
Carbon Events in PowerPlant

Rick Aurbach
Aurbach & Associates, Inc.

October 5, 2006

Abstract

The standard PowerPlant distribution includes initial, incomplete support for
Carbon Events. Here, I discuss issues I encountered developing products that
use Carbon Events and the modifications I made to the PowerPlant sources
to deal with them. This work also led directly to a re-implementation of
PowerPlant’s contextual menu processing, which is also included.

Credits

Eric Schlegel and contributors to the Carbon-Dev Mailing List have provided
me with invaluable assistance in understanding and resolving some of the visual
artifacts this work attempts to solve. I have borrowed heavily from the work
that John C. Daub (and his collaborators) did in the original PowerPlant
implementation of contextual menu support. And finally, I’d like to thank Liz
Aurbach for uncovering many of the visual artifacts that this work addresses.

Contents

Issues with PowerPlant 2.2.5 2

Existing Carbon Event Handlers . 2

What’s Missing . 4

Other Goals of This Work . 5

PowerPlant Changes 5

Added Files 10

Contextual Menu Strategy 11

Details . 12

Incorporating Contextual Menus . 17

Subclassing Issues . 18

Example . 19

Carbon Events in PowerPlant rick@aurbach.com 1

mailto:rick@aurbach.com

Issues with PowerPlant 2.2.5

Issues with PowerPlant 2.2.5

PowerPlant 2.2.5 includes fledgling support for Carbon Events. The presence of this
code is controlled by the PP_Uses_Carbon_Events directive, which has a default value
of false in PP_Macros.h.

If PP_Uses_Carbon_Events is true, then

• New windows are created with the kWindowStandardHandlerAttribute attribute
(implemented in two places in UCarbonDesktop.cp and two places in UWMgr20-
Desktop.cp).

• LWindow includes the data member mEventHandlers, which is a pointer to an
associated LWindowEventHandlers object.

• LWindow manages its associated LWindowEventHandlers object by

– initializing the mEventHandlers data member to nil in its constructors.
– deleting the LWindowEventHandlers object in its destructor.
– creating and initializing (i.e., installing) the object in its FinishCreateSelf

method.

This means that when Carbon Events are enabled in PowerPlant, a set of standard
event handlers are required. Before delving into what each of these handlers does, we
need to understand why they are needed at all.

In a modern Carbon application, windows contain a hierarchy of embedded controls. In
this context, a control is an object which is known to (i.e., registered with) the OS and
which has a standard API that the OS can use to communicate with the controls. In
particular, the hierarchy of controls in a window is known to the OS, so that appropriate
Carbon Events can be sent directly to them. In a modern Carbon application, only
controls are embedded in a window.

In contrast, a traditional PowerPlant application handles all event processing inter-
nally. It explicitly fields all events, determines which objects should receive them, and
dispatches these events internally. PowerPlant objects are not necessarily controls —
indeed, a number of important PowerPlant objects are derived from LPane or LView and
are not controls at all. As long as PowerPlant is solely responsible for event dispatching,
that is just fine.

However, when PP_Uses_Carbon_Events is true, we are in a hybrid situation. A
window will contain some controls (basically Appearance objects∗) and some non-control
objects. This causes a problem because both the Carbon Event processing system and
PowerPlant will attempt to process and dispatch events, in conflict with one another.

The purpose of the handlers implemented in the LWindowEventHanders object is to
provide fixes for these inherent incompatibilities.

Existing Carbon Event Handlers

The implementation of LWindowEventHandlers in PowerPlant 2.2.5 provides handlers at
the window level (i.e., there are no control-level handlers) for the following events:

∗With important exceptions!

2 rick@aurbach.com Carbon Events in PowerPlant

mailto:rick@aurbach.com

Existing Carbon Event Handlers Issues with PowerPlant 2.2.5

{kEventClassWindow, kEventWindowDrawContent}
This handler calls the window’s Draw method and returns noErr.
The standard window handler processes this event by calling DrawControls. In-
stead, drawing is done by the PowerPlant drawing system.

{kEventClassWindow, kEventWindowActivated}
This handler calls the window’s Activate method and returns noErr.
The standard window handler processes this event by sending a kEventWindow-
HandleActivate event to itself (Mac OS 10.3 or later) or calling ActivateControl
on the window’s root control. Instead, activation is handled by the standard
PowerPlant methods.

{kEventClassWindow, kEventWindowDeactivates}
This handler calls the window’s Deactivate method and returns noErr.
The standard window handler processes this event by sending a kEventWindow-
HandleDeactivate event to itself (Mac OS 10.3 or later) or calling Deactivate-
Control on the window’s root control. Instead, deactivation is handled by the
standard PowerPlant methods.

