlant’s implementation of undo,
LUndoer is the mover and shaker. LUndoer does most of the work
of control and dispatch required for undo support.

There is only one data member, mAction. This data member stores
a pointer to the action object that encapsulates the user’s most recent
action. Because the undoer owns the action, it can send messages to
the action object telling it to redo or undo itself.

In a typical implementation of single-level undo you should never
have to call or modify the LUndoer member functions Table 8.3 lists
the member functions.

Table 8.3 LUndoer member functions

As with all attachments, the ExecuteSelf() function intercepts
messages for the host. LUndoer is always attached to a commander,
and responds to three messages. They are:

• msg_CommandStatus—calls FindUndoStatus()

• msg_PostAction—calls PostAction()

• msg_Undo—calls ToggleAction()

Notice that the LUndoer attachment identifies and handles the
situation when the user issues either an Undo or Redo command
from the Edit menu. Both come to the attachment as msg_Undo. The
undoer knows which operation to perform based on the action’s
done state. If the action has just been done, the undoer tells the
action to undo. If the action has just been undone, the undoer tells
the action to redo itself.

Function Purpose

ExecuteSelf() responds to commander messages

FindUndoStatus(
)

sets menu item text

PostAction() handles a new action

ToggleAction() tells action to undo or redo
PPA–298 PowerPlant Advanced Topics

Actions in PowerPlant
LTETextAction
NOTE LUndoer::PostAction() is not the same as
LCommander::PostAction(). LUndoer::PostAction()
replaces the contents of mAction after calling
LAction::Finalize(), and ensures that the menu item is
updated.

LTETextAction

The LTETextAction class provides a basis for four PowerPlant
action classes to support undo for text operations. The four
PowerPlant classes derived from LTETextAction are:

• LTECutAction

• LTEPasteAction

• LTEClearAction

• LTETypingAction

There is no LTECopyAction. A copy operation does nothing except
put a copy of data on the clipboard. Restoring the clipboard to its
previous condition would be problematical at best. The data on the
clipboard could very well have been placed there by another
application and may exist in types your application does not
understand.

These action classes follow the pattern discussed for an action class
in general. Each has data members to store both the new and
original data. Each has an UndoSelf() and RedoSelf() function
to undo or do the action.

You can use these classes to support undo in TextEdit-based panes
such as LEditField and LTextEdit. See the PowerPlant Reference and
the source code for details on these classes. You can also study these
classes to see practical implementations of the LAction concept.

Implementing Undo in PowerPlant
Implementing single-level undo in a PowerPlant application
requires laying careful groundwork. After setting up the pieces,
making it all run properly is trivial. There are three steps in this
process:
PowerPlant Advanced Topics PPA–299

Actions in PowerPlant
Create Action Classes
• Create Action Classes

• Attach an Undoer

• Post an Action

This section also discusses how to:

• Implement Multilevel Undo

Create Action Classes

As your first step towards supporting undo functionality, you
declare and define a series of subclasses of LAction. Each subclass
should represent an action (command) that occurs in your
application, typically an undoable action. If the action cannot be
undone, you must override the IsPostable() function to return
false.

In each subclass of LAction, you add the data members necessary to
restore the application to its condition before the action is
implemented. Because the undoer object toggles between two states
(undone and redone), you typically save both the current state and
the former state of the application in your action object. For
example, if you move an object, you store both its former position
and its new position in data members of the action class.

After that, you write the code that defines the UndoSelf() and
RedoSelf() functions. Precisely what these functions do depends
upon the nature of the action and how you store your data. In a
typical implementation, each calls some function that makes
something happen, and provides the necessary data to that
function. In most cases, this is the function that you would have
called directly from the commander before implementing undo.

Continuing with our movement example, to redo a move action you
would call your routine that relocates the object to its new position.
To undo the routine, you call the same routine to relocate the object
to its former position.

Don’t forget to set up at least two 'STR#' resources for the redo
menu item text and the undo menu item text.
PPA–300 PowerPlant Advanced Topics

Actions in PowerPlant
Attach an Undoer
Attach an Undoer

When the user issues a command, some commander intercepts the
command. It might be the application object or a subcommander, it
doesn’t matter.

Any commander that handles an undoable command must have an
undoer attached to it for undo to work correctly. Typically you
create the undoer when you create the commander. You might do
this right after you successfully instantiate the commander. The
code to do this is very simple:

theCommander->AddAttachment(new LUndoer);

This code snippet assumes that theCommander contains a pointer
to an LCommander object of some type.

Post an Action

When the user issues a command (for example, by choosing a menu
item), a commander’s ObeyCommand() function gets control. In
response to the command, you do two things:

• create an action object

• post the action

To create the action object, you instantiate an object of the action
class that corresponds to the user’s command. You provide
whatever data is necessary to properly initialize the action object.

After creating the object, call PostAction(). That’s all there is to
it. PowerPlant takes care of everything else.

When you call PostAction(), the action is executed. PowerPlant
uses the RedoSelf() function to perform the initial command.
PowerPlant then takes care of the menu item text. If the user
chooses either the Undo or Redo commands, the undoer identifies
the command and performs the appropriate action.

Implement Multilevel Undo

Each action object encapsulates all the information necessary to
restore the application to a previous state. A series of action objects
PowerPlant Advanced Topics PPA–301

Actions in PowerPlant
Summary of Undo in PowerPlant
can be used to march backward or forward through the history of
the user’s actions.

PowerPlant does not have an automatic or standard method for
implementing multilevel undo. You might go about accomplishing
this goal in a variety of ways. Whatever approach you take, the
Finalize() function in LAction might serve as a useful hook.

Because Finalize() is called after the user creates a new action
object for an undoer, but before the previous action is deleted, you
can make a copy of the action object and preserve it. This is the
critical distinction between single-level undo (where the action is
deleted when it is replaced) and a multilevel undo (where the action
is preserved).

In a multilevel undo, you no longer toggle between two states and
discard all previous actions. The undoer must serve as a means of
traversing the entire action history.

You might create an LMultiUndoer attachment that maintains two
stacks of action objects, one for undo and one for redo. When you do
an action for the first time, you push it onto the undo stack. At the
same time you would typically delete any items in the redo stack.
By taking a new action, the user is abandoning any future redo of
previously undone operations.

When you undo an action, you simply pop it from the undo stack,
and push it onto the redo stack.

There are other complications. Rather than a single Undo item in the
Edit menu, you need two items, one for Undo and one for Redo. As
an action is undone, the Undo item updates to reflect the current
undo action, and the Redo item updates to reflect the current redo
action.

Exactly what design you use and how you implement multilevel
undo is up to you. However, your users will love you for it.

Summary of Undo in PowerPlant
Implementing undo in PowerPlant revolves around the LAction
class. You declare and define an action class for each different kind
PPA–302 PowerPlant Advanced Topics

Actions in PowerPlant
Code Exercise for Actions
of user action. The action object stores necessary state information.
You create resources for the Undo and Redo menu item text. You
attach an undoer object to each commander that handles an
undoable action. When the user issues a command, you create the
appropriate action object and post the action.

Use the LAction::Finalize() function as a hook to support
multilevel undo.

Code Exercise for Actions
In this exercise you create an application named “Actions.” This
exercise demonstrates in as simple a fashion as possible how to
implement undo functionality in a PowerPlant application.

The code in this exercise builds on the code from Chapter 10,
“Commanders and Menus” in The PowerPlant Book. You may wish
to review that code exercise if you are unfamiliar with commanders.

When you run the Actions application, a window appears that
contains some text, as shown in Figure 8.2. Remember that a caption
simply displays text. You cannot edit the text in this window.

Figure 8.2 The Actions application in action

The application has the usual text-related menus, including Font,
Size, and Style. In this exercise, you modify the behavior of the
CDynamicCaptionCmdr object so that any menu command from
these three menus can be undone or redone. In the process you will
perform the three general tasks necessary to implement undo. In
steps 1-5 you create an action class. Then you attach an undoer to
the commander, and post an action in response to a menu
command.
PowerPlant Advanced Topics PPA–303

Actions in PowerPlant
Code Exercise for Actions
1. Examine the class declaration for action classes.

CDynamicCaptionActions.h

The CDynamicCaptionActions.h file declares all the action
classes in this program. Figure 8.3 shows the class hierarchy. For
simplicity, we’ll refer to the CDynamicCaptionAction classes using
the shorthand CDCAction.

Figure 8.3 CDynamicCaptionAction class hierarchy

The CDCAction class is abstract because it does not define the
UndoSelf() and RedoSelf() functions. CDCAction has two data
members:

• mDynamicCaptionCmdr—an LCommander

• mDynamicCaption—the caption object

In fact, these are the same object. However, storing a pointer to the
caption object twice as different data types eliminates the need for
typecasting later on.

The CDCAction class also defines CanRedo() and CanUndo() for
all subclasses. Each function ensures that the commander is on duty
before returning a value indicating that the action can be redone or
undone.

Finally, you should take a look at the constructor for the CDCAction
class. You don’t have to write this code, it is provided for you.
Here’s the code for reference.

CDynamicCaptionAction::CDynamicCaptionAction(
SInt16 inDescriptionIndex,
 LCommander *inDynamicCaptionCmdr,
 CDynamicCaption *inDynamicCaption,
PPA–304 PowerPlant Advanced Topics

Actions in PowerPlant
Code Exercise for Actions
 Boolean inAlreadyDone)
 : LAction(rSTRx_RedoText,
 inDescriptionIndex, inAlreadyDone)
{
// Save the commander and dynamic caption.
 mDynamicCaptionCmdr = inDynamicCaptionCmdr;
 mDynamicCaption = inDynamicCaption;
}

This code calls the LAction constructor and passes the resource ID
number of the 'STR#' resource containing the redo text for the Edit
menu. It also passes the index number for the actual string in that
resource to use, and a boolean value indicating that the task has
already been done. In addition, the body of the function stores the
pointer to the commander and the caption. In a subsequent step you
will call this constructor yourself when you build a subclass of
CDCAction.

The CDynamicCaptionActions.h file also declares three
concrete action classes, one each for font, size, and style actions. In
the rest of this exercise you implement the size action. The font and
style actions are essentially the same, with minor differences to
accommodate the data required to preserve state. In general, each
concrete action class has data members to preserve state
information, and defines the RedoSelf() and UndoSelf()
functions.

2. Complete the class declaration for a size action.

CDynamicCaptionSizeAction CDynamicCaptionActions.h

The size action class must have two data members to preserve the
previous and current font size. In addition, you must declare the
RedoSelf() and UndoSelf() member functions. The necessary
code is listed here.

protected:
 SInt16 mSize;
 SInt16 mSavedSize;

 virtual void RedoSelf();
PowerPlant Advanced Topics PPA–305

Actions in PowerPlant
Code Exercise for Actions
 virtual void UndoSelf();

};

Make sure you add this code to the correct class declaration. Before
closing the file, take a look at the class constructor. It receives three
parameters: the new size, and the pointers to the commander and
caption object. In the next step you write the constructor function.

3. Define the size action constructor.

CDynamicCaptionSizeAction() CDynamicCaptionAc-
tion.cp

To complete this constructor you need to perform three tasks. You
must call the base class constructor, store the new size, and preserve
the current size. In other words, you are saving state information for
the new and previous font size.

a. Call the base class constructor.

In the initializer list, call CDynamicCaptionAction(). You
must pass the index value for the redo size string. It is the
constant kSTRx_Size. Also pass the pointers for the
commander and the caption.

b. Store the new size.

In the body of the function, set the mSize data member to the
value you receive in inSize.

c. Preserve the current size.

Use the mDynamicCaption data member, and send the caption
a GetSize() message to get the current size. Store the result in
mSavedSize. You have now preserved both the new size and
the previous size in the action class’s data members. The code for
all the substeps is listed here.

CDynamicCaptionSizeAction::CDynamicCaptionSizeA
ction(
 SInt16 inSize,
 LCommander *inDynamicCaptionCmdr,
 CDynamicCaption *inDynamicCaption)
 : CDynamicCaptionAction(kSTRx_Size,
 inDynamicCaptionCmdr, inDynamicCaption)
{
// Copy the size.
 mSize = inSize;
PPA–306 PowerPlant Advanced Topics

Actions in PowerPlant
Code Exercise for Actions
// Get the current size.
 mSavedSize = mDynamicCaption->GetSize();

}

4. Undo a size action.

CDynamicCaptionSizeAction::UndoSelf()
CDynamicCaptionAction.cp

Make sure you modify the UndoSelf() function for the
CDynamicCaptionSizeAction class. This file actually has three
UndoSelf() functions, one for each concrete action class.

In the body of the function, simply send the caption object a
SetSize() message. Pass the original size, stored in the
mSavedSize data member.

mDynamicCaption->SetSize(mSavedSize);

5. Redo a size action.

CDynamicCaptionSizeAction::RedoSelf()
CDynamicCaptionAction.cp

Make sure you modify the RedoSelf() function for the
CDynamicCaptionSizeAction class. In the body of the function,
simply send the caption object a SetSize() message. Pass the new
size, stored in the mSize data member.
mDynamicCaption->SetSize(mSize);

Remember, the redo action is also the “do” action when the action is
first posted. That’s why redo sets the new size.

You have now successfully completed the first and toughest chore,
declaring and defining an action class. Note how this class preserves
the necessary state information, and then uses that information to
modify the state of the application as necessary when you undo and
redo the action.

All that remains is to attach an undoer to the commander, and to
post the action when the user issues a command. Each task requires
one line of code.

6. Attach an undoer to the caption commander.

ObeyCommand() CActionsApp.cp

The undoer is an attachment. It should be attached to the caption
commander. You create the commander when you create the
PowerPlant Advanced Topics PPA–307

Actions in PowerPlant
Code Exercise for Actions
window. After successfully creating the caption commander, send
the caption an AddAttachment() message and add a new
LUndoer object. The pointer to the caption commander is in a local
variable, theCaption.

theWindow->SetLatentSub(theCaption);

// Add an undoer to the caption.
theCaption->AddAttachment(new LUndoer);

theWindow->Show();

7. Post a size action.

ObeyCommand CDynamicCaptionCmdr.cp

When the user chooses an item in the Size menu, post a size action.
Call PostAction(). The action you are posting is a new
CDynamicCaptionSizeAction. The new size the user chose is in
theSize. Pass a pointer to the current object for the other two
parameters required for the CDynamicCaptionSizeAction
constructor.

::StringToNum(theMenuText, &theSize);

// Set the caption size.

PostAction(new
CDynamicCaptionSizeAction(theSize, this, this)
);

In the original commander defined in Chapter 10 of The PowerPlant
Book, the commander did not post an action. Instead, it sent a
SetSize() message directly to the caption (in this case, itself).

This simple fact highlights the difference between a strategy that
supports undo, and a strategy that does not. The undo strategy
imposes a minor indirection. Action-related information is created
and preserved in the action object. Because the action object persists
for a while, and because it stores the necessary state information,
you can implement undo.

The font and style actions are effectively identical to the size action.
The commander posts the appropriate action object when
necessary. Each action object preserves the necessary state, and each
implements the undo and redo behaviors by sending the
appropriate message to the caption object.
PPA–308 PowerPlant Advanced Topics

Actions in PowerPlant
Code Exercise for Actions
8. Build and run the application.

When the application builds successfully and runs, the caption
window appears as shown previously in Figure 8.2. You cannot
change the content of the text, but you can make choices from the
Font, Size, and Style menus.

Before you make a choice in any menu, examine the Edit menu. It is
disabled, and the first item is Can’t Undo. Now, make a choice in
the Size menu, and then examine the Edit menu again.

The Edit menu is enabled, and the first item is Undo Size. Undo and
redo the action and study what happens in the Edit menu. Change
font and style, and see what happens.

In each case, you can undo and then redo the most recent action.
The Edit menu updates appropriately.

Remember your most recent action in a window. Create a second
window, and perform some actions in that window. Then switch
back to the first window. The most recent action in that window is
available for undo or redo. Each commander has its own undoer,
and its own action. Not bad.

Congratulations! You have fully implemented single-level undo in
an application. If you’d like to explore further, there are two areas
ripe for improvement.

PowerPlant includes classes to support text actions such as cut,
paste, and typing. Modify the application so that you can enter text,
and add support for typing actions.

If you want a real challenge, implement multi-level undo. Read the
hints in “Implement Multilevel Undo.” Good luck, and have fun!
PowerPlant Advanced Topics PPA–309

Actions in PowerPlant
Code Exercise for Actions
PPA–310 PowerPlant Advanced Topics

9
Drag and Drop in
PowerPlant

This chapter discusses how to implement drag and drop features in
a PowerPlant application.

Introduction to Drag and Drop in PowerPlant
PowerPlant provides wrappers for the Mac OS Drag Manager, and
implements most of the required functionality at a default level. If
you use the PowerPlant default behavior, implementing drag and
drop can be fairly simple. You also have the option of extending
PowerPlant for your own purposes.

You’ll see how as we discuss:

• Drag and Drop Strategy—the PowerPlant approach to drag and
drop

• Drag and Drop Classes—the individual PowerPlant classes
involved in drag and drop

• Implementing Drag and Drop in PowerPlant—working with
PowerPlant’s drag and drop classes

The code exercise at the end of the chapter takes you through the
process of implementing drag and drop in real code.

This chapter does not teach you the intricacies of the Drag Manager,
or the drag and drop human interface. For more information,
consult the official Drag Manager documentation: “Drag Manager
Programmer’s Guide” and “Drag and Drop H.I. Guidelines.”

Both of these documents are available from Apple Computer, Inc:

http://developer.apple.com/techpubs/macos8/
PowerPlant Advanced Topics PPA–311

Drag and Drop in PowerPlant
Drag and Drop Strategy
Drag and Drop Strategy
The Drag Manager supports drag operations at the window level. A
window has a drag tracking handler to handle the visual feedback
required as a drag passes across a window’s content area. A
window also has a drag receive handler to accept the data in the
drag and add it to the window’s content. Both of these handlers are
callback routines used by the Mac OS to implement drag and drop
functionality.

Because it works at the window level, the Mac OS Drag Manager
has a somewhat coarse resolution. An individual window may have
several different sections that display different kinds of data. For
example, a window may have a text area, a drawing area, some
buttons or controls, a tool area, and so forth. You may want to
handle drag tracking and receiving in different ways in different
portions of a window.

You can do this with the Drag Manager only if you test the location
of the drag at any moment, compare that against the geography of
your window contents, and then act accordingly. This kind of
complex, location-dependent system is anathema to the principles
of object-oriented programming.

PowerPlant extends the Drag Manager so that it becomes an object-
oriented tool. PowerPlant implements the concept of a “drop area.”
In PowerPlant, you add drag and drop functionality to individual
panes. The pane could be a window (windows are views, and views
are panes), a scrolling view, a text view, a button, or any other pane-
based visual element in PowerPlant. Any pane that is drag and drop
aware is a drop area. Because a drag always involves a visual item,
all drag operations in PowerPlant are pane-related.

There are two important architectural features that determine the
internal workings of a drag-aware PowerPlant application. A
PowerPlant application has a single tracking and receive handler
installed with the Drag Manager. Nevertheless, each drop area has
its own internal tracking and receiving handlers.

Here’s how it works. PowerPlant maintains a list of all drop areas.
The tracking and receive handlers installed for the Drag Manager
determine which drop area is involved in the operation, and
dispatch control to the correct handler for the particular drop area.
PPA–312 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Drag and Drop Strategy
As a result, you are no longer limited to window-level resolution.
You have object-level resolution for drag and drop functionality.
You can define the behavior of each individual class of object with
respect to drag and drop, not just each window.

In terms of implementation, a drag operation has a beginning,
middle, and end. It begins when the user clicks and begins to drag
an item. It continues while the user keeps the mouse button down. It
ends when the user releases the mouse button.

The beginning occurs in a pane’s Click() function when you write
code to test for a drag. When you detect a drag, you create a drag
task object. This may be an LDragTask object, or an object from a
custom class derived from LDragTask. The drag task contains the
data that represents the item or items being moved by the user. The
drag task also contains a function for initiating the drag.

After creating the drag task object, you tell the drag task to begin
tracking the drag. As the drag crosses various panes, you provide
feedback to the user during the drag. The pane is responsible for
providing the visual feedback during the drag.

A pane involved in a drag and drop operation should inherit from
LDragAndDrop. LDragAndDrop is a mix-in class that implements
the default behavior required to track a drag and receive a drop.
LDragAndDrop is a concrete class that inherits from the abstract
class LDropArea.

In a traditional implementation, you might have your window class
inherit from LDragAndDrop. Then the user can drop items in your
window. However, the PowerPlant strategy allows you to
implement drag and drop for any individual pane as well.

When the user releases the mouse button at the end of a drag, the
drop area receives the contents of the drop. Once again, it is
LDragAndDrop that provides the functionality at the pane level.
Any pane that inherits from LDragAndDrop may receive a drop.

PowerPlant provides functions that you override to put data into a
drag, and to receive data from a drag. PowerPlant calls these
functions at the appropriate moments. You provide the data and
receive the data. PowerPlant does most of the rest of the
background work.
PowerPlant Advanced Topics PPA–313

Drag and Drop in PowerPlant
Drag and Drop Classes
Let’s look at the features of the LDragTask, LDropArea, and
LDragAndDrop classes to see how they work.

Drag and Drop Classes
There are three classes involved in PowerPlant’s implementation of
drag and drop functionality. They are:

• LDragTask—creates the drag record and starts a drag

• LDropArea—abstract class that provides the function interface
for tracking and receiving a drag

• LDragAndDrop—a concrete implementation of LDropArea

Figure 9.1 illustrates the class hierarchy for these classes.

Figure 9.1 Drag and drop class hierarchy

If you wish to support drag and drop in your code, you create
custom pane classes. Remember that views are also panes. In a
typical implementation, it is a view class that inherits from
LDragAndDrop. For example, you might create a text view class
that inherits from both LTextEdit and LDragAndDrop.

LDragTask

When the user begins a drag, you create an LDragTask object.
LDragTask class has three data members, as shown in Table 9.1.
PPA–314 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
LDragTask
Table 9.1 LDragTask data members

The mDragRef member stores a DragReference value. The Drag
Manager creates and uses a DragReference to access information
about the drag.

The mDragRegion member stores a handle to the drag region.
When tracking a drag, the Drag Manager draws the region that
defines the bounds of objects being dragged.

The mEventRecord member stores a pointer to an EventRecord.
The event record contains the location where the drag started, in
global coordinates.

LDragTask is a simple class. The most useful functions are shown in
Table 9.2.

Table 9.2 LDragTask functions

The AddFlavors() and MakeDragRegion() functions give you
the opportunity to add data in a variety of flavors to a drag, and to
specify the precise drag region you wish to use. These functions are
empty in LDragTask. We’ll discuss when and how to implement
them in “Creating a Drag Task.”

Data member Stores

mDragRef reference to this drag record

mDragRegion region handle for the drag region

mEventRecord reference to the event that started the drag

Function Purpose

AddFlavors() add data to the drag in various flavors

MakeDragRegion() create a drag region

AddRectDragItem(
)

add a rectangle to the drag region

DoDrag() initiate the drag
PowerPlant Advanced Topics PPA–315

Drag and Drop in PowerPlant
LDropArea
The AddRectDragItem() function is a utility routine that adds the
bounds of the Rect you provide to an accumulating drag region.

The DoDrag() function is the routine you call to initiate the drag.
The default implementation calls AddFlavors(),
MakeDragRegion(), and the Drag Manager’s TrackDrag()
routine.

LDropArea

LDropArea is an abstract base class that provides the interface you
use to implement drag tracking and receiving functionality.

LDropArea uses the LArray class. Other than that single exception,
LDropArea—like many other independent modules in
PowerPlant—does not requires any other PowerPlant classes. You
can use LDropArea independently as a wrapper class for the Drag
Manager. However, its most common use is as an integral part of a
PowerPlant application through LDragAndDrop, its concrete
descendant.

Most of the data members in LDropArea are used internally by
PowerPlant. You won’t have need to use them yourself. Table 9.3
lists the important data members.

Table 9.3 LDropArea data members

Data member Stores

mDragWindow WindowPtr for the window
containing drop area

mCanAcceptCurrent
Drag

whether the drop area can receive this
drag

mIsHilited whether the drop area is currently
highlighted

sDragHasLeftSende
r

whether the drag has left the sender
window

sCurrentDropArea current drop area
PPA–316 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
LDropArea
Notice that the sDragHasLeftSender and sCurrentDropArea
are static variables, so all instances of LDropArea share the same
values.

LDropArea also defines a series of static class functions, some of
which are shown inTable 9.4.

Table 9.4 LDropArea static functions

These functions provide the core of PowerPlant’s default
implementation of drag and drop. These functions are used
internally by PowerPlant. You should never have to call or modify
these functions.

The DragAndDropIsPresent() function can be called to
determine if the Drag Manager is present. PowerPlant checks at
startup. This returns the result of that check.

The “drop area” functions manage PowerPlant’s drop area list.

The two “handle” functions are Drag Manager callback routines.
The InstallHandlers() function installs these tracking and
receive handlers for the Drag Manager as the only handlers for the
application. When tracking a drag inside a window, the default
tracking handler calls InTrackingWindow(). The

Function Purpose

DragAndDropIsPresen
t()

returns true if the Mac OS Drag
Manager is available

AddDropArea() add a drop area to the list

RemoveDropArea() remove a drop area from the list

FindDropArea() determine drop area involved in the
drag

InstallHandlers() install tracking and receive handlers

HandleDragTracking(
)

drag tracking callback routine

HandleDragReceive() drag receive callback routine

InTrackingWindow() track a drag while it is in a window
PowerPlant Advanced Topics PPA–317

Drag and Drop in PowerPlant
LDropArea
InTrackingWindow() code finds the correct drop area from the
drop area list, and calls the correct handler.

When it is time to receive a drop, the default receive handler sends a
DoDragReceive() message to the current drop area.

There are additional functions for custom drag behavior such as
sending data in response to a promise, and custom drag drawing.
We discuss those functions in “Providing Custom Drag Behavior.”
In addition to the static functions just discussed, LDropArea
provides a series of functions that are the heart of PowerPlant’s
implementation of drag and drop. Table 9.5 lists these functions.

Table 9.5 LDropArea functions

Function Purpose

PointInDropArea() return true if drag is inside the drop
area (must be overridden)

FocusDropArea() set up local coordinate system and
clipping region for a drop area

HiliteDropArea() highlight a drop area to indicate that it
can accept the current Drag

UnhiliteDropArea(
)

remove highlight from a drop area

EnterDropArea() called when drag enters a drop area

LeaveDropArea() called when drag leaves a drop area

DragIsAcceptable(
)

return true when all items in the drag
are acceptable

ItemIsAcceptable(
)

determine whether an individual item
in the drag is acceptable

InsideDropArea() called repeatedly while inside a drop
area

DoDragReceive() receive a drag

ReceiveDragItem() receive an item in the drag
PPA–318 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
LDragAndDrop
PointInDropArea() is a pure virtual function, and must be
overridden. In addition, several other functions are empty,
including FocusDropArea(), InsideDropArea(),
ItemIsAcceptable(), and ReceiveDragItem(). You must
provide this functionality in classes that derive from LDropArea.

In a typical implementation of drag and drop in PowerPlant, you
override several of these functions (including the empty functions).
We discuss which functions you commonly override in
“Implementing Drag and Drop in PowerPlant.”

LDragAndDrop

LDragAndDrop is a mix-in class designed to add drag and drop
features to a pane. It inherits from LDropArea and is a concrete
implementation of that class. A pane that supports drag and drop
should multiply inherit from LDragAndDrop, not LDropArea.

NOTE A drag-savvy pane must override certain LDragAndDrop behaviors.
We discuss which functions to override in “Implementing Drag and
Drop in PowerPlant.”

LDragAndDrop adds one data member, mPane, to store a pointer to
the pane associated with this drop area.

The LDragAndDrop class overrides three LDropArea functions, as
shown in Table 9.6.

Table 9.6 LDragAndDrop functions

LDragAndDrop does not declare or define any new functions.

Function Purpose

PointInDropArea(
)

determine if point is in the pane

FocusDropArea() call FocusDraw() for the pane

HiliteDropArea() highlight the pane frame
PowerPlant Advanced Topics PPA–319

Drag and Drop in PowerPlant
Implementing Drag and Drop in PowerPlant
Now that you are familiar with the classes involved in drag and
drop, let’s examine how to actually implement drag and drop in a
PowerPlant application.

Implementing Drag and Drop in PowerPlant
This section walks you through the process of implementing drag
and drop in a typical PowerPlant application. As you know, this
process involves creating a drag task, and having panes that can
track and receive a drag. The tasks involved are:

• Looking for the Drag Manager

• Handling Clicks

• Identifying a Drag

• Creating a Drag Task

• Tracking a Drag

• Receiving a Drop

• Providing Custom Drag Behavior

Looking for the Drag Manager

Before using any routine that requires the presence of the Drag
Manager, you should ensure that the Drag Manager is present.
Simply call LDropArea::DragAndDropIsPresent() before any
call that depends on the Drag Manager.

How to respond to the absence of the Drag Manager is, of course, a
function of your application. If it absolutely requires drag and drop
functionality, you should use weak import DragLib. This allows the
application to launch even if the Drag Manager is not present. Then,
at startup time, check for drag and drop. If it is not present, quit the
application gracefully after alerting the user.