{kEventClassWindow, kEventWindowClickContentRgn}
This handler converts the event into a traditional EventRecord, passes the Event-
Record to the window’s ClickInContent method and returns noErr.
The standard window handler processes this event by checking for contextual menu
clicks and clicks on controls, and sending kEventWindowContextualMenuSelect,
kEventControlClick, and kEventWindowHandleContentClick events as appro-
priate. Instead, this handler connects mouse clicks to the standard PowerPlant
event-dispatching system.

{kEventClassWindow, kEventWindowGetMinimumSize}
This handler calls the window’s GetMinMaxSize method, sets the kEventParam-
Dimensions parameter based on the returned value and returns noErr.
On Mac OS 10.2 and later, the standard window handler processes this event by
calling GetWindowResizeLimits and returning the size obtained in the kEvent-
ParamDimensions parameter. On pre-10.2 systems, it does nothing. Instead, this
handler uses the size information stored by PowerPlant for all OS versions.

{kEventClassWindow, kEventWindowGetMaximumSize}
This handler calls the window’s GetMinMaxSize method, sets the kEventParam-
Dimensions parameter based on the returned value and returns noErr.
On Mac OS 10.2 and later, the standard window handler processes this event
by calling GetWindowResizeLimits and return the size obtained in the kEvent-
ParamDimensions parameter. On pre-10.2 systems, it does nothing. Instead, this
handler uses the size information stored by PowerPlant for all OS versions.

{kEventClassWindow, kEventWindowBoundsChanged}
This handler gets the value of the event’s attributes (kEventParamAttributes),
passes them to the window’s AdaptToBoundsChange method, and returns noErr.
In Mac OS X v10.2 and later, the standard window handler can receive this event
under the following conditions:

• the window uses live resizing (if the kWindowLiveResizeAttribute attribute
is set).

Carbon Events in PowerPlant rick@aurbach.com 3

mailto:rick@aurbach.com

Issues with PowerPlant 2.2.5 What’s Missing

• the user is the one resizing the window

• an update event for the window exists in the event queue

If these conditions are met, the standard window handler removes the update
event from the event queue and sends it to the event dispatcher target. Doing so
simplifies redrawing window content during live resizing.

Instead, this handler uses the AdaptToBoundsChange method (designed to handle
window state changes which don’t occur via the usual PowerPlant methods) to
make the necessary changes to the window’s state and to record the changes in
the appropriate PowerPlant internal data members.

{kEventClassWindow, kEventWindowZoom}
This handler calls the window’s SendAESetZoom method and returns noErr.

The standard window handler zoom’s the window using ZoomWindowIdeal then,
if successful, sends a kEventWindowZoomed event. Instead, this handler calls
SendAESetZoom, which is the same method called when the user clicks in the
zoom box in a traditional PowerPlant application.

{kEventClassWindow, kEventWindowClose}
This handler calls the window’s ProcessCommand method, passing it cmd_Close
and returns noErr.

The standard window handle calls DisposeWindow. This handler invokes the
standard PowerPlant actions associated with closing a window, including checking
whether the document is dirty, etc.

{kEventClassMouse, kEventMouseMoved}
This handler converts the event to an EventRecord, retrieves the window’s current
content bounds (by calling GetWindowBounds), and testing the current mouse
location. If the mouse is in the window’s contents region, the window’s Adjust-
ContentMouse method is called; otherwise, the cursor is set to the arrow.

The behavior of the standard window handler to this message is not documented,
but presumably involves sending events useful for adjusting the mouse cursor as
the mouse enters and leaves appropriate control parts. This method uses the
standard PowerPlant mechanism instead.

What’s Missing

The above logic handles most situations, but fails to address a number of special cases.

• The standard PowerPlant text objects are not implemented as controls. Therefore,
if you use them (instead of alternatives, such as J.W. Walker’s CCarbonEditText∗

class), there will be a number of problems because not all events will be properly
routed to them.

• The click handler bypasses normal contextual menu click detection, making im-
plementation of contextual menu clicks difficult.

∗http://www.jwwalker.com/pages/ccarbonedittext.html

4 rick@aurbach.com Carbon Events in PowerPlant

http://www.jwwalker.com/pages/ccarbonedittext.html
mailto:rick@aurbach.com

Other Goals of This Work PowerPlant Changes

• Drawing of appearance objects can occur without sending a kEventWindowDraw-
Content event. When this occurs, bad things can happen because the PowerPlant
object may not have been properly focused.
Moreover, appearance objects which derive from LControlView will not redraw
subviews which are not Carbon controls.

• If a moveable modal dialog enables menu items, the menus are not always updated
when the dialog is shown.

The primary goal of this work is to improve the way PowerPlant functions when Carbon
Events are enabled.

Other Goals of This Work

Beyond the obvious goal of providing a more complete and robust implementation of
Carbon Event handing within a standard PowerPlant application, this work includes
some related work involving contextual menus.