If your code is not dependent on drag and drop, you must
implement alternative mechanisms, one for the drag manager, and
one for when the drag manager is not present. You can do this by
subclassing LDragAndDrop, if you carefully test for the presence of
drag and drop before calling any Drag Manager or LDropArea
routines, and you provide alternative code.
PPA–320 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Handling Clicks
Handling Clicks

Handling clicks in a window that supports drag and drop is a two-
step operation. First, you set an attribute for the window involved
in the PPob resource for that window. Second, you override the
Click() function inherited from LPane. Let’s look at how these
two tasks relate to each other.

The drag and drop human interface guidelines are very specific
about how a drag operation should appear to a user. The user
should be able to click and drag data from an inactive window into
another window, without the source window becoming activated.

NOTE In the traditional human interface, selection highlighting disappears
when a window becomes inactive. With drag and drop, the user still
needs to see what objects are selected in an inactive window. This
requires that you provide background highlighting as described in
Apple’s drag and drop documentation. The LTable and LTableView
classes takes care of background highlighting automatically.
TextEdit in the Toolbox provides background highlighting for both
LTextEdit and LEditField.

PowerPlant provides support for clicking and dragging from a
background window in the PPob resource through the Delay Select
option illustrated in Figure 9.2. This option corresponds to the
delaySelect attribute of the LWindow class.
PowerPlant Advanced Topics PPA–321

Drag and Drop in PowerPlant
Handling Clicks
Figure 9.2 Getting the select click

When the delaySelect attribute is set, a click that would
normally activate a window should be processed as if the window
were already active. You accomplish that by overriding Click()
for panes that support drag and drop.

As you know, LPane::Click() typically handles any click in a
pane, view, or control. The default functionality usually provides
everything you need. In the case of drag and drop, it does not.

The default code responds to clicks only when the delaySelect
attribute is not set. Listing 9.1 shows the relevant code from LPane.

Listing 9.1 LPane::Click()
LPane::Click(SMouseDownEvent& inMouseDown)
{
if (!inMouseDown.delaySelect) {
 // normal click handling code
 }
}
}

PPA–322 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Handling Clicks
You must override this function and replace the functionality.
Otherwise, when you set the delaySelect attribute, your pane
will not respond to clicks when it is in an inactive window.
Replacement code for Click() might be organized like the code in
Listing 9.2.

Listing 9.2 A Click() override
CMyClass::Click(SMouseDownEvent& inMouseDown)
{
 if (inMouseDown.delaySelect)
 {
 // process the click for selection, etc.

 if(::WaitMouseMoved(inMouseDown.macEvent.where))
 {
 // drag begins
 }
 }

 } else
 {
// Call inherited Click() for default behavior.
 }
}

Of course, the actual structure and functionality of your Click()
routine depends upon your pane’s contents and behavior. For
example, in a graphics application you might check the location of
the click against an existing selection. If the click is not on an
already-selected item, you should deselect any existing selection,
and select the clicked item. This same approach doesn’t work for
text, because you cannot select text with a single click.

After performing any preprocessing on the click, you then test for a
drag, as described in “Identifying a Drag.” Notice you do this
regardless of whether the click occurs in a foreground or
background window, or changes a selection. This allows the user to
perform a single-gesture selection and drag, as required in the drag
and drop human interface. The process of handling a drag is
described in the rest of this chapter.
PowerPlant Advanced Topics PPA–323

Drag and Drop in PowerPlant
Identifying a Drag
If no drag begins, you simply exit the routine. In that case, control
ultimately returns to the LWindow::ClickInContent() routine
in PowerPlant, which activates the window for you.

For more information on topics relating to the drag and drop
human interface, consult the drag and drop documentation.

Identifying a Drag

A drag begins when the user clicks and holds the mouse button
down. Call the Mac OS routine WaitMouseMoved() to identify
such an occurrence. The WaitMouseMoved() call returns a boolean
value of true if a drag has begun. Listing 9.2 contains an example.

Creating a Drag Task

When a drag begins, you create an LDragTask object.

In PowerPlant, the LDragTask object manages the data necessary
for the Drag Manager: the event that starts the drag, the drag
reference, the data being dragged, and the drag region handle.

TIP Before creating the LDragTask, call the window’s
ApplyForeAndBackColors() function to set the proper colors for
the port and ensure that the drag highighting shows up correctly on
non-white backgrounds, or for colored objects.

PowerPlant provides two alternative mechanisms for instantiating
an LDragTask object. We will call them the simple approach and the
flexible approach. Each approach has its own constructor function.

The simple approach

This technique is suitable for dragging a single item in a single
flavor (data type). The constructor routine for the simple approach
has several parameters. Here’s the prototype for the constructor
function.

LDragTask(const EventRecord &inEventRecord,
const Rect &inItemRect,
ItemReference inItemRef,
FlavorType inFlavor,
PPA–324 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Creating a Drag Task
void *inDataPtr,
Size inDataSize,
FlavorFlags inFlags);

You provide the event record, the bounding rectangle, an item
reference (typically the value 1), the flavor type, a pointer to the
data, the size of the data, and any flavor flags.

When you call the constructor, PowerPlant takes over. The
constructor function stores the event record, creates the necessary
drag reference, adds the data to the drag in the flavor type you
specify, and creates the drag region.

The drag region is always the bounds of the rectangle you provide
in the second parameter. As a result, no matter what the underlying
shape is, the drag outline that the user sees is rectangular.

The constructor also starts the drag by calling the Drag Manager’s
TrackDrag() function.

In the simple approach, the very act of instantiating the LDragTask
object begins the drag operation automatically. However, the
simple approach is suitable only for dragging one item in one flavor
(data type).

The flexible approach

Use this approach if you want to drag multiple items, or if you want
to provide multiple flavors for a single item. In practice, the flexible
approach is much more useful. A well-designed application drags
data in a variety of flavors to increase the likelihood that the
destination can understand the data. Remember, the destination
may be any other process, not just the source application.

In addition, the flexible approach lets you set flags before starting a
drag. For example, you can restrict the drag to the sender only.

The flexible approach uses a very simple LDragTask constructor.
LDragTask(const EventRecord& inEventRecord);

You provide the event record that starts the drag. The constructor
function stores the event record, and creates the drag reference.
PowerPlant Advanced Topics PPA–325

Drag and Drop in PowerPlant
Tracking a Drag
After that, you start the drag by calling the drag task’s DoDrag()
function. Here’s the code for LDragTask::DoDrag().

LDragTask::DoDrag()
{
AddFlavors(mDragRef);
MakeDragRegion(mDragRef, mDragRegion);
::TrackDrag(mDragRef, &mEventRecord,mDragRegion);
}

Notice that it calls two LDragTask functions, AddFlavors() and
MakeDragRegion(). These are empty functions in LDragTask.
You must subclass the LDragTask class and override these functions
if you use the flexible approach.

In your definition of AddFlavors(), you write code to add data
for multiple objects in multiple flavors. How you do that is
dependent upon the data in your own application. Read the Drag
Manager documentation for the steps to take and the calls to make
to accomplish this task.

Similarly, in your definition of MakeDragRegion() you describe
the outline of the various objects. Once again, consult the Drag
Manager documentation for suggestions. You should also explore
the LDragTask::AddRectDragItem() code to see how
PowerPlant accomplishes the task for a simple rectangle.

Having provided these two functions, your initial work setting up
the drag task and starting the drag is complete. The Drag Manager
begins tracking the drag. During the process it calls your tracking
handler and sends it messages.

Tracking a Drag

Every pane capable of receiving a drag should have a tracking
handler. When the drag is within the bounds of the pane, the pane
provides some visual feedback to the user indicating whether the
drag can be received. For this to work, the pane must inherit from a
class derived from LDragAndDrop.

In its simplest form, implementing drag tracking requires that you
override at least one function.
PPA–326 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Tracking a Drag
You must override ItemIsAcceptable(). In this function you
use the Drag Manager to determine what data is in the drag. If you
can accept it, you return true. Otherwise, you return false.

The second function you may optionally override is
HiliteDropArea(). The default behavior of LDragAndDrop
highlights the drop area which is the frame of its associated pane
inset by one pixel to account for the border which usually surrounds
a Drop-capable pane. Override HiliteDropArea() to provide
custom highlighting.

If you want to get fancy, PowerPlant gives you the means to do so.
There are several functions you may override if you wish to
implement custom behavior. Table 9.7 lists the functions.

Table 9.7 Override for special tracking behavior

Override UnhiliteDropArea() if HiliteDropArea() does
something other than call the Drag Manager’s ShowDragHilite()
routine.

Override EnterDropArea() and LeaveDropArea() if you want
to implement special behavior when such an event occurs. The
default behavior of these functions calls HiliteDropArea() and
UnhiliteDropArea() respectively.

Override InsideDropArea() if the drag location inside the drop
area affects what happens. For example, you may wish to indicate
an insertion point in a text area.

Function Purpose

UnhiliteDropArea(
)

remove highlight from a drop area

EnterDropArea() called when drag enters a drop area

LeaveDropArea() called when drag leaves a drop area

InsideDropArea() called repeatedly while inside a drop
area
PowerPlant Advanced Topics PPA–327

Drag and Drop in PowerPlant
Receiving a Drop
Receiving a Drop

The final task you must perform is to receive the data in a drop. To
accomplish this task, you must override the ReceiveDragItem()
function.

In the standard implementation, the DoDragReceive() function
walks through all the items in the drag, and calls
ReceiveDragItem() for each one. You do not need to override
DoDragReceive() in a typical application.

Once again, what data you can receive and how you receive it are
matters that are application dependent and beyond the scope of
PowerPlant. Read the Drag Manager documentation for the steps to
take and for the calls to make to accomplish this task.

When a drag begins and ends in the same inactive window,
PowerPlant activates the window automatically. This behavior is
required by the drag and drop human interface guidelines. With
that one exception, a successful drop does not activate the receiving
window.

Providing Custom Drag Behavior

The Drag Manager gives you the option of replacing default Drag
Manager behavior with special callback functions. You can use
these advanced techniques to manage data delivery, drag feedback,
and mouse and keyboard modifiers.

For example, the user may want to drag an item that contains a
large amount of data. Rather than gathering up that data,
duplicating it, and placing it in the drag, you can provide a
“promise” to deliver the data to the destination. If the user aborts
the drag you haven’t wasted time or memory on an uncompleted
operation. If the user completes the drag, the Drag Manager calls
your custom callback function. This function fulfills your promise to
deliver data.

Similarly, you may want to customize drag feedback. The Drag
Manager draws a simple grey outline of the drag region. You may
want to do something fancier, like drag an actual bitmap of the item.
To do so, you must provide a custom callback function to handle
drag drawing.
PPA–328 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Providing Custom Drag Behavior
See the Drag Manager documentation for more information about
the circumstances under which you may wish to replace the default
Drag Manager behavior.

Notice that this custom behavior occurs on a per-drag basis. It has
nothing to do with windows, panes, or applications. You provide
the address of the callback function to the Drag Manager along with
the drag reference for which you wish the callback to be used.

The LDropArea class has a variety of functions to assist you with
these custom callback functions, as listed in Table 9.8.

Table 9.8 LDropArea custom callback support functions

The “handle” functions are the Drag Manager callback routines.
They are static member functions. The code in each of the three
“handle” functions is complete. You would not typically override
that behavior. Each calls the corresponding “do” routine.

The code in each of the “do” routines is incomplete. In fact, all three
“do” functions are empty. You must override these functions in a
subclass and provide definitions.

Please note that the LDropArea::InstallHandlers() function
only installs the tracking and receive handlers. The handlers to send
data, control input, and perform drag drawing are not installed by
PowerPlant.

Function Purpose

HandleDragSendData(
)

send data callback routine

HandleDragInput() user input callback routine

HandleDragDrawing() drag drawing callback routine

DoDragSendData() send data in response to a promise

DoDragInput() modify mouse and modifier keys
during a drag

DoDragDrawing() do all drawing during a drag
PowerPlant Advanced Topics PPA–329

Drag and Drop in PowerPlant
Summary of Drag and Drop in PowerPlant
If you want the Drag Manager to use these three PowerPlant
handlers, you must call the appropriate Drag Manager routine to
install the handler. The routines are: SetDragSendProc(),
SetDragInputProc(), and SetDragDrawingProc().

WARNING! When you set any of these three handlers for a particular drag, you
must provide a pointer to the appropriate drop area as the refcon
parameter. The PowerPlant handlers expect to find the LDropArea
pointer in the refcon parameter when called by the Mac OS.

Summary of Drag and Drop in PowerPlant
Drag and drop is a powerful tool. Users love the ease of use and
intuitive freedom it provides for copying and pasting data.

However, implementing drag and drop is not always simple.
PowerPlant eliminates much of the pain of basic implementation. It
does not eliminate all of the complexity. As you learned, in many
cases you must still prepare the data in various flavors, and add that
data to the drag. You must also handle receiving the data. This can
be a non-trivial task.

However, PowerPlant gives you a robust framework on which you
can hang your drag and drop code. PowerPlant takes care of
dispatch and control. You provide the functions to determine if a
drag can be received, to receive the items in the drag, and (typically)
to add data to the drag and create a drag region.

PowerPlant also provides a variety of functions you can use to
customize your drag and drop behavior. You can implement a full
range of features using descendants of the LDropArea class.

Code Exercise for Drag and Drop
In this exercise you implement simple drag and drop in an
application named “DragAndDrop.” The purpose of this exercise is
to give you experience with drag and drop in PowerPlant—the
functions you override and the tasks you perform. This exercise is
not intended as a tutorial on the Drag Manager.
PPA–330 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Code Exercise for Drag and Drop
The vehicle for drag and drop is a small window containing an
instance of the PowerPlant LTable class. Figure 9.3 shows the
window. It contains a single-column table that lists a variety of
fruits.

Figure 9.3 The DragAndDrop window

The general tasks you must perform to support drag and drop in a
PowerPlant application are:

• Handle clicks

• Identify a drag

• Create a drag task

• Track the drag

• Receive the drop

In this exercise you write code to accomplish each of these tasks.

1. Support drag and drop in an inactive window.

Drag Window resource DragAndDrop.ppob

In this step you modify the PPob resource to enable the
delaySelect attribute of the window. Open the
PowerPlant Advanced Topics PPA–331

Drag and Drop in PowerPlant
Code Exercise for Drag and Drop
DragAndDrop.ppob file in Constructor, open the Drag Window
resource, and open the property inspector for the drag window.

Click on the Delay Select check box to turn it on. With this option
active, PowerPlant will delay activating an inactive window. This
gives you an opportunity to handle the click for drag and drop.