The original implementation of contextual menus in PowerPlant was developed by John
C. Daub and was based on the Contextual Menu Manager APIs. This new implemen-
tation leverages the contextual menu support built in to Carbon and provides some
features which were difficult to implement with John’s original design.

• Provides an inheritance mechanism so that visual structure (such as a window’s
subview and its subviews) can display a single common contextual menu with
minimal effort.

• Allow users to implement contextual menus both via attachments and via coding
subclasses.
When creating a custom visual-object subclass for an application, it can be conve-
nient to build contextual menu support for that object directly into the subclass,
rather than depending on an attachment. But when adding a contextual menu to
a standard visual object, an attachment allows this to happen without requiring
subclassing.

• Provide both static and dynamic contextual menus. The standard attachment
supports a statically-defined contextual menu. However, in some applications it
is desirable to customize the menu itself based on application context or (dare we
say it?) mode.

We will begin by reviewing changes to the PowerPlant package, then discussing the
implementation strategies for contextual menus.

PowerPlant Changes

PP_Macros.h

Added a new conditional compilation directive (PP_Uses_ContextMenus) to enable the
contextual menu support. This symbol is automatically set to false unless PP_Uses_-
Carbon_Events is true.

Carbon Events in PowerPlant rick@aurbach.com 5

mailto:rick@aurbach.com

PowerPlant Changes

PP_Messages.h

I added cmd_Help (with a value of 28) because such a symbol is generally useful in
applications which provide interactive help to their users.

Define the msg_ContextMenu message. This message is sent to attachments to cause
them to display and process a contextual menu.

PP_Resources.h

Define str_HelpMenuTitle as a symbol for the STR# string index for the title of the
Help menu item in a contextual menu.

PP Copy & Customize.ppob

Adds “Help” as a standard string. This string is used for the title of the Help menu item
in a contextual menu.

LWindowEventHandler

In the .h file, defined the InputText method and the ShowWindow method.

In InstallEventHandlers, added code to install the InputText and ShowWindow han-
dlers.

If PP_Uses_ContextMenus is true, add code to the ClickContentRgn handler to de-
tect and process contextual menu clicks. See the section “Contextual Menu Strategy
beginning on page 11 for a more detailed discussion.

Add code to the ClickContentRgn handler to execute application-level attachments
before calling the window’s ClickInContent method.

1 i f (LCommander : : GetTopCommander()−>
LAttachable : : ExecuteAttachments (msg_Event , &c l i ckEvent)) {

mWindow−>ClickInContent (c l i ckEvent) ;
4 }

This change is needed to support LInPlaceEditField and related objects that depend on
application-level attachments being executed in response to mouse clicks.

Add the InputText event handler to connect the processing of standard PowerPlant
text objects (such as LEditText) with event processing.

OSStatus
2 LWindowEventHandlers : : InputText (

EventHandlerCal lRef /∗ i nCa l lRe f ∗/ ,
EventRef inEventRef)

5 {
EventRecord event ;
event . what = keyDown ;

8 event . when = : : EventTimeToTicks (: : GetEventTime (inEventRef)) ;
event . where . h = event . where . v = 0 ;

6 rick@aurbach.com Carbon Events in PowerPlant

mailto:rick@aurbach.com

PowerPlant Changes

11 EventRef rawKey ;
: : GetEventParameter (inEventRef ,

kEventParamTextInputSendKeyboardEvent , typeEventRef ,
14 n i l , s izeof (EventRef) , n i l , &rawKey) ;

UInt32 keyCode = 0 ;
UInt32 mod i f i e r s = 0 ;

17 char charCode = 0 ;
: : GetEventParameter (rawKey ,

kEventParamKeyMacCharCodes , typeChar , n i l , s izeof (char) ,
20 n i l , &charCode) ;

: : GetEventParameter (rawKey , kEventParamKeyCode , typeUInt32 ,
n i l , s izeof (UInt32) , n i l , &keyCode) ;

23 : : GetEventParameter (rawKey , kEventParamKeyModifiers , typeUInt32 ,
n i l , s izeof (UInt32) , n i l , &mod i f i e r s) ;

26 event . message = ((keyCode & 0x000000FF) << 8) + charCode ;
event . mod i f i e r s = mod i f i e r s ;

29 // Check i f the k e y s t r o k e i s a Menu Equ iva l en t
SInt32 menuChoice ;
CommandT keyCommand = cmd_Nothing ;

32 LMenuBar∗ theMenuBar = LMenuBar : : GetCurrentMenuBar () ;

i f (theMenuBar != n i l) {
35 keyCommand = theMenuBar−>FindKeyCommand(event , menuChoice) ;

}

38 LCommander ∗ tg t = LCommander : : GetTarget () ;
i f (tg t != n i l) {

i f (keyCommand != cmd_Nothing) {
41 StUnhil iteMenu u n h i l i t e r ;

LCommander : : SetUpdateCommandStatus (true) ;
tgt−>ProcessCommand (keyCommand , &menuChoice) ;

44 } else {
tgt−>ProcessKeyPress (event) ;

}
47 }

return noErr ;
50 }

Since LEditText is not a registered control, it does not receive keyboard events directly.
Without this handler, standard keyboard events would be sent to it via the WNE
handlers, but events such as field-to-field tabbing (which are intercepted before the
WNE handler) are not handled properly.

Add the ShowWindow event handler.

This handler was added to resolve cases where a new window was being drawn incom-
pletely (i.e., not all of its content appeared when the window was first drawn). Here’s
my conjecture about what happens:

1 OSStatus
LWindowEventHandlers : : ShowWindow(

EventHandlerCal lRef /∗ i nCa l lRe f ∗/ ,
4 EventRef /∗ inEventRef ∗/)

Carbon Events in PowerPlant rick@aurbach.com 7

mailto:rick@aurbach.com

PowerPlant Changes

{
mWindow−>Refresh () ;

7

return eventNotHandledErr ;
}

Conjecture. It is common practice in PowerPlant to create new windows as initially
invisible, then to show them only after building their substructure, loading content into
fields, etc. (to reduce flicker). However, when PP_Uses_Carbon_Events is true, drawing
is triggered by the kEventWindowDrawContent event, which is sent to the window before
the window is shown. With this order of operations, a window which is constructed
initially invisible will not get the needed refresh when it is shown.

LAMControlImp

If PP_Uses_Carbon_Events is true,

• Defined FinishCreateSelf and DoDrawEvent methods in the .h file.

• In the FinishCreateSelf install a Carbon Event Handler for the kEventControl-
Draw method.

• Implement the DoDrawEvent method. This Carbon Event handler calls the Con-
trolPane’s FocusDraw method and returns eventNotHandledErr, so drawing will
occur in a focused context.

OSStatus
LAMControlImp : : DoDrawEvent (

3 EventHandlerCal lRef /∗ i nCa l lRe f ∗/ ,
EventRef /∗ inEventRef ∗/)

{
6 mControlPane−>FocusDraw () ;

return eventNotHandledErr ;
}

Popup Menus

In traditional PowerPlant, the menu handles of popup menus (in LPopupButton and
LPopupGroupBox are set to null except when the popup menu is being explicitly han-
dled. This doesn’t work in a Carbon Event context because the controls can be called
asynchronously. A number of changes are needed in LAMPopupButtonImp, LPopup-
Button, LPopupGroupBox, and LAMPopupGroupBoxImp

If PP_Uses_Carbon_Events is defined,

• Hide the PostSetValue and GetMacMenuH methods in LAMPopupButtonImp and
LAMPopupGroupBoxImp. They are not used the Carbon Event context.

• Hide the code in the stream constructor of LAMPopupButtonImp and LAMPopup-
GroupBoxImp that initializes the menu to a special empty menu.

8 rick@aurbach.com Carbon Events in PowerPlant

mailto:rick@aurbach.com

PowerPlant Changes

• Eliminate the use of the StPopupMenuSetter object in the TrackHotSpot [in
LAMPopupButtonImp], AdjustControlBounds [in LAMPopupGroupBoxImp] and
DrawSelf [in LAMPopupButtonImp and LAMPopupGroupBoxImp] methods.

• In LPopupButton, initialize the control’s menu handle in InitPopupButton.

• Add a SetMacMenuH method to LPopupButton. This makes sure that if we change
the popup menu associated with the control, this change is propagated down to
the control’s menu handle.

1 void
LPopupButton : : SetMacMenuH(

MenuHandle inMenuH ,
4 bool inOwnsMenu)

{
LMenuController : : SetMacMenuH(inMenuH , inOwnsMenu) ;

7 mControlImp−>SetDataTag (kControlNoPart ,
kControlPopupButtonMenuHandleTag ,
s izeof (MenuHandle ∗) , (Ptr)&mMenuH) ;

10 }

• Analogous changes are made in LPopupGroupBox.

LControlView

If PP_Uses_Carbon_Events is true,

• Add code to the FinishCreateSelf method to install a Carbon Event handler
for the kControlEventDraw event.

• Add the DoDrawEvent method to use this event handler.

OSStatus
2 LControlView : : DoDrawEvent (

EventHandlerCal lRef inCal lRef ,
EventRef inEventRef)

5 {
OSStatus s t a tu s ;
s t a tu s = : : CallNextEventHandler (inCal lRef , inEventRef) ;

8

TArrayIterator<LPane∗> i t e r (mSubPanes) ;
LPane ∗ theSub ;

11 while (i t e r . Next (theSub)) {
i f (theSub != mControlSubPane) {

theSub−>Draw(n i l) ;
14 }

}
return s t a tu s ;

17 }

The method calls CallNextEventHandler to do the basic control drawing, then
iterates over the control’s subviews and explicitly Draws them. This makes sure
that all subviews (including ones which are non-control PowerPlant objects) are
drawn.