Figure 9.4 Turning on Delay Select

When you are through, save your changes and close the file. You
can quit Constructor is you wish.

2. Handle clicks.

Click() CDragAndDropTable.cp

In order to support drag and drop, when a click occurs you must
explicitly test for the delaySelect attribute, and the presence of
drag and drop. If both conditions exist, then you can process the
click.

The existing code has an empty if test. Test the delaySelect field
of the inMouseDown parameter, and call
DragAndDropIsPresent(). The code controlled by the if
statement is provided for you. It does the required bookkeeping and
calls ClickSelf().
PPA–332 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Code Exercise for Drag and Drop
if (inMouseDown.delaySelect &&
DragAndDropIsPresent()) {

With these two steps you have accomplished the first principal task,
handling clicks properly. Next, you identify the beginning of a drag.

3. Identify a drag operation.

ClickCell() CDragAndDropTable.cp

The LTable::ClickSelf() function identifies which cell in the
table has been clicked, and calls ClickCell().
CDragAndDropTable overrides ClickCell() to support drag and
drop. This is where you detect an incipient drag.

The existing code has an empty if test. You must test for the
presence of the drag manager, and whether a drag has commenced.

To test whether a drag has commenced, call the Mac OS Toolbox
function WaitMouseMoved(). Pass
inMouseDown.macEvent.where as the parameter to
WaitMouseMoved().
if (DragAndDropIsPresent() && ::WaitMouseMoved(
inMouseDown.macEvent.where)) {

The code inside this if statement executes if and only if the user is
dragging and the Drag Manager is present. You have successfully
accomplished the second principal task, detecting a drag. Next, you
create a drag task.

4. Create a drag task

ClickCell() CDragAndDropTable.cp

The code you write in this step goes inside the if statement you
modified in the previous step. If the user is dragging, you create a
drag task.

The existing code manipulates table information and sets some local
variables. It gets the cell, the cell frame in a Rect, and the cell data
in an Str255. After that, you create a drag task.

This code supports dragging a single item in a single flavor, so you
can implement the “simple” approach to a drag task. This
constructor requires that you pass the event record involved, the
bounds of the drag region, an item reference, the flavor of data, the
address of the data, the length of the data, and flavor flags.

GetCellData(theCell, theString);
// Create the drag task.
PowerPlant Advanced Topics PPA–333

Drag and Drop in PowerPlant
Code Exercise for Drag and Drop
LDragTask theDragTask(inMouseDown.macEvent,
 theCellFrame, 1, 'TEXT',
 &theString[1],

 StrLength(theString), 0);

Remember that creating a drag task in this way also starts the drag
running automatically. There is no need to call DoDrag().

After this code, the existing code performs one more step required
to conform to the human interface guidelines for the Drag Manager.
The code checks to see if the drag ended up in the trash. Here’s the
relevant code. You don’t have to type this in, it already exists.
if (UDragAndDropUtils::DroppedInTrash(
theDragTask.GetDragReference())) {

If the drag ends up in the trash, the code removes the item from the
table. You have now completed the third principal task required to
support drag and drop. You have created the drag task and started
the drag running. In the next three steps you provide the support
required to track a drag.

TIP You may find the UDragAndDropUtils class very useful in your own
coding. It has static functions to test for a drop in the trash, whether
the user has the option key down, and whether the drop is in the
same window it started in. These are very useful housekeeping
routines.

5. Determine if the drag is acceptable.

ItemIsAcceptable() CDragAndDropTable.cp

The ItemIsAcceptable() function is a utility function that
PowerPlant calls when it needs to know if a drop can be received by
a particular drop area. To properly support drag and drop, you
must define this function.

The table is capable of receiving a text item. You should call the
Drag Manager’s GetFlavorFlags() function and determine if the
item has the TEXT flavor. You should also test to ensure that the
table is enabled (this is an LPane function, IsEnabled()).

FlavorFlags theFlags;
return IsEnabled()
&& (::GetFlavorFlags(inDragRef,

inItemRef, 'TEXT', &theFlags) == noErr);
PPA–334 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Code Exercise for Drag and Drop
6. Provide drag feedback.

HiliteDropArea() CDragAndDropTable.cp

PowerPlant calls this function when it is necessary to highlight a
drop area. This provides the user with visual feedback that the drop
is acceptable in the drop area.

In this case, the drop area is the window’s content area. This
function should get the local frame bounds, convert it into a region,
call the Drag Manager’s ShowDragHilite() function, and dispose
of the region.

// Get the frame rect.
Rect theRect;
CalcLocalFrameRect(theRect);

// Show the drag hilite in the drop area.
RgnHandle theRgnH = ::NewRgn();
::RectRgn(theRgnH, &theRect);
::ShowDragHilite(inDragRef, theRgnH, true);

::DisposeRgn(theRgnH);

Because you use the ShowDragHilite() function, you do not
need to override UnhiliteDropArea().

7. Provide insertion point feedback.

InsideDropArea() CDragAndDropTable.cp

In the DragAndDrop application, the drop area is the table, and the
table occupies the content area of the window. To be very friendly,
there should also be an insertion point to clearly demonstrate where
the drop is going to end up in the list.

To make this work, you must track the drag while it moves around
inside the drop area. While a drag moves inside a drop area,
PowerPlant repeatedly calls InsideDropArea().

The existing code does all the setup work. This application uses the
mDropRow data member to track where in the table the drop should
go. The existing code calls the inherited InsideDropArea()
PowerPlant Advanced Topics PPA–335

Drag and Drop in PowerPlant
Code Exercise for Drag and Drop
function, gets the mouse location for the drag, and determines what
row is involved.

If it’s a new row, it erases the previous dividing line (insertion
point). After that, you should draw a new dividing line.

Save theRow in the mDropRow data member. Then call
DrawDividingLine().

mDropRow = theRow;

DrawDividingLine(mDropRow);

The code for determining the row and drawing the dividing line is
provided for you. Feel free to examine it.

NOTE The CDragAndDropTable class also overrides EnterDropArea()
and LeaveDropArea(). These overrides simply invalidate the
mDropRow value so that a new insertion point is drawn when the
drag changes cells.

With this step you have completed the support required for tracking
a drag. All that remains is receiving a drop.

8. Receive the drag item.

ReceiveDragItem() CDragAndDropTable.cp

As you know, the purpose of this function is to retrieve data from
the drop. The code in this function is provided for you. It has more
to do with manipulating data in an LTable than anything else.

Examine the code, and understand the tasks it performs. First, it
gets the data in the drag item by calling the Drag Manager’s
GetFlavorData() function. Then it gets the size of the data by
calling GetFlavorDataSize().

After that, the code determines if the drag is a move or a copy
operation. It is a move operation if the drag is in the sender
window, and the option key is not down. Otherwise it is a copy
operation. Notice that the code uses the UDragAndDropUtils
member functions for both tests.

If it is a move operation, the code removes the data from one
location in the table and inserts it in another.

If it is a copy operation, the code inserts the data in the proper
location in the table.
PPA–336 PowerPlant Advanced Topics

Drag and Drop in PowerPlant
Code Exercise for Drag and Drop
9. Build and run the application.

When the application builds successfully and runs, the window
shown in Figure 9.3 appears with the list of fruits.

Click and drag an entry in the list to another location in the list.
Notice that you can select and drag an item with a single gesture.
This is an important feature of the human interface.

While a drag is underway, observe the insertion point feedback (the
black line between entries). The insertion point is the work of the
InsideDropArea() function. As the drag moves, the insertion
point follows along.

Notice that there is no drop area highlighting (the border around
the content area of the window). Drop area highlighting only
appears after a drag has left the sender window. To see it, drag the
item out of the window, and then back into the window. When you
reenter the drop area, the drop area highlighting appears indicating
that this is an acceptable drop. The highlight is from the
HiliteDropArea() function.

A drag within a single container can be a move or a copy. Hold
down the option key while you begin a drag, or when you drop an
item in the same table as you started. You don’t have to hold the
option key down for the entire drag, just at the beginning or the
end. If the option key was down at either of those moments, the
original remains and a copy is placed at the drop location when you
drop the item.

Drag an item to the trash and observe what happens. The item
should disappear from the table. Look in the trash, and you’ll see a
text clipping. You can drag that item back out of the trash and into a
table if you wish.

Now, make a new window and drag items back and forth between
windows. In particular, drag an item from the inactive window into
the active window. A drag from an inactive window or a drop into
an inactive window does not cause that window to become active.
This is another important feature of the human interface. Notice
also that the inactive window shows background highlighting of the
currently selected table cell in that window.

Finally, drag an item from a window and drop it on the Finder’s
desktop. The item appears on the desktop as a text clipping. Drag
PowerPlant Advanced Topics PPA–337

Drag and Drop in PowerPlant
Code Exercise for Drag and Drop
the text clipping into a table. The text appears as a new entry. Drag
and drop works across applications!

Launch a text processor that supports drag and drop, like
SimpleText. Type a phrase into SimpleText. Then drag it into the
DragAndDrop table. The text transfers from one application to
another with no difficulty. Drag something from the table into
SimpleText. It works both ways.

Play around with drag and drop. It makes data transfer so simple
that you might wonder why it hasn’t always been this easy. When
you are through playing, quit the application.

PowerPlant gives you a lot of drag and drop functionality for free.
PowerPlant takes care of most of the housekeeping details,
dispatching control to the proper functions when necessary. You
override and define a few, relatively simple hook functions such as
ItemIsAcceptable(), HiliteDropArea(), and so forth.

As always, there is room for further exploration. You could
implement drag and drop for pictures. Follow the same steps as you
did in this exercise, but use PICT data instead of text.

For a greater challenge, you might add multiple flavors of the same
data to a drag (such as both TEXT and PICT). Or you might add
multiple items to a single drag. You might create a drag region that
outlines each individual item in a multiple-item drag, rather than
the encompassing rectangle. See “The flexible approach” for ideas
on how to go about this.

Finally, for a real challenge, you could implement custom routines
for managing a drag operation. For example, you could drag
around a bitmap image of the item being moved, rather than a
simple outline. See “Providing Custom Drag Behavior” for hints
and clues.

Good luck, and happy dragging.
PPA–338 PowerPlant Advanced Topics

10
Offscreen Drawing in
PowerPlant

This chapter discusses how to use PowerPlant for drawing to an
offscreen graphics environment, a process also known as double
buffering.

Introduction to Offscreen Drawing in PowerPlant
From the user’s perspective, a screen update can be a painful
experience. In a traditional approach, an application draws directly
to the screen. In effect, you create the image piecemeal before the
eyes of the user. As a result, updates can cause interesting and
unintended visual effects. Objects may flicker needlessly, for
example. In a crowded window with lots of objects, drawing may
seem slow.

One solution to this problem is to create an offscreen graphics
environment. Rather than draw to the screen, your application
draws offscreen. When the drawing is complete, you move the
finished image to the screen in one piece, a process known as
blitting.

The offscreen drawing process requires slightly more time, because
you must first draw the image and then blit it to the screen.
However, the image appears all at once. As a result, the user
perceives drawing as much faster. The user sees the end result, not
the process that creates the result.

The difficulty in implementing offscreen drawing on your own is
that you must do a lot of background work to create and manage
the offscreen environment. PowerPlant takes care of most of the
PowerPlant Advanced Topics PPA–339

Offscreen Drawing in PowerPlant
Offscreen Drawing Strategy
details for you, making offscreen drawing simple and
straightforward.

In this chapter we discuss how you can implement offscreen
drawing in a PowerPlant application. The topics discussed include:

• Offscreen Drawing Strategy—the PowerPlant approach to
offscreen drawing

• Offscreen Drawing Classes—the individual PowerPlant classes
involved in offscreen drawing

• Implementing Offscreen Drawing in PowerPlant—working with
PowerPlant’s offscreen drawing classes

Offscreen Drawing Strategy
As you know, an offscreen graphics environment in the Mac OS is
called a GWorld. PowerPlant’s classes related to offscreen drawing
are very simple. They hide the entire Toolbox API related to
GWorlds. As a result, implementing offscreen drawing is extremely
simple.

When dealing with the Toolbox directly, GWorlds have many
permutations. You can specify that they be created in a specified
pixel depth; in the application heap or temporary memory; with a
custom color table or the default color table; with a custom GDevice
or not; as a purgeable item or not; and so on. PowerPlant lets you
manipulate all these features. You may specify parameters to
constructors to set up the GWorld to your liking.

However, the simple truth is that most of the time, you just want
very straightforward behavior. You want a pixel depth equal to the
deepest monitor involved in drawing. You use a default color table,
default GDevice, and so on. In PowerPlant, the necessary
constructors all have default arguments that set up a default
GWorld simply and effectively. As a result, unless you’re doing
something tricky or unusual, you don’t have to worry about these
details. PowerPlant takes care of them for you.

PowerPlant gives you two more choices. You can easily create a
typical GWorld that persists as long as you want. You can also
create a temporary GWorld that lasts for just one function.
PPA–340 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
Offscreen Drawing Classes
Although this might seem like an odd thing to do at first glance, a
temporary GWorld can be very useful.

Offscreen Drawing Classes
There are three classes in PowerPlant related to offscreen drawing.
They are:

• LGWorld—implements a classic GWorld

• StOffscreenGWorld—implements a temporary GWorld

• LOffscreenView—draws its contents to a temporary offscreen
GWorld

These classes are not related to each other hierarchically. Both
LGWorld and StOffscreenGWorld are completely independent
classes that can be used without any other part of PowerPlant.
LOffscreenView is a member of the PowerPlant pane classes, and as
such is dependent upon the core of PowerPlant being present.

The source code for these classes is fully commented, and you
should read those comments for further insight.

LGWorld

LGWorld is a simple PowerPlant class. It is declared in UGWorld.h
and defined in UGWorld.cp. The purpose of LGWorld is to create
and manage a GWorld.

This class has four data members, shown in Table 10.1.

Table 10.1 LGWorld data members

Data member Stores

mMacGWorld pointer to the GWorld

mBounds bounds of the GWorld

mSavePort save the current graphics port

mSaveDevice save the current GDevice
PowerPlant Advanced Topics PPA–341

Offscreen Drawing in PowerPlant
LGWorld
In general you won’t have to deal with these data members directly.
The mMacGWorld data member is set by the constructor when the
GWorld is created. You can retrieve this value with an accessor
function, GetMacGWorld(). You set the initial bounds of the
GWorld in the class constructor. The class functions save and
restore the graphics port and GDevice when necessary.

Table 10.2 lists every member function in LGWorld.

Table 10.2 LGWorld member functions

The constructor is perhaps the most interesting function. It does all
the work of setting up the GWorld. Here’s the prototype from the
header file.