Carbon Events in PowerPlant rick@aurbach.com 9

mailto:rick@aurbach.com

Added Files

LIconPane

Added the (missing) GetIconID method.

LPane

if PP_Uses_ContextMenus is true, the ContextClick and ContextClickSelf methods
are defined. These methods are discussed in detail in section “Contextual Menu Strat-
egy” beginning on page 11.

UKeyFilters

In analogy with the IsEscapeKey and IsCmdPeriod commands, define and implement
the IsHelpKey method. This method recognizes the keypad Help key and – ?.

UModalDialogs

When using Carbon Events, a dialog (controlled by UModalDialogs) that enables menu
items may not properly update the menu bar initially. To fix this, the dialog handler
explicitly updates menus the first time that DoDialog is called.

To implement this change, if PP_Uses_Carbon_Events is true,

• A new data member, mFirstTime, is defined. Its value is initialized to true.

• In DoDialog,

1 i f (mFirstTime) {
UpdateMenus () ;
mFirstTime = fa l se ;

4 }

if mFirstTime is true, UpdateMenus is called and mFirstTime is set to false.

Added Files

To support the new implementation of contextual menus, the following files were added
to the _Contextual Menus subfolder of the _In Progress folder.

• LContextMenuAttachment.h

• LContextMenuAttachment.cp

Source code for the contextual menu attachment class.

• LContextMenuAttachment.CTYP

Constructor templates for the contextual menu attachment classes (class IDs
‘CMat’ and CMfd’).

10 rick@aurbach.com Carbon Events in PowerPlant

mailto:rick@aurbach.com

Contextual Menu Strategy

Please Note!

Constructor builds a list of “known” resources from the contents of the
Custom Types folder automatically when it launches. However, testing
shows that placing this file (in its supplied, data-fork-only format) in
Custom Types does not cause its CTYP templates to load on Construc-
tor startup. As a result, I recommend that you convert this file to a
traditional resource-fork-based resource file after downloading it.

• LContextMenuHelper.h

• LContextMenuHelper.cp

Source code for the contextual menu helper class.

Contextual Menu Strategy

The starting point for defining a new contextual menu strategy for PowerPlant is the
issue of inheritance. Consider this simple example.

There are a variety of ways to handle contextual menus for this window — you might
want objects ‘C’, ‘D’, and ‘E’ to have contextual menus; you might want to show the
same menu if the user right-clicks over ‘B’ as over ‘C’; or you might want there to be a
single contextual menu if the user clicks anywhere inside of ‘A’, even if the user clicks
over one of ‘A’s sub-views. What is “correct” is a matter for the application designer
— the framework must permit any of these choices.

The standard PowerPlant implementation (using LCMAttachment) supports contextual
menus on individual objects, so it could handle creating a contextual menu when the
mouse is over ‘C’ (for example), but to provide a common contextual menu for the entire

Carbon Events in PowerPlant rick@aurbach.com 11

mailto:rick@aurbach.com

Contextual Menu Strategy Details

region would require attaching LCMAttachment objects to all five objects (‘A’ – ‘E’).
And the current implementation of LCMAttachment only supports a fixed menu, which
can be limiting.

This work has taken a different direction. Instead of basing the entire implementation on
attachments, I have chosen to provide some of the contextual menu support by adding
methods to LPane, thereby making contextual menus a standard feature (though often
an unused one) of a PowerPlant object.

There are advantages to this approach:

• The object directly under the mouse gets first shot at handling a contextual menu
click. It can either handle it itself or pass it up the visual hierarchy. Since all
visual objects are ultimately derived from LPane, this works simply and naturally.

In our example above, this feature allows us to have a single contextual menu for
‘A’ and all of its subviews without requiring attachments on ‘B’ – ‘E’.

• Attachments are very useful for adding contextual menus to standard objects,
but when you create a custom subclass, adding a custom attachment to it is often
more work than is needed. This approach lets you choose between implementing a
contextual menu by adding an attachment or by overriding a method in a custom
subclass.

Details

All changes to existing PowerPlant files are controlled by the PP_Use_ContextMenus
symbol.