LGWorld(const Rect &inBounds,
 SInt16 inPixelDepth = 0,
 GWorldFlags inFlags = 0,
 CTabHandle inCTableH = nil,
 GDHandle inGDeviceH = nil);

The only parameter you must provide is the bounds (in pixels, in
local coordinates) of the GWorld you desire. You may pass in other
values as you wish, but most of the time you can rely on the default
values declared in the prototype. A zero pixel depth means that the
GWorld uses the maximum depth of all screen devices intersected
by the bounds. A GWorldFlags value of zero means that the
GWorld will be created in the application heap (among other
things). Nil values for the color table and the GDevice mean you use
the default color table and GDevice. For information on how you

Function Purpose

LGWorld() create GWorld

~LGWorld() release GWorld memory

BeginDrawing() begin drawing to GWorld

EndDrawing() end drawing to GWorld

CopyImage() copy image to screen

GetMacGWorld() return pointer to GWorld

SetBounds() set bounds of the GWorld
PPA–342 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
LGWorld
can manipulate these parameters to create various kinds of
GWorlds, you should refer to Inside Macintosh: Imaging with
QuickDraw, page 6-16.

Because of the design of the LGWorld constructor, most of the time
all you have to do is tell PowerPlant how big you want the GWorld
to be. PowerPlant takes care of the rest.

The remaining functions are very simple. The destructor releases
GWorld memory. BeginDrawing() saves the current port and
GDevice, sets the port for the GWorld, and locks the GWorld pixels
in place. EndDrawing() unlocks the pixels and restores the saved
port and GDevice. In between calls to BeginDrawing() and
EndDrawing(), you do your drawing. Any drawing appears in the
GWorld, not on screen.

WARNING! Every call to BeginDrawing() must be balanced with a
corresponding call to EndDrawing().

The CopyImage() function uses the Toolbox CopyBits()
function to blit the GWorld to the screen. Once again, it is worth
looking at the prototype.

void CopyImage(GrafPtr inDestPort,
 const Rect &inDestRect,
 SInt16 inXferMode = srcCopy,
 RgnHandle inMaskRegion = nil);

You provide the destination port to which the image is going, and
the destination rectangle. The destination rectangle is typically the
same size as the GWorld, but can vary if you want to scale the
image. The transfer mode and mask region have default
parameters, so you do not need to provide them if the default values
suit your purpose.

LGWorld Limitations

The LGWorld functions do not contain a single call to the Toolbox
routine UpdateGWorld(). This can be a significant problem for a
quality implementation of offscreen drawing.

You should call UpdateGWorld() after every update event,
whenever the GWorld changes size, and whenever the destination
PowerPlant Advanced Topics PPA–343

Offscreen Drawing in PowerPlant
LGWorld
window moves or changes size. These events can cause pixel depth
to change if the window crosses multiple monitors.

For example, you may modify the bounds of a GWorld after you
create it. Use the accessor function LGWorld::SetBounds().
However, SetBounds() doesn’t work right because it doesn’t call
UpdateGWorld().

Listing 10.1 shows a better way to set a GWorld’s bounds.

Listing 10.1 A better SetBounds() function
void MyGWorld::SetBounds(const Rect& inBounds)
{
mBounds = inBounds;

GWorldFlags flags = ::UpdateGWorld(&mMacGWorld,0, inBounds, NIL,
NIL, 0);

// From original LGWorld
::GetGWorld(&mSavePort, &mSaveDevice);
::SetGWorld(mMacGWorld, nil);
::SetOrigin(mBounds.left, mBounds.top);
::SetGWorld(mSavePort, mSaveDevice);
}

You would of course pass your desired pixel depth to the
UpdateGWorld() function. You should also check for errors.

There is yet another significant limitation to LGWorld. If you look at
the class declaration in UGWorld.h, you will see that none of the
functions in LGWorld are virtual. Therefore, you cannot use
LGWorld as a base class and derive your own classes from it.

If you wish to extend the functionality of LGWorld, you should
simply copy the code from LGWorld into your own class. Then
modify your class as you wish, and substitute your class for
LGWorld.

Even with these limitations in mind, (incorrect GWorld updating
and no way of subclassing LGWorld), LGWorld is a simple wrapper
for the Mac OS offscreen graphics worlds. All the complexity is
reduced to four functions:
PPA–344 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
StOffscreenGWorld
• a constructor to create the GWorld, requiring one parameter

• a call to prepare the GWorld for drawing

• a call to close the GWorld for drawing

• a call to move the image to the screen

You can use LGWorld in any C++ code. It is completely
independent of the rest of PowerPlant.

StOffscreenGWorld

StOffscreenGWorld is a simple PowerPlant class. It is declared in
UGWorld.h and defined in UGWorld.cp. It is similar to, but
simpler than LGWorld. Like LGWorld, it creates and destroys a
GWorld. Unlike LGWorld, the GWorld created by
StOffscreenGWorld exists for the duration of one function.

StOffscreenGWorld is a stack-based PowerPlant class. The
constructor creates a GWorld when you instantiate an
StOffscreenGWorld variable. The GWorld continues to exist only as
long as the local variable holding the StOffscreenGWorld object
remains in scope. When the variable goes out of scope, the
StOffscreenGWorld destructor copies the GWorld image to the
screen, and destroys the GWorld.

StOffscreenGWorld has the same data members as LGWorld, and
they serve the same purposes.

Table 10.3 StOffscreenGWorld data members

In general you won’t have to deal with these data members directly.
The mMacGWorld data member is set by the constructor when the
GWorld is created. You can retrieve this value with an accessor

Data member Stores

mMacGWorld pointer to the GWorld

mBounds bounds of the GWorld

mSavePort save the current graphics port

mSaveDevice save the current GDevice
PowerPlant Advanced Topics PPA–345

Offscreen Drawing in PowerPlant
StOffscreenGWorld
function, GetMacGWorld(). You set the initial bounds of the
GWorld in the class constructor. Unlike LGWorld, you cannot
modify the bounds afterwards. The class functions save and restore
the graphics port and GDevice whenever necessary.

There are only three member functions in StOffscreenGWorld.

Table 10.4 StOffscreenGWorld member functions

The constructor and destructor do all the work. Here’s the
prototype for the constructor from the header file. The parameters
are identical to those in LGWorld, and they serve the same
purposes.

StOffscreenGWorld(const Rect &inBounds,
 SInt16 inPixelDepth = 0,
 GWorldFlags inFlags = 0,
 CTabHandle inCTableH = nil,
 GDHandle inGDeviceH = nil);

The only parameter you must provide is the bounds (in pixels, in
local coordinates) of the GWorld you desire. You may pass in other
values as you wish, but most of the time you can rely on the default
values declared in the prototype. A zero pixel depth means that the
GWorld uses the maximum depth of all screen devices intersected
by the bounds. A GWorldFlags value of zero means that the
GWorld will be created in the application heap (among other
things). Nil values for the color table and the GDevice mean you use
the default color table and GDevice. For information on how you
can manipulate these parameters to create various kinds of
GWorlds, you should refer to Inside Macintosh: Imaging with
QuickDraw, page 6-16.

Function Purpose

StOffscreenGWorld() create GWorld and set up for
drawing

~StOffscreenGWorld(
)

copy image to screen and release
GWorld memory

GetMacGWorld() return pointer to GWorld
PPA–346 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
LOffscreenView
The destructor restores the current port to what it was when the
StOffscreenGWorld was created, copies the offscreen image to that
port, and then destroys the GWorld.

WARNING! When you call the StOffscreenGWorld constructor, the current port
must be the destination of the offscreen image. The
StOffscreenGWorld destructor copies the image to the port that was
current when the StOffscreenGWorld object was created.

You can use StOffscreenGWorld in any C++ code. It is completely
independent of the rest of PowerPlant. LOffscreenView uses
StOffscreenGWorld.

LOffscreenView

The LOffscreenView class is a descendant of LView in the LPane
class hierarchy. In fact, this class does not do any offscreen drawing
directly. It uses StOffscreenGWorld to handle drawing.

In typical use, you don’t have to modify or call any function or
feature of LOffscreenView. Here’s how it works.

Assume you have a complex set of objects you wish to draw to an
offscreen graphics environment. You want to do this so that updates
appear instantaneous and the user doesn’t see each individual
object drawn independently.

In PowerPlant’s visual interface builder, Constructor, you can add
an LOffscreenView to the window. Then put all the objects you
wish drawn offscreen into that view.

When PowerPlant attempts to draw the view, it calls the
LOffscreenView’s Draw() function. LOffscreenView::Draw()
sets up an StOffscreenGWorld variable. From that point on, all the
contents of the view draw into the GWorld, not the screen.

After all the contents of the view have drawn themselves, control
returns to LOffscreenView::Draw(). The StOffscreenGWorld
variable goes out of scope, and the offscreen image is blitted to the
screen.
PowerPlant Advanced Topics PPA–347

Offscreen Drawing in PowerPlant
Implementing Offscreen Drawing in PowerPlant
Examine the source code for LOffscreenView::Draw() to see
how this works. The function first attempts to build the GWorld in
temporary memory. It is a short-lived GWorld, so this is an
appropriate use of temporary memory. If that fails, it allocates the
GWorld out of the application’s own memory space. If that fails, the
objects draw directly to screen.

You get all the benefits of offscreen drawing automatically! Simply
place your panes inside an LOffscreenView in Constructor. You can
do this for the entire contents of a window, or for one or more parts
of a window. The choice is yours. The rest is automatic and free.

The only negative side is that there is a minor time penalty because
the GWorld is created and destroyed every time
LOffscreenView::Draw() is called. If this is a significant issue
to you, consider designing your application to use LGWorld
instead.

Implementing Offscreen Drawing in PowerPlant
There are, essentially, three strategies you may follow, depending
upon your individual needs.

• Using LOffscreenView—and use StOffscreenGWorld

• Using StOffscreenGWorld Directly

• Using LGWorld

Using LOffscreenView

To use LOffscreenView, use Constructor to place your panes inside
the LOffscreenView. After that, your work is done. You’ll do this in
the code exercise for this chapter.

Using StOffscreenGWorld Directly

To use StOffscreenGWorld directly, simply instantiate an
StOffscreenGWorld object at the appropriate moment, before the
drawing code. When the StOffscreenGWorld variable goes out of
scope, the drawing will be blitted to the screen. Listing 10.2 shows a
sample of how easy it is.
PPA–348 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
Using LGWorld
Listing 10.2 An StOffscreenGWorld sample
void MyPane::DrawSelf()
{
Rect frame;
CalcLocalFrameRect(frame);

// Allocate offscreen GWorld where subsequent
// drawing operations will take place
StOffscreenGWorld offWorld(frame);

// draw pane
}

By the simple expedient of creating an StOffscreenGWorld variable,
all pane drawing occurs in the offscreen world. When the pane’s
DrawSelf() function goes out of scope, the pane’s image is blitted
to the screen by the StOffscreenGWorld destructor.

WARNING! There is a danger here. In a program that uses C++ exceptions, if an
exception occurs during the drawing process, the
StOffscreenGWorld destructor is called anyway to blit the image to
screen. However, the exception might be of such a nature that you
do not want to draw the image. If this case applies to you, you
should not use StOffscreenGWorld. You should use LGworld, or
create your own class that handles exception situations.

Using LGWorld

Using LGWorld is a little more complicated, but not much. A typical
use would be to create a new LGWorld object (in the application’s
heap) in a pane’s constructor. You store the pointer to the LGWorld
object in a data member. You delete the LGWorld object in the
pane’s destructor.

You use the LGWorld to store the visual image of the pane. You
must explicitly call BeginDrawing() before drawing offscreen,
and EndDrawing() when done. Use CopyImage() to move the
offscreen image to the screen. In Listing 10.3, a sample pane class
uses LGWorld to maintain its contents on a long-term basis.
PowerPlant Advanced Topics PPA–349

Offscreen Drawing in PowerPlant
Using LGWorld
Listing 10.3 A typical use of LGWorld
MyPane::MyPane() { // constructor creates GWorld
Rect frame;
CalcLocalFrameRect(frame);
mGWorld = new LGWorld(frame, 8); // 8-bit depth
}

MyPane::~MyPane() { // destructor deletes GWorld
delete mGWorld;
}

MyPane::DrawSelf() { // copy GWorld image to screen
Rect frame;
CalcLocalFrameRect(frame);
mGWorld->CopyImage(GetMacPort(), frame);
}

MyPane::AddRectToImage(Rect &inRect) {
mGWorld->BeginDrawing(); // draw offscreen
PaintRect(&inRect); // add new rectangle
mGWorld->EndDrawing(); // end offscreen drawing

Rect pRect = inRect; // update new drawing
LocalToPortPoint(&topleft(pRect));
LocalToPortPoint(&botRight(pRect));
InvalPortRect(&pRect);
}

The AddRectToImage() function draws a rectangle to the
offscreen image and forces an update of the newly drawn area. The
DrawSelf() function just copies the image from the offscreen
image into the frame of the pane. All the rectangles painted by
calling AddRectToImage() are accumulated in the offscreen
GWorld, and are redrawn properly on any subsequent screen
update.

WARNING! You should be aware that LGWorld has limitations with respect to
updating GWorlds, and subclassing. See “LGWorld Limitations.”
PPA–350 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
Code Exercise for Offscreen Drawing
In this exercise you create an application that demonstrates the
visual difference between drawing to screen and drawing offscreen.
The finished application looks like Figure 10.1.

Figure 10.1 The Offscreen application

The Circle Views window shows two groups of random circles. This
window demonstrates the effect of offscreen drawing on updating.
There are buttons you can use to force an update of either view.

The Spaceship Panes window shows two polygonal spaceships.
Each spaceship rotates. There are buttons to turn the animation on
or off for each pane. This window demonstrates the effect of
offscreen drawing on animation.
PowerPlant Advanced Topics PPA–351

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
In this exercise you implement the offscreen drawing sections of
each window. This is a very unusual code exercise, because you
don’t write any code! All your work will be in Constructor.

1. Build and run the Offscreen application.
project file Offscreen Start Code folder

Before doing anything else, build and run the start code application.
The principal goal of this step is to show you how the application
uses regular drawing, and to highlight the fact that after you are
done with Constructor, the same code works for offscreen drawing.

Open either the Offscreen.68K.µ or the Offscreen.PPC.µ
project file. Make sure you use the project in the Offscreen
Start Code folder, not the solution code. Then, without making any
changes, build and run the application. When it builds successfully,
you’ll see the Circle Views window and the Spaceship Panes
window. However, the offscreen portion of each window will be
empty.

Click the refresh button above the circles in the Circle Views
window. The circles underneath will redraw. Watch the drawing
process carefully. You should see a series of random circles draw on
top of each other. There are, in fact, 500 circles. The speed of
drawing will vary depending upon the speed of the computer
running the application. On fast machines, the circles draw quickly.
So watch closely.