LWindowEventHandlers

We add code to the ClickContentRgn method to recognize and intercept contextual
menu clicks:

OSStatus
2 LWindowEventHandlers : : ClickContentRgn (

EventHandlerCal lRef /∗ i nCa l lRe f ∗/ ,
EventRef inEventRef)

5 {
#i f PP_Uses_ContextMenus

i f (: : IsShowContextualMenuEvent (inEventRef)) {
8 OSStatus s t a tu s = eventNotHandledErr ;

Point g lobalPt , portPt ;
: : GetEventParameter (inEventRef , kEventParamMouseLocation ,

11 typeQDPoint , n i l , s izeof (Point) , n i l , &g loba lPt) ;
portPt = globa lPt ;
mWindow−>GlobalToPortPoint (portPt) ;

14 LPane ∗ subPane =
mWindow−>FindDeepSubPaneContaining (portPt . h , portPt . v) ;

i f (subPane != n i l) {
17 s t a tu s = subPane−>ContextCl ick (g loba lPt) ;

} else {
s t a tu s = mWindow−>ContextCl ick (g loba lPt) ;

20 }

12 rick@aurbach.com Carbon Events in PowerPlant

mailto:rick@aurbach.com

Details Contextual Menu Strategy

i f (s t a tu s != eventNotHandledErr) {
return s t a tu s ;

23 }
}

#endif
26 // o r i g i n a l code goes here

return noErr ;
}

If the event is a contextual menu click, we get the mouse location and see if the mouse
is over one of the window’s subpanes. If so, we call the pane’s ContentClick method;
else we allow the window to field the click.

If the ContextClick method handles the event, return; else allow the standard handler
logic to process it.

LPane

So, if a contextual menu click is detected, the appropriate object’s ContextClick
method is called.

OSStatus
2 LPane : : ContextCl ick (

Point inGlobalPt)
{

5 OSStatus r e s u l t = noErr ;

i f (ExecuteAttachments (msg_ContextClick , (void∗)& inGlobalPt)) {
8 i f (not ContextC l i ckSe l f (inGlobalPt)) {

LView ∗ superView = GetSuperView () ;
i f (superView) {

11 r e s u l t = superView−>ContextCl ick (inGlobalPt) ;
} else {

r e s u l t = eventNotHandledErr ;
14 }

}
}

17 return r e s u l t ;
}

The msg_ContextClick message was added to PP_Messages.h.

This method attempts to handle the contextual menu click by (first) executing an at-
tachment, then (second) executing a virtual LPane method, and (third) by passing the
processing on to the pane’s superview.

The default LPane ContextClickSelf method does nothing.

bool
LPane : : ContextC l i ckSe l f (

3 Point /∗ inGloba lPt ∗/)
{

return fa l se ;
6 }

Carbon Events in PowerPlant rick@aurbach.com 13

mailto:rick@aurbach.com

Contextual Menu Strategy Details

LContextMenuHelper

To facilitate the construction of the contextual menu, its display, and the processing of
any command selected by the user, a helper class has been created. This class is used
by contextual menu attachments and/or ContextClickSelf methods to implement the
menu and process it.

class LContextMenuHelper : public LMenu) {
public :

3 LContextMenuHelper (
LCommander ∗ inCtxCmdr = n i l) ;

LContextMenuHelper (
6 ResIDT inMENUid ,

LCommander ∗ inCtxCmdr = n i l) ;
virtual ~LContextMenuHelper (void) ;

9

void SetContextCommander (
LCommander ∗ inCtxCmdr) ;

12 void SetContextPane (
LPane ∗ inCtxPane) ;

void Spec i f yHe lpSt r ing (
15 ConstStr ingPtr inHe lpSt r ing) ;

void SpecifyHelpType (
UInt32 inHelpType) ;

18

void AppendMenuCommand (
ConstStr ingPtr inMenuString ,

21 CommandT inCommand) ;
void AppendMenuCommand (

const char ∗ inMenuString ,
24 CommandT inCommand) ;

void AppendMenuCommand (
ResIDT inStr ingResID ,

27 SInt16 inStr ingIndex ,
CommandT inCommand) ;

void AppendMenuCommandList (
30 ResIDT inMenuID) ;

void AppendMenuSeparator (void) ;

33 virtual CommandT TrackMenu (
Point inGlobalPt ,
bool inExecCmd = true) ;

36 protected :
StAEDescriptor mSelect ion ;
LCommander ∗ mCtxCmdr ;

39 LPane ∗ mCtxPane ;
LStr255 mHelpStr ;
UInt32 mHelpType ;

42

virtual void I sHe lpAva i l ab l e (void) const ;
virtual void ShowHelp (void) ;

45 virtual void GetContext (void) ;
virtual void PreCMSelect (

Point inGlobalPt) ;
48 virtual void PostCMSelect (

Point inGlobalPt) ;

14 rick@aurbach.com Carbon Events in PowerPlant

mailto:rick@aurbach.com

Details Contextual Menu Strategy

virtual void PrepareMenuItems (void) ;
51 virtual void FinalizeMenu (void) ;

virtual void CheckCommandStatus (
CommandT inCommand ,

54 Boolean & outEnabled ,
Boolean & outUsesMark ,
UInt16 & outMark ,

57 Str255 outName) ;
} ;

This helper class is typically used by either a contextual menu attachment or by an
object’s ContextClickSelf method to handle the creation, display, user interaction
and processing of a contextual menu. Please see Example below.

Attachment Classes

This work provides two attachment classes for use with contextual menus:

LContextMenu-
Attachment

This attachment is analogous to LCMAttachment. It provides
a mechanism to completely specify the content of the contex-
tual menu, as well as display the menu and issue commands
to process the selected option.

LContextMenu-
Forwarder

The attachment takes a completely different approach. It
does not build or handle the contextual menu at all. Instead,
it locates the commander chain associated with the object
to which it is attached and sends a msg_ContextClick mes-
sage as a command to that command chain. In an MVC∗

approach, the attachment forwards the responsibility for the
contextual menu from the View to the Controller.

LContextMenuAttachment

The LContextMenuAttachment class defines a “traditional” attachment, i.e. one that is
added to a visual layout using its Constructor layout CTYP. The CTYP includes features
that define the menu’s items; its ExecuteSelf method uses this information to dynami-
cally create the menu, display it, receive user feedback, and send the selected command
to the appropriate commander for processing.

enum {
2 kCMAItemSeparator = 0 ,

kCMAItemMenuItem = 1 ,
kCMAItemMenuID = 2

5 } ;

typedef struct {
8 SInt16 mtype ;

UInt32 mval ;
} MENTRY;

11

∗Model-View-Controller

Carbon Events in PowerPlant rick@aurbach.com 15

mailto:rick@aurbach.com

Contextual Menu Strategy Details

class LContextMenuAttachment : public LAttachment {
public :

14 enum { class_ID = FOUR_CHAR_CODE(’CMat ’) } ;

LContextMenuAttachment (LStream∗ inStream) ;
17 LContextMenuAttachment (

MessageT inMessage = msg_ContextClick ,
Boolean inExecuteHost = true ,

20 SInt16 inBaseMenuID = 0 ,
UInt32 inHelpType = kCMHelpTypeNoHelp ,
const LStr ing & inHe lpSt r ing = Str_Empty ,

23 SInt16 inEntryCount = 0 ,
MENTRY ∗ i nEn t r i e s = n i l) ;

virtual ~LContextMenuAttachment () {}
26

protected :
SInt16 mMENUid;

29 UInt32 mHelpType ;
LStr255 mHelpString ;
std : : vector<MENTRY> mEntryList ;

32

virtual void ExecuteSe l f (
MessageT inMessage ,

35 void∗ ioParam) ;
virtual LContextMenuHelper ∗

CreateHelper (
38 SInt16 inMenuID ,

LCommander ∗ inCtxTarget) ;
virtual void PrepareForMenu (

41 LContextMenuHelper∗ /∗ inHe lper ∗/) ;
virtual bool FindCommandString (

CommandT inCommand ,
44 LStr ing & outSt r ing) ;

virtual LCommander∗ FindCommandTarget () ;
} ;

The stream constructor collects information from the associated CTYP and stores it in
data members. The ExecuteSelf method responds to msg_ContextClick messages
by creating an LContextMenuHelper object, constructing the menu, then calling the
helper’s TrackMenu method to process it.

LContextMenuForwarder

As was mentioned above, the LContextMenuForwarder attachment takes a different ap-
proach to contextual menu handling.

class LContextMenuForwarder : public LAttachment {
2 public :

enum { class_ID = FOUR_CHAR_CODE(’CMfd ’) } ;

5 LContextMenuForwarder (LStream∗ inStream) ;
LContextMenuForwarder (

LCommander ∗ inCommandTarget = n i l ,
8 Boolean inExecuteHost = true) ;

virtual ~LContextMenuForwarder () {}

16 rick@aurbach.com Carbon Events in PowerPlant

mailto:rick@aurbach.com

Incorporating Contextual Menus Contextual Menu Strategy

11 protected :
LCommander ∗ mTarget ;

14 virtual void ExecuteSe l f (
MessageT inMessage ,
void ∗ ioParam) ;

17 virtual LCommander∗ FindCommandTarget () ;
} ;

This attachment responds to the msg_ContextClick message by locating the LComman-
der object most closely associated with the attachment’s owner and passing the message
to that commander as a command. (If you construct the attachment programmatically,
you can specify the command explicitly.)

void
LContextMenuForwarder : : ExecuteSe l f (

3 MessageT inMessage ,
void ∗ ioParam)

{
6 bool proce s sed = fa l se ;

i f (inMessage == msg_ContextClick) {
9 LCommander ∗ cmdr = mTarget ;

i f (cmdr == n i l) {
cmdr = FindCommandTarget () ;

12 }
i f (cmdr != n i l) {

SCMForward param ;
15 param . g loba lPt = ∗(Point ∗) ioParam ;

param . ownerHost = mOwnerHost ;
p roce s sed = cmdr−>ProcessCommand (inMessage ,

18 (void ∗) ¶m) ;
}

}
21 SetExecuteHost (! p roce s s ed) ;

}

That is, the LCommander is sent a ProcessCommand message with msg_ContextClick as
its command parameter and a custom structure as its ioParam. The use of the custom
structure provides the commander with both the context click location and information
which allows it to determine which of its views sent the message.