NOTE The constant kNumCirclePanes controls the number of circles. It
is defined in CCircleView.h if you wish to change it.

Also observe the rotating spaceship in the Spaceship Panes window.
Notice how it flashes or blinks as it rotates. You can click the check
box to turn animation off or on as you wish.

Both of these conditions (circles drawing on top of each other and
the flashing spaceship) are artifacts of drawing direct to screen. In
the next few steps you set up the application to draw the exact same
items through an offscreen buffer.

For now, quit the Offscreen application.

2. Create an offscreen circle view
PPA–352 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
Circle Views (ID 1000) Offscreen.ppob

In this step you duplicate the existing circle view, and place it inside
an LOffscreenView object. As a result, the new view will draw
offscreen rather than directly to screen.

Double-click the Offscreen.ppob file in the CodeWarrior project
manager window. This opens the resource file in Constructor.

In the Constructor project window, double-click the Circle Views
resource (in the Windows and Views) to open up that resource.
Finally, open a hierarchy window (Show Object Hierarchy in the
Layout menu). Figure 10.2 shows what you should see.

Figure 10.2 The Circle Views hierarchy window

To complete this step you should perform the following tasks.

• Add an LOffscreenView. Add this at the same level as the other
items in the window. Make it the same size as the existing circle
view—LView (CirV).

• Make a copy of the existing circle view.

• Place the copy inside the LOffscreenView.

• Set the new circle view properties. Position the top left of the
new LView at location (0,0). Set the pane ID to 3.

If you are comfortable with Constructor, just perform these tasks. If
you want additional guidance, read the detailed substeps.
PowerPlant Advanced Topics PPA–353

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
a. Add an LOffscreenView.

Choose Catalog from the Window menu. Drag an
LOffscreenView from the Catalog window into either the
hierarchy window or the PPob window.

Open the inspector window for the new LOffscreenView. Set the
top to 46, the left to 170, the width and height to 150. All other
values are default. Figure 10.3 shows the end result.

Figure 10.3 The LOffscreenView properties

b. Make a copy of the existing circle view.
PPA–354 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
c. Place the copy inside the LOffscreenView.

You can accomplish both these substeps with a single gesture in
the hierarchy window by Option-dragging to copy the item.

In the hierarchy window, select the existing circle view object—
the LView (CirV) object. Then press the Option key and drag the
circle view underneath the new LOffscreenView. Drop it there.

When you are through, the hierarchy window should look like
Figure 10.4. Note especially the position of the new circle view
underneath and indented one position to the right of the new
LOffscreenView. This tells you that the new circle view is
hierarchically inside the LOffscreenView.

Figure 10.4 The hierarchy window after copying LView

d. Set the new circle view properties.

You must set the location of the new circle view within the
LOffscreenView, as well as the pane ID for the new circle view
object.

Open the inspector for the new circle view. To do this, double-
click the new LView (CirV) in the hierarchy window. Set the top
PowerPlant Advanced Topics PPA–355

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
left corner to (0,0). This puts the circle view at the same spot as
the top left corner of the LOffscreenView.

Also, set the pane ID to 3. The application looks for this object by
pane ID, and that ID must be 3. When you are finished, the
properties for the new circle view should look like Figure 10.5.

Figure 10.5 The new circle view properties

You have completed this step. You have duplicated the existing
circle view, and placed it inside an offscreen view. Note that the
circle view you created is functionally identical to the original view
that draws on screen. The only differences are for PowerPlant
housekeeping. You changed the location and pane ID of the view.

At runtime the exact same code for the circle view class will run for
both the direct-to-screen and offscreen drawing.

3. Create an offscreen spaceship pane
PPA–356 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
Spaceship Panes (ID 1100) Offscreen.ppob

In this step you duplicate the existing spaceship pane, and place it
inside an LOffscreenView object. As a result, the new pane will
draw offscreen rather than directly to the screen.

This step is essentially identical to the step you just completed. The
tasks and substeps are the same, except that you’re working on the
spaceship pane instead of the circle view.

To complete this step you should perform the following tasks.

• Add an LOffscreenView. Add this at the same level as the other
items in the spaceship window. Make it the same size as the
existing spaceship pane.

• Make a copy of the existing spaceship pane.

• Place the copy inside the LOffscreenView.

• Set the new spaceship pane properties. Position the top left of
the new spaceship pane at location (0,0). Set the pane ID to 3.

If you are comfortable with Constructor, just perform these tasks. If
you want additional guidance, read the detailed substeps below.

a. Add an LOffscreenView.

Choose Catalog from the Window menu. Drag an
LOffscreenView from the Catalog window into either the
hierarchy window or the PPob window for the spaceship pane.

Then open the inspector window for the new LOffscreenView
and set its properties. Set the top to 46, the left to 170, and the
width and height to 150. All other values are default. Figure 10.6
shows the end result.
PowerPlant Advanced Topics PPA–357

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
Figure 10.6 The LOffscreenView properties

b. Make a copy of the existing spaceship pane.

c. Place the copy inside the LOffscreenView.

You can accomplish both these substeps with a single gesture in
the hierarchy window by Option-dragging to copy the item.

In the hierarchy window, select the existing spaceship pane
object—the LPane (Spac) object. Then press the Option key and
drag the spaceship pane object underneath the new
LOffscreenView. Drop it there.

When you are through, the hierarchy window should look like
Figure 10.7. Note especially the position of the new spaceship
pane underneath and indented one position to the right of the
new LOffscreenView. This tells you that the new spaceship pane
is hierarchically inside the LOffscreenView.
PPA–358 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
Figure 10.7 The hierarchy window after copying LView

d. Set the new spaceship pane properties.

You must set the location of the new spaceship pane within the
LOffscreenView, as well as the pane ID.

Open the inspector for the new spaceship pane. Set the top left
corner to (0,0). Set the pane ID to 3.
PowerPlant Advanced Topics PPA–359

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
Figure 10.8 The new spaceship pane

You have duplicated the existing spaceship pane, and placed it
inside an offscreen view. Note that the spaceship pane you created
is functionally identical to the original pane that draws on screen.
The only differences are for PowerPlant housekeeping. You
changed the location and pane ID of the new spaceship pane.

At runtime the exact same code for the spaceship pane class will run
for both the onscreen and offscreen versions.

Save your changes, close the windows, and quit Constructor. You’re
all done.

4. Build and run the application.

Switch back to the CodeWarrior IDE, and run the application. If you
ran the application as instructed in Step 1, all the code has already
been compiled. Note that none of the code has to be recompiled. In
PPA–360 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
the build process, the only thing that changes is that the new PPob
resource file is copied into the application.

When the project builds and runs successfully, both the Circle
Views window and the Spaceship Panes window appear.

In the Circle Views window, click the Refresh button above each
circle view. Observe the difference in appearance. As the screen
circle view updates, each of the 500 circles is visible as it draws,
despite the fact that hundreds of them are ultimately concealed.

As the offscreen circle view updates, there is a brief pause, and then
the finished drawing appears all at once.

Refresh each circle view several times to get a feel for the perceptual
difference between the two techniques. How does it look to you?
Which one better represents what you are trying to show to a user?
Offscreen drawing hides intermediate drawing steps from the user.
This is particularly useful when drawing must overlap. Offscreen
drawing can give you a significant enhancement to the look and feel
of your application.

Now take a look at the spaceships. When the application starts, both
spaceships should be animated. Observe the visual difference
between the two techniques: direct-to-screen and offscreen. Once
again, how do they look? Which one presents a better experience to
the user? Feel free to turn animation off and on at will.

Although less obvious than the random circle views, overlapping
drawing is the cause of flicker in the direct-to-screen spaceship
pane. The flicker is the result of a repeated cycle of erasing and
redrawing. With the offscreen view, only the final result of the
erase/draw combination appears on screen. The actual process of
erasing and drawing is hidden from the user.

Congratulations! You have implemented offscreen drawing, and
you didn’t even write any code! Examine the source code for the
Offscreen application if you have any doubts about how the circle
view and spaceship pane draw.

Neither makes any assumption about where it is drawing. Each
simply draws itself like any ordinary pane or view. The real
difference is in Constructor, where in one case the pane is placed
directly in a window, and in the other it is placed inside
LOffscreenView.
PowerPlant Advanced Topics PPA–361

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
COffscreenApp inherits from LListener (to listen to the controls in
the windows) and LPeriodical (to animate the spaceships).

Examine the COffscreenApp constructor. It does what any ordinary
application constructor does. It registers the necessary classes and
creates windows. It also sets itself up as an idler so it can animate
the spaceships. There is no offscreen magic going on here.

Each circle view adds kNumCirclePanes to itself. See
CCircleView::FinishCreateSelf() for a good example of
building panes on the fly. Each random circle pane simply paints a
circle.

Examine the ListenToMessage() function in COffscreenApp. All
it does is tell the appropriate circle view to refresh itself. This causes
an update event. When the application receives the update event,
the view draws itself. This is when—for the offscreen drawing—
LOffscreenView performs its magic. You should examine the
LOffscreenView::Draw() function if you have any questions.

Examine the SpendTime() function in COffscreenApp. This is
where the spaceships are animated. After rotating each ship, the
function calls UpdatePort() to redraw the entire spaceship
window. It could wait for an update event (generated by the
rotation calls), but this would result in animation that might skip
frames and appear uneven. Instead, SpendTime() draws
immediately for smoother animation.

Once again, the code is executing the standard PowerPlant drawing
mechanism. It is the presence of LOffscreenView in the visual
hierarchy that makes all the difference.

For further exploration, you might want to experiment with using
LGWorld for the offscreen spaceship pane (or the circle view for
that matter). See “Using LGWorld” for some tips. The effect on the
circle view would probably be more noticeable. Why? Because you
don’t have to redraw all 500 circles every time there’s an update.
The circles don’t move or change. You can simply blit the LGWorld
offscreen bitmap to the screen. You should see a significant speed
improvement.
PPA–362 PowerPlant Advanced Topics

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
Finally, if you’re interested in 3D graphics, you might want to take a
look at the functions in the U3DDrawing class. These are very
simple functions for rendering polygons.

There are many graphics resources available online. The Usenet
newsgroup comp.graphics.algorithms has a good FAQ.

For hidden surface information, there is an FAQ and source code for
Binary Space Partitioning (BSP) Trees at:

<http://www.qualia.com/~bwade/>

This site has a nice sample application done with CodeWarrior that
includes excellent C++ classes for 3D graphics. The sample
demonstrates a 3D rotation controller called “arcball.” The
spaceship shape in this example is based on the original
demonstration of arcball from:

<ftp://ftp.cis.upenn.edu/pub/graphics/arcball/>
PowerPlant Advanced Topics PPA–363

Offscreen Drawing in PowerPlant
Code Exercise for Offscreen Drawing
PPA–364 PowerPlant Advanced Topics

Index

Symbols
~LGWorld() destructor 342
~StOffscreenGWorld() destructor 346

A
AcceptIncoming()

and accepting connection 126
and responder 124
LEndpoint 114

AckSends()
LEndpoint 115, 118

actions
class hierarchy 295
creating classes 300
described 293
in LCaption class 294
posting 295, 301
see also undo

Actions in PowerPlant 293–309
ActivateSelf()

LTableView 207
AddDesc()

UAEDesc 261
AddDropArea()

LDropArea 317
AddFlavors()

LDragTask 315, 316, 326
Adding the Classes

Other file requirements 34
Resolving file conflicts 34–35

AddKeyDesc()
UAEDesc 261

AddLastChildNode()
LCollapsableTree 219

AddLastChildRow()
LHierarchyTable 211

AddPtr()
UAEDesc 261

AddRectDragItem()
LDragTask 315, 316, 326

address, obtaining network 121
AddSubModel()

LModelObject 253
aedt resource 265

AEOM 247
and aete resource 250, 263
and LModelObject 250
and LModelProperty 258
class stored in mModelKind 251
concepts 247
containment hierarchy 252
terminology 248

aete resource 263
editing 265
editing with Resorcerer 265

AllocateThreads()
LThread 61, 72

allocating memory for threads 72, 73
Apple event

adding an AEOM class to your code 266
adding custom events 269
adding properties to your AEOM class 268
classes 249–262
default submodel 270
described 247
implementing 266–271
lazy objects 270
recordability 271
resources 263–266
set tell target 270
strategy 246–248
whose clause 271

Apple Event Object ModelþSee AEOM
Apple Events in PowerPlant 245–292
AssertHandleLocked_() 32
AssertHandleUnlocked_() 32
asynchronous behavior

in threads classes 87–92
asynchronous threads

Speech Manager example 91
attaching an undoer 301

B
background highlighting 321
BeginDrawing()

LGWorld 342, 343
Bind()

and IP address 122
and listening for connection 125
PowerPlant Advanced Topics PPA–365

Index
and responder class 124
LEndpoint 113, 117

Block()
LThread 56, 62

blocked thread 56

C
callback functions in drag and drop 329
CanRedo()

LAction 297
CanUndo()

LAction 297
cell

addressing 198
as STableCell object 199
changing size 224
data storage size 218
drawing 228
finding 229
finding data in 230
finding next selected 216
getting data 225
handling click in 227
highighting 229
location in PowerPlant 202
nesting level 228
order in table 198, 230
refreshing 229
see also table
setting data 225

CellIsSelected()
LTableSelector 215
LTableView 206

CellToIndex()
LTableView 205

CheckForMissingParameters()
UAppleEventMgr 260

click
in drag and drop 321
in table cell 227

Click()
overriding LPane for drag and drop 321, 322

ClickCell()
LTableView 208
overriding 227

ClickInContent()
LWindow 324

ClickSelect()

LTableSelector 215
LTableView 206

ClickSelf()
LHierarchyTable 227
LTableView 208, 227

client
compared to responder 124
creating 120
creating endpoint 121
described 119

client/server
described 119

coerce data in Apple event 259
CompactAndPurgeHeap() 28
CompactHeap() 28
Connect()

LEndpoint 113
context switching in threads 78
CopyImage()

LGWorld 342, 343
CountReadyThreads()

LThread 61
CountSubModels()

LModelObject 254
CreateInternetMapper()

UNetworkFactory 110
CreateTCPEndpoint()

creating endpoint 126
UNetworkFactory 109

creating threads 72
criticality 78
current drop area 317
current thread 55
custom callbacks for drag and drop 328

D
data coherency in threads 77–87
datagram 127
DeactivateSelf()

LTableView 207
DebugCast_() 31
DebugCastConst_() 31
Debugging Classes

PP_DebugConstants.h 21
Debugging in PowerPlant 15–52

Debugging Classes described 17–30
Debugging Code Exercise 38–51
PPA–366 PowerPlant Advanced Topics