Incorporating Contextual Menus

To use the contextual menus mechanism discussed here, you must build a Carbon ap-
plication (either CFM or MachO). This code is compatible with Mac OS9/CarbonLib.

• The application prefix file should

#define PP_Uses_Carbon_Events 1
#define PP_Uses_ContextMenus 1

• You will need to include

Carbon Events in PowerPlant rick@aurbach.com 17

mailto:rick@aurbach.com

Contextual Menu Strategy Subclassing Issues

LWindowEventHandlers.cp
LContextMenuHelper.cp
UCMMUtils.cp

in the project. If you plan to specify contextual menus using attachments, you
should also include LContextMenuAttachment.cp in your project.

• If you are using attachments, be sure to register them as needed.

• Attach LContextMenuAttachment or LContextMenuForwarder objects where appro-
priate in the application’s PPobs and/or code ContextClickSelf methods in cus-
tom visual classes.

Subclassing Issues

While the classes described above are designed to be as complete and self-contained as
possible, they will usually need to be subclassed.

In OS X, contextual menus normally include a Help item as the first item of the menu.
This item is inserted into the menu by ContextMenuSelect. It will be enabled unless
kCMHelpItemNoHelp is specified. (If kCMHelpItemRemoveHelp is specified on 10.2 or
later, the item will not be added to the menu; pre-10.2, it will be handled like kCMHelp-
ItemNoHelp).

In the LContextMenuHelper method TrackMenu, user selection of this help item is han-
dled by calling the ShowHelp method. But, since PowerPlant does not (and should
not) place requirements on how the application provides help to users, the ShowHelp
method is empty. To provide help in your contextual menus, you will need to override
the ShowHelp method.

Other methods of LContextMenuHelper that you may wish to override include

IsHelpAvailable This method is called if the specified help type is kCMHelp-
ItemOtherHelp. If it returns false, the help type is con-
verted to kCMHelpItemNoHelp for this call to Contextual-
MenuSelect. The idea is to provide a mechanism to test the
availability of a help item prior to enabling help support.

GetContext This method specifies the selection used by ContextualMenu-
Select to determine which contextual menu plugins should
add items to the menu. The default method calls the context-
pane’s GetSelection method.

PreCMSelect This method is a hook called before ContextualMenuSelect.
The default method is empty.

PostCMSelect This method is a hook called after ContextualMenuSelect
but before dispatching for command processing. The default
method is empty.

PrepareMenuItems This method is called prior to displaying the menu. The
default method calls ProcessCommandStatus for each item
and updates it accordingly.

18 rick@aurbach.com Carbon Events in PowerPlant

mailto:rick@aurbach.com

Example Contextual Menu Strategy

FinalizeMenu This method is called prior to displaying the menu. The
default method makes sure that the construction process did
not inadvertently leave behind extra separator lines.

Note

If you override LContextMenuHelper, you will also want to override LContext-
MenuAttachment. It uses LContextMenuHelper in its ExecuteSelf method. To
do this, simply override the CreateHelper method.

Example

The following example shows how to use LContextMenuHelper. The specific context of
this example is as a ContextClickSelf override, but the same approach would be used (for
example) in a msg_ContextClick command handler (invoked from an LContextMenu-
Forwarder attachment.

bool
2 MyPane : : Contex tC l i ckSe l f (

Point inGlobalPt)
{

5 LContextMenuHelper he lpe r (myCmdr) ;

he lpe r . Speci fyHelpType (kCMHelpItemAppleGuide) ;
8 he lpe r . AppendMenuCommandList (menu_ID) ;

he lpe r . AppendMenuSeparator () ;
he lpe r .AppendMenuCommand("\pMy␣Command" , cmdID) ;

11

he lpe r . TrackMenu(inGlobalPt) ;

14 return true ;
}

line 5 Create an instance of the helper, passing it a pointer to the
LCommander object that is responsible for handling com-
mands for this instance of MyPane.

line 7 Specify that the help item is supplied by an Apple Guide.

line 8 Add a set of menu items (based on the context of the specified
MENU resource) to the contextual menu.

line 9 Add a separator line to the contextual menu.

line 10 Add a single menu item to the contextual menu, with the
specified menu item text and command number.

line 12 Display the contextual menu. Allow the user to make a selec-
tion. If the user does so, determine what command should be
issued and send the appropriate ProcessCommand to myCmdr.

line 14 Return true because the contextual menu has been handled.

Carbon Events in PowerPlant rick@aurbach.com 19

mailto:rick@aurbach.com

	Issues with PowerPlant 2.2.5
	Existing Carbon Event Handlers
	What's Missing
	Other Goals of This Work

	PowerPlant Changes
	Added Files
	Contextual Menu Strategy
	Details
	Incorporating Contextual Menus
	Subclassing Issues
	Example