Index
Debugging Macros 30–32
Debugging Strategy 16–17
Introduction 15

Debugging Macros
AssertHandleLocked_() 32
AssertHandleUnlocked_() 32
DebugCast_() 31
DebugCastConst_() 31
DisposOf_() 32, 37
FindPaneByID_() 31
ValidateHandle_() 32
ValidateObj_() 32
ValidateOjbect_() 32
ValidatePtr_() 31
ValidateSimpleObject_() 32
ValidateThis_() 32

Debugging PowerPlant Projects 33–38
Adding the classes 34
Configuring Your Project 33–34
Customizing the Debugging Classes 37–38
Installing the Menu 35–37

DebugNew 16, 20
default submodel 270
delaySelect

attribute in drag and drop 322
DeleteThread()

LThread 63, 76
deleting threads 64, 76
Disconnect()

LEndpoint 113
DisposOf_() 32, 37
DoDrag()

LDragTask 315, 316, 326
DoDragDrawing()

LDropArea 329
DoDragInput()

LDropArea 329
DoDragReceive()

LDropArea 318, 328
DoDragSendData()

LDropArea 329
DoForEach()

LQueue 69
LThread 61

DontAckSends()
LEndpoint 115, 118

double bufferingþSee offscreen drawing
drag and drop

adding flavors 315, 326
adding to a pane 319
background highlighting 321
class hierarchy 314
classes 314–320
clicking in background window 321
creating a drag task 324
current drop area 317
custom callback functions 329
custom callbacks 328
delaySelect attribute 322
detecting a drag 324
finding Drag Manager 317, 320
handling click 321
highlighting drop area 327
implementing 320–330
implementing special behavior 327
initiating drag 316, 326
item acceptability 327
multiple items or flavors 325
promise 328
receiving a drop 318, 328
simple technique 324
strategy 312–314
tracking a drag 326

Drag and Drop in PowerPlant 311–338
Drag Manager

finding 317, 320
drag region 315, 316, 325, 326
drag task 324
DragAndDropIsPresent()

LDropArea 317, 320
DragIsAcceptable()

LDropArea 318
DragLib, importing weak 320
DragSelect()

LTableSelector 215
Draw()

LDropFlag 220
LOffscreenView 347

DrawCell()
LSmallIconTable 209
LTableView 207
LTextHierTable 212
overriding 228

DrawDropFlag()
LHierarchicalTable 229

DrawSelf()
PowerPlant Advanced Topics PPA–367

Index
LTableView 207
drop flag

drawing for table row 228
including icons 220

E
EndDrawing()

LGWorld 342, 343
endpointþþSee LEndpoint
EnterCritical()

LThread 61, 78
EnterDropArea()

LDropArea 318, 327
ExecuteSelf()

LUndoer 298
LYieldAttachment 66

ExitCritical()
LThread 61, 78

expansion triangle in table See drop flag

F
Finalize()

in multilevel undo 302
LAction 297

FindCellData()
LTableStorage 217
LTableView 206
parameters 230
search algorithm 230

FindDropArea()
LDropArea 317

FindPaneByID_() 31
FindUndoStatus()

LUndoer 298
FinishCreateSelf()

to attach helpers in table 221
flavors

adding to a drag 315, 326
Flush() 23
FocusDropArea()

LDragAndDrop 319
LDropArea 318, 319

G
gDebugSignal 20
gDebugThrow 20

generic network interface 107
GetAEProperty()

LModelObject 255
GetAmountUnread()

LEndpoint 115
GetCellData()

LTableStorage 217
LTableView 206
parameters 225
uses wide-open cell 207

GetCellHitBy()
LTableView 208

GetClickCount()
in table cell 227

GetColHitBy()
LTableGeometry 213

GetColWidth()
LTableGeometry 213
LTableView 205

GetCurrentThread()
LThread 61

GetDescription()
LAction 297

GetExposedIndex()
LCollapsableTree 219
LHierarchyTable 210

GetFreeThreads()
LThread 61

GetHeader() 23
GetImageCellBounds()

LTableGeometry 213
LTableView 205

GetImportantAEProperties()
LModelObject 256, 257

GetLink()
LLink 68

GetLocalAddress()
LEndpoint 114, 117

GetLocalCellRect()
LTableView 205

GetMacGWorld()
LGWorld 342
StOffscreenGWorld 346

GetMainThread()
LThread 61

GetModelKind()
LModelObject 253
PPA–368 PowerPlant Advanced Topics

Index
GetNestingLevel()
LCollapsableTree 219, 228

GetNextCell()
LTableView 205, 229

GetNextSelectedCell()
LTableView 205, 229

GetOptionalParamDesc()
StAEDescriptor 260

GetParamDesc()
StAEDescriptor 260

GetParentIndex()
LCollapsableTree 219

GetPositionOfSubModel()
LModelObject 253, 254

GetRemoteHostAddress()
LEndpoint 114, 118

GetResult()
LThread 63, 64

GetRowHeight()
LTableGeometry 213
LTableView 205

GetRowHitBy()
LTableGeometry 213

GetSize()
LQueue 69

GetState()
LEndpoint 115, 118

GetStorageSize()
LTableStorage 217

GetSubModelByComplexKey()
whose clauses 271

GetSubModelByName()
LModelObject 254

GetSubModelByPosition()
and laziness 270
LModelObject 254

GetSuperModel()
LModelObject 253

GetTableDimensions()
LTableGeometry 213

GetTableSize()
LTableView 204

GetWideOpenIndex()
LCollapsableTree 219
LHierarchyTable 210

GetWideOpenTableSize()
LHierarchyTable 210

H
HandleAppleEvent()

implementing 269
LModelObject 255, 256

HandleClone()
LModelObject 256, 257

HandleCount()
LModelObject 256, 257

HandleCreateElementEvent()
LModelObject 256
sample code 267

HandleDelete()
LModelObject 256, 257

HandleDragDrawing()
LDropArea 329

HandleDragInput()
LDropArea 329

HandleDragReceive()
LDropArea 317

HandleDragSendData()
LDropArea 329

HandleDragTracking()
LDropArea 317

HandleMove()
LModelObject 256, 257

helper classes for tables 196
hierarchical table described 197
highlight drop area 327
HiliteCell()

overriding 229
HiliteCellActively()

LTableView 207
LTextHierTable 212
overriding 229

HiliteCellInactively()
LTableView 207
LTextHierTable 212
overriding 229

HiliteDropArea()
LDragAndDrop 319
LDropArea 318, 327

HiliteSelection()
overriding 229

I
IndexToCell()

LTableView 205
PowerPlant Advanced Topics PPA–369

Index
initializing threads 70
InMainThread()

LThread 61
InsertChildNodes()

LCollapsableTree 219
InsertChildRows()

LHierarchyTable 211
InsertCols()

LTableGeometry 213
LTableSelector 215
LTableStorage 217
LTableView 204
parameters 222

InsertRows()
effect in hierarchical tables 222
LHierarchyTable 211
LTableGeometry 213
LTableSelector 215
LTableStorage 217
LTableView 204

InsertSibling Nodes()
LCollapsableTree 219

InsertSiblingRows()
LHierarchyTable 210
parameters 223

InsideDropArea()
LDropArea 318, 319, 327

InstallHandlers()
LDropArea 317, 329

Internet Programming in PowerPlant 137–193
inter-thread communication 57, 85–87
InTrackingWindow()

LDropArea 317, 318
IP address

defined 107
IsAckingSends()

LEndpoint 115, 118
IsCurrent()

LThread 62
IsDone()

LAction 297
IsEmpty()

LQueue 69
IsNullCell()

STableCell 202
IsPostable()

LAction 297
overriding in action classes 300

IsSubModelOf()
LModelObject 253

IsValidCell()
LTableView 204

IsValidCol()
LTableView 204

IsValidRow()
LTableView 204

ItemIsAcceptable()
LDropArea 318, 319, 327

L
LAction 296

data members 296
member functions 297
relation to LUndoer and LCommander 294
subclassing 300

laziness 270
LCollapsableTree 218

member functions 219
LColumnView 208
LCommander 295
LCommanderTree 24–25
LDebugMenuAttachment 18–19

constructor for 20
destructor for 20
InitDebugMenu() 20, 36
InstallDebugMenu() 20, 21, 35, 36, 37
SetDebugInfoDefaults() 20, 36, 37

LDebugMenuAttachment.h 38
LDebugStream 21–23

Flush() 23
GetHeader() 23
mFlushLocation 22
PutBytes() 23
SetFilename() 23
TimeStamp() 23
WriteBlock() 23
WriteData() 23

LDocument
as example of LModelObject 251

LDragAndDrop 319–320
member functions 319

LDragTask 314–316
data members 314
member functions 315

LDropArea 316–319
PPA–370 PowerPlant Advanced Topics

Index
custom callback functions 329
data members 316
member functions 318
static functions 317

LDropFlag 220
LeaveDropArea()

LDropArea 318, 327
LEndpoint 112, 117
LEndpoint() constructor 113, 117
LEventSemaphore 67
LGWorld 341–345

data members 341
in non-PowerPlant code 345
limitations 344
member functions 342
sample code 350
using 349

LGWorld() constructor 342
LHeapAction 27
LHierarchyTable 209

data members 210
member functions 210

LInternetIPAddress
and binding to port 122
and servers 125

Listen()
LEndpoint 114
responding to network connection 126

LLink 68
LModelDirector 257
LModelObject 250–257

and AEOM 248, 250
class hierarchy 251
constructor 252
containment hierarchy 252
data members 251
handling events in 255
handling properties in 255
LDocument as example 251
LWindow as example 251
managing elements in 252

LModelProperty 257
LMutexSemaphore 67

example of use 81
LNodeArrayTree 219
LNTable (obsolete class) 196
LOffscreenView 347

and Constructor 347

using 348
LPaneTree 25–27
LQueue 68

data members 69
member functions 69

LSemaphore 66
data members 66

LSharedQueue 70
inter-thread communication 85

LSimpleThread 64–65
LSmallIconTable 209
LTableArrayStorage 217

constructors 218
LTableGeometry 212

member functions 213
LTableMonoGeometry 213
LTableMultiGeometry 214
LTableMultiSelector 216
LTableSelector 214

member functions 215
LTableSingleSelector 215
LTableStorage 216

member functions 217
LTableView 202

as example class 203
cell access functions 205
cell geometry functions 205
cell management functions 204
cell selection functions 206
data members 203
data storage functions 206
drawing and clicking functions 207
services 204
setting helper classes 203

LTCPEndpoint 112–117
functions 113

LTEClearAction 299
LTECopyAction doesn’t exist 299
LTECutAction 299
LTEPasteAction 299
LTETextAction 299
LTETypingAction 299
LTextColumn 209
LTextHierTable 212
LThread 59–64

constructor 72
data members 60
PowerPlant Advanced Topics PPA–371

Index
state-related functions 62
static member functions 61
vital functions 62

LThread()
LThread 62

LUDPEndpoint 117–119
functions 117

LUndoer 298
and redo 298
as attachment to LCommander 294
member functions 298

LWindow
as example of LModelObject 251

LYieldAttachment 66

M
MacsBug 16
main thread, creating 71
MakeAppleEvent()

UAppleEventsMgr 262
MakeBooleanDesc()

UAEDesc 261
MakeDragRegion()

LDragTask 315, 316, 326
MakeInsertionLoc()

UAEDesc 261
MakeRange()

UAEDesc 261
mapper

created by UNetworkFactory 107
creating with UNetworkFactory 109

mBounds
LGWorld 341
StOffscreenGWorld 345

mFlushLocation 22
mMacGWorld

LGWorld 341
StOffscreenGWorld 345

mModelKind 251
modifying thread state 75
mSaveDevice

LGWorld 341
StOffscreenGWorld 345

mSavePort
LGWorld 341
StOffscreenGWorld 345

mSubModels 251

mSuperModel 251

N
nesting level 228
networking

accepting connection 126
binding to local port 121
classes 108–119
client and responder compared 124
client described 119
client/server described 119
connecting to a server 122
creating a server 124
creating client 120
creating client endpoint 121
disconnect from server 123
generic interface 107
implementing 119–128
obtaining an address 121
protocol for server 124
rejecting connection 126
responding to connection 126
send data 123
server described 119
strategy 106–108
TCP ports 112

Networking in PowerPlant 103–136
next of kin in threads 60, 63
Next()

LSharedQueue 70, 85
NextGet()

LQueue 69
use in LSharedQueue 70

NextPut()
LQueue 69
LSharedQueue 85

notifier
and UNetworkFactory functions 109

O
offscreen drawing

classes 341–348
implementing 348–363
strategy 340

Offscreen Drawing in PowerPlant 339–363
operator !=()

STableCell 202
PPA–372 PowerPlant Advanced Topics

Index
operator ==()
STableCell 202

operator new
use with threads 72

P
pane

adding drag and drop 319
PointInDropArea()

LDragAndDrop 319
LDropArea 318, 319

port
binding to local 121

PostAction()
executing action 301
LCommander 295
LUndoer 298
LUndoer and LCommander compared 299

PostAnAction()
LCommander 295

posting an action 295, 301
preemptive threads 59, 73
promise in drag and drop 328
protocol for network server 124
PurgeHeap() 28
PutBytes() 23

Q
QC 16, 20

R
ready thread 55
Receive()

LEndpoint 115
ReceiveDragItem()

LDropArea 318, 319, 328
receiving a drop 318, 328
recordable application 271
redo See undo
Redo()

LAction 297
RedoSelf()

in text action classes 299
LAction 297
overriding in action classes 300

RefreshCell()

LTableView 207, 229
RefreshCellRange()

LTableView 207, 229
RejectIncoming()

and rejecting connection 126
LEndpoint 114

Remove()
LQueue 69

RemoveCols()
LTableGeometry 213
LTableSelector 215
LTableStorage 217
LTableView 204

RemoveDropArea()
LDropArea 317

RemoveNode()
LCollapsableTree 219

RemoveRows()
LHierarchyTable 211
LTableGeometry 213
LTableSelector 215
LTableStorage 217
LTableView 204
parameters 223

RemoveSubModel()
LModelObject 253

Reset()
LEventSemaphore 67

Resorcerer
and aete resource 265

responder 124
compared to client 124

result
in LSimpleThread 65
of a thread 63

Resume()
LThread 55, 62
to run a thread 74
use in main thread 71

rows, insert requires wide-open index 211
Run()

effect on deleting a thread 76
LSimpleThread 64
LThread 62, 63
not for running a thread 75
UMainThread 65
use in main thread 71

running a thread 63, 74
PowerPlant Advanced Topics PPA–373

Index
S
ScrampleHeap() 28
scriptabilityþSee Apple event
SelectAllCells()

LTableSelector 215
LTableView 206

SelectCell()
LTableSelector 215
LTableView 206

SelectCellBlock()
LTableMultiSelector 216

SelectionChanged()
LTableView 206, 227

semaphore
described 57
using 80–84

send data, networking 123
Send()

and sending data 123
LEndpoint 114

SendAppleEvent()
UAppleEventsMgr 262

SendAppleEventWithReply()
UAppleEventsMgr 262

SendSelfAE()
recordability 271

server
accepting connection 126
and responder class 124
choosing a protocol 124
connecting to 122
creating 124
described 119
disconnecting 123
listening for connection 125
rejecting connection 126
responding to connection 126

set tell target 270
SetAEProperty()

LModelObject 255
SetBounds()

LGWorld 342
LGWorld example 344

SetCell()
STableCell 202

SetCellData()
LTableStorage 217

LTableView 206
parameters 225
uses wide-open cell 207

SetColWidth()
LTableGeometry 213
LTableView 205
parameters 224

SetDragDrawingProc() (Mac OS) 330
SetDragInputProc() (Mac OS) 330
SetDragSendProc() (Mac OS) 330
SetFilename() 23
SetLaziness

LModelObject 270
SetLink()

LLink 68
SetModelKind()

LModelObject 253
SetNextOfKin()

LThread 63, 64
SetResult()

LThread 62, 63
SetRowHeight()

LTableGeometry 213
LTableView 205
parameters 224

SetSuperModel()
LModelObject 253

SetTableGeometry()
LTableView 204

SetTableSelector()
LTableView 204

SetTableStorage()
LTableView 204

SetTellTarget()
LModelObject 270

SetUseSubModelList()
LModelObject 252

ShowDragHilite() (Mac OS) 327
Signal()

LEventSemaphore 67
LMutexSemaphore 67
LSemaphore 56, 67
using with semaphores 81

Simple Objects
Defined 32

Sleep()
LThread 56, 62
PPA–374 PowerPlant Advanced Topics

Index
sleeping thread 56
Spotlight 16
STableCell 202

in calls to get/set data 207
member functions 202

StAEDescriptor 259
encoding data with 260
member functions 260

state transition in threads 56
StCritical 68

advantages of 78
SThreadParamBlk 90
StMutex 68

in mutual exclusion strategy 83
StOffscreenGWorld 345–347

data members 345
member functions 346
sample code 349
using 348

StOffscreenGWorld() constructor 346
Suspend()

LThread 55, 62
suspended thread 55
SwapContext()

calling inherited 80
LThread 62, 71, 79

T
T_LISTEN 126
table

accessing data directly 226
addressing cell 198
cell ordering 198, 230
changing row and column size 224
class architecture 196
class hierarchy 200
classes 199–220
creating 221
creating helper object 221
drawing a cell 228
drawing drop flag 228
finding data in 230
finding particular cell 229
getting cell data 225
handling click in cell 227
helper class hierarchies 200
helper classes 196
hierarchical described 197

highlighting cells 229
implementing 220–231
inserting column 222
inserting rows 222
managing rows and columns 222–224
nesting level of row 228
refresh cells 229
removing rows and columns 223
scrolling 231
see also cell
selection changed 227
setting cell data 225
setting helper classes 203
strategy 196–199

TableIndexT 198
Tables in PowerPlant 195–244
TCP

creating endpoint 126
ports 112

terminology resourceþSee aete resouce
TheBoolean()

UExtractFromAEDesc 258
TheEnum()

UExtractFromAEDesc 258
TheInt16()

UExtractFromAEDesc 258
TheInt32()

UExtractFromAEDesc 258
ThePoint()

UExtractFromAEDesc 258
ThePString()

UExtractFromAEDesc 258
TheRect()

UExtractFromAEDesc 258
TheRGBColor()

UExtractFromAEDesc 258
TheType()

UExtractFromAEDesc 258
Thread Manager

finding 70
ThreadAsynchronousResume()

LThread 56
ThreadBeginCritical() (Mac OS) 57, 68
ThreadEndCritical() (Mac OS) 57, 68
ThreadProc function 64
threads

allocating memory 73
allocating memory for 72
PowerPlant Advanced Topics PPA–375

Index
asynchronous operations 87–92
blocked 56
calling constructor 72
class hierarchy 58
classes 58–70
Context Switching 78
context switching 78
creating 72
creating main 71
critical data 78
current 55
data coherency 77–87
deleting 64, 76
finding Thread Manager 70
implementing 70–77
initializing 70
inter-thread communication 57, 85–87
modifying state 75
next of kin 60, 63
preemptive 59, 73
ready 55
result 63, 65
running 63, 74
semaphore described 57
sleeping 56
state 55–56
state transition diagram 56
strategy 54–58
suspended 55
using semaphores 80–84
waiting 56

Threads in PowerPlant 53–101
ThreadsLib, importing weak 71
TimeStamp() 23
ToggleAction()

LUndoer 298
ToPoint()

STableCell 202
TrackClick()

LDropFlag 220
TrackDrag() (Mac OS) 316, 325
tracking a drag 326

U
UAEDesc 261

member functions 261
UAEGizmos 249, 270
UAppleEventsMgr 262

member functions 262
UDebugNew 29

ErrorHandler() 29
Forget() 29
GetPtrSize() 29
InstallDefaultErrorHandler() 29
Report() 29
SetErrorHandler() 29
ValidateAll() 29
ValidatePtr() 29

UDebugUtils 29
UDP 127
UExtractFromAEDesc 258

data coercion 259
member functions 258

UHeapUtils 27–28
CompactAndPurgeHeap() 28
CompactHeap() 28
PurgeHeap() 28
ScrampleHeap() 28

UMainThread 65
UMemoryEater 28
Unbind()

LEndpoint 113, 117
undo

attaching undoer 301
classes 294–299
command messages 298
implementing 299–302
menu strings 296
multilevel 301
see also actions, LAction
strategy 293

Undo()
LAction 297

UndoSelf()
in text action classes 299
LAction 297
overriding in action classes 300

UNetworkFactory 109
described 107
functions 109

UnhiliteDropArea()
LDropArea 318, 327

UnselectAllCells()
LTableSelector 215
LTableView 206

UnselectCell()
PPA–376 PowerPlant Advanced Topics

Index
LTableSelector 215
LTableView 206

UpdateGWorld() (Mac OS) 343
UProcess 30
User Datagram Protocol 127
UValidPPob 23, 30
UVolume 30

V
ValidateHandle_() 32
ValidateObj_() 32
ValidateObject_() 32
ValidatePtr_() 31
ValidateSimpleObject_() 32
ValidateThis_() 32

W
Wait()

LMutexSemaphore 67
LSemaphore 56, 67
using with semaphores 81

waiting thread 56
WaitMouseMoved() (Mac OS) 324
Wake()

LThread 56, 62
WriteBlock() 23
WriteData() 23

Y
yield with LYieldAttachment 66
Yield()

LThread 55, 61, 66

Z
ZoneRanger 16, 19
PowerPlant Advanced Topics PPA–377

Index
PPA–378 PowerPlant Advanced Topics

	Introduction
	What’s in PowerPlant Advanced Topics
	What’s New in PowerPlant Advanced Topics
	What You Should Know
	Chapter Organization
	Starting Points

	Debugging in PowerPlant
	Introduction to Debugging in PowerPlant
	Debugging Strategy
	Debugging Classes
	LDebugMenuAttachment
	LDebugStream
	LCommanderTree
	LPaneTree
	LHeapAction
	UHeapUtils
	UMemoryEater
	UDebugUtils
	UDebugNew
	UProcess
	UVolume
	UValidPPob
	Debugging Macros
	FindPaneByID_(ContainerView, PaneID, PaneClassType)
	DebugCast_(ptr, BaseType, ResultType)
	ValidatePtr_(ptr)
	ValidateHandle_(Handle)
	ValidateObject_(obj) / ValidateObj_(obj)
	ValidateThis_()
	ValidateSimpleObject_(obj)
	AssertHandleLocked_(handle) / AsserHandleUnlocked_(handle)
	DisposOf_(obj)

	Debugging PowerPlant Projects
	Configuring Your Project
	Adding the Classes
	Other requirements
	Resolving file conflicts

	Installing the Menu
	Customizing the Debugging Classes

	Summary of Debugging in PowerPlant
	Debugging Code Exercise
	Where To Go From Here

	Threads in PowerPlant
	Introduction to Threads in PowerPlant
	The Thread Strategy
	Thread States
	Semaphores
	Inter-Thread Communication

	Thread Classes
	LThread
	LThread attributes
	LThread Behaviors
	The Run() function

	LSimpleThread
	UMainThread
	LYieldAttachment
	LSemaphore
	LEventSemaphore
	LMutexSemaphore
	StMutex
	StCritical
	LLink
	LQueue
	LSharedQueue

	Implementing Threads in PowerPlant
	Initializing Threads
	Determine if the Thread Manager is present
	Create the main thread

	Creating Threads
	Allocating memory for a thread
	Calling the LThread constructor

	Running a Thread
	Modifying Thread State
	Deleting Threads

	Data Coherency
	Criticality
	Context Switching
	Using Semaphores
	Inter-Thread Communication

	Asynchronous Operations
	Summary of Threads in PowerPlant
	Code Exercise for Threads

	Networking in PowerPlant
	Introduction to Networking in PowerPlant
	Where to Learn More About Networking
	Software Requirements

	Networking Strategy
	Generic Network Interface
	Other Classes
	Strategic Summary

	Networking Classes
	UNetworkFactory
	LInternetAddress
	LTCPEndpoint
	LUDPEndpoint

	Implementing a Network-Savvy Application
	Creating a Client
	Obtaining an Address
	Creating a Client Endpoint
	Binding to a Local Port
	Connecting to a Server
	Sending Data
	Receiving Data
	Disconnecting from a Server
	Handling a Disconnect Request
	Creating a Server
	Listening for Incoming Connections
	Responding to Incoming Connections
	Implementing Threads
	Connectionless Datagram Communications

	Summary of Networking in PowerPlant
	Code Exercise for Networking
	SimpleClient
	SimpleServer

	Internet Programming in PowerPlant
	Introduction to Internet Programming in PowerPlant
	Where to Learn More About Internet Protocols
	Software Requirements

	Internet Programming Strategy
	Generic Internet Protocol Interface
	Specific Internet Protocol Interfaces
	Internet Messages
	General Utilities
	Strategic Summary

	Internet Classes
	LInternetProtocol
	LSMTPConnection
	LPOP3Connection
	LHTTPConnection
	LFTPConnection

	LInternetResponse
	LSMTPResponse
	LPOP3Response
	LHTTPResponse
	LFTPResponse

	LInternetMessage
	LMailMessage
	LHTTPMessage

	Internet Class Utilities
	LDynamicBuffer
	LHeaderField
	Other Classes

	Implementing an Internet Enabled Application
	Choosing a Protocol
	Creating a Protocol Client
	Preparing Content
	Addressing the Remote Computer
	Creating the Protocol Thread
	Creating a Connection
	Sending Content to a Server
	Receiving Responses From a Server
	Listening For Progress Messages
	Closing Down a Connection
	Handling Abnormal Conditions

	Summary of Internet Protocol Usage in PowerPlant
	Code Exercise

	Tables in PowerPlant
	Introduction to Tables in PowerPlant
	Table Strategy
	Table Architecture
	General Table Implementation

	Table Classes
	STableCell
	LTableView
	LTableView Services
	Row, column, and cell management
	Accessing cells
	Cell geometry
	Cell selection
	Data storage
	Drawing and clicking

	LColumnView
	LTextColumn
	LSmallIconTable
	LHierarchyTable
	LTextHierTable
	LTableGeometry
	LTableMonoGeometry
	LTableMultiGeometry
	LTableSelector
	LTableSingleSelector
	LTableMultiSelector
	LTableStorage
	LTableArrayStorage
	LCollapsableTree
	LNodeArrayTree
	LDropFlag

	Implementing Tables in PowerPlant
	Creating a Table
	Creating helper objects
	Adding rows and columns

	Managing Rows and Columns
	Inserting columns
	Inserting rows
	Removing rows and columns
	Changing row and column size

	Setting Cell Data
	Getting Cell Data
	Handling Clicks in a Cell
	Responding to Selections
	Drawing a Cell
	Drawing a cell
	Nesting level
	The Drop Flag
	Highlighting a cell
	Refreshing a cell

	Finding Cells
	Finding Data in a Table
	Scrolling a Table

	Summary of Tables in PowerPlant
	Code Exercise for Tables

	Apple Events in PowerPlant
	Introduction to Apple Events in PowerPlant
	Where to Learn More About Apple Events

	Apple Event Strategy
	Apple Event Classes
	LModelObject
	Managing elements
	Handling properties
	Handling events

	LModelDirector
	LModelProperty
	UExtractFromAEDesc
	StAEDescriptor
	UAEDesc
	UAppleEventsMgr

	Apple Event Resources
	The ‘aete’ Resource
	The ‘aedt’ Resource
	Editing Apple Event Resources

	Implementing Apple Events in PowerPlant
	Adding Classes
	Adding Properties
	Adding Custom Apple Events
	Beyond the Basics
	Laziness
	Default submodels
	UAEGizmos
	Whose clauses
	Recordability

	Code Exercise for Apple Events
	Edit Apple Event Resources
	Create a Model Object in the Application
	Add Model Properties to the Class
	Add a Custom Event to the Application
	Improve HandleCreateElementEvent()

	Actions in PowerPlant
	Introduction to Actions in PowerPlant
	The Undo Strategy
	Action Classes
	LCommander
	LAction
	LUndoer
	LTETextAction

	Implementing Undo in PowerPlant
	Create Action Classes
	Attach an Undoer
	Post an Action
	Implement Multilevel Undo

	Summary of Undo in PowerPlant
	Code Exercise for Actions

	Drag and Drop in PowerPlant
	Introduction to Drag and Drop in PowerPlant
	Drag and Drop Strategy
	Drag and Drop Classes
	LDragTask
	LDropArea
	LDragAndDrop

	Implementing Drag and Drop in PowerPlant
	Looking for the Drag Manager
	Handling Clicks
	Identifying a Drag
	Creating a Drag Task
	The simple approach
	The flexible approach

	Tracking a Drag
	Receiving a Drop
	Providing Custom Drag Behavior

	Summary of Drag and Drop in PowerPlant
	Code Exercise for Drag and Drop

	Offscreen Drawing in PowerPlant
	Introduction to Offscreen Drawing in PowerPlant
	Offscreen Drawing Strategy
	Offscreen Drawing Classes
	LGWorld
	LGWorld Limitations

	StOffscreenGWorld
	LOffscreenView

	Implementing Offscreen Drawing in PowerPlant
	Using LOffscreenView
	Using StOffscreenGWorld Directly
	Using LGWorld

	Code Exercise for Offscreen Drawing

	Index

