
CodeWarrior™
Development Tools

The PowerPlant Book

Revised: 8/12/03

Metrowerks, the Metrowerks logo, and CodeWarrior are trademarks or registered trade-
marks of Metrowerks Corp. in the US and/or other countries. All other tradenames and
trademarks are the property of their respective owners.

Copyright © Metrowerks Corporation. 2003. ALL RIGHTS RESERVED.

The reproduction and use of this document and related materials are governed by a
license agreement media, it may be printed for non-commercial personal use only, in
accordance with the license agreement related to the product associated with the doc-
umentation. Consult that license agreement before use or reproduction of any portion
of this document. If you do not have a copy of the license agreement, contact your
Metrowerks representative or call 800-377-5416 (if outside the US call +1-512-996-
5300). Subject to the foregoing non-commercial personal use, no portion of this docu-
mentation may be reproduced or transmitted in any form or by any means, electronic
or mechanical, without prior written permission from Metrowerks.

Metrowerks reserves the right to make changes to any product described or referred to in
this document without further notice. Metrowerks makes no warranty, representation or
guarantee regarding the merchantability or fitness of its products for any particular purpose,
nor does Metrowerks assume any liability arising out of the application or use of any prod-
uct described herein and specifically disclaims any and all liability. Metrowerks software
is not authorized for and has not been designed, tested, manufactured, or intended for
use in developing applications where the failure, malfunction, or any inaccuracy of
the application carries a risk of death, serious bodily injury, or damage to tangible
property, including, but not limited to, use in factory control systems, medical devices
or facilities, nuclear facilities, aircraft navigation or communication, emergency sys-
tems, or other applications with a similar degree of potential hazard.

USE OF ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE
SUBJECT TO THE METROWERKS END USER LICENSE AGREEMENT FOR SUCH
PRODUCT.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729
U.S.A.

World Wide Web http://www.metrowerks.com

Sales Voice: 800-377-5416
Fax: 512-996-4910
Email: sales@metrowerks.com

Technical Support Voice: 800-377-5416
Voice: 512-996-5300
Email: support@metrowerks.com

http://www.metrowerks.com

Table of Contents

1 Introduction 13
What’s New in This Release 14
What You Should Know 15
The Master Plan . 16

Background . 17
Basic Building Blocks 17
Writing PowerPlant Code 17

Starting Points . 19
Strategies For Learning 19
Other Resources . 20

PowerPlant Information 20
Object-Oriented Programming Information 21
Third Party Books on PowerPlant 22
Online Resources 22

Conventions Used in This Book. 22
Your First PowerPlant Application 23

Building the Interface 24
Writing PPEdit . 37
What Next? . 42

Starting Your Own PowerPlant Projects 44

2 Installing PowerPlant 49
PowerPlant Requirements 49

Development Requirements 49
Runtime Requirements 50

Installing PowerPlant 50
PowerPlant Source Code 51
PowerPlant Documentation 51
PowerPlant Example Code 52

Installing Resource Templates 52
Resorcerer . 53
ResEdit . 54
Rez . 54

Summary . 55
The PowerPlant Book PPB–3

Table of Contents
3 PowerPlant Conventions 57
Class and File Names 57
Variable and Parameter Names 58
Data Types. 59
Other Names. 61
Calling Macintosh Toolbox Routines 61
Summary . 62

4 Application Frameworks 63
Reusable Code . 63

Procedural Code Libraries 64
Class Libraries . 65
Frameworks . 65

Application Frameworks 66
Framework Design Patterns 68

Applications . 69
Event Handling . 70
Command Hierarchy 70
Visual Hierarchy . 72
Messaging Systems 75
Persistence . 76
Utilities . 77

Summary . 78

5 PowerPlant Architecture 79
Design Principles . 79

Multiple Inheritance 80
Factored Design . 84
Factored Classes . 86
Factored Behavior 88

Framework Implementation 90
Application Classes 91
Event Classes . 92
Commander Classes 92
Visual Classes . 95
Messaging Classes 97
Persistence Classes 98
PPB–4 The PowerPlant Book

Table of Contents
Utility Classes . 98
Basic PowerPlant Resources 99

PPob Resource . 100
Mcmd Resource . 101
RidL Resource . . 103
Txtr Resource . 104

PowerPlant Development 105
Layout . 106
Coding . . 107
Testing . 107

Summary . 108

6 Panes 111
What Is a Pane . 111
Pane Characteristics. 113

Characteristics of Simple Panes 113
Characteristics of All Panes 114

Working With Panes 121
Creating a Pane . 122
Drawing a Pane . 128
Managing Pane Characteristics 130

Some Specific Panes. 135
Summary . 140
Code Exercise . 141

Learning Paths . 141
Basic Assumptions 142
The Interface . 144
Implementing a Custom Pane 146

7 Views 153
What Is a View . . 153
View Characteristics 155

Subpanes . 155
Image . 156
Scrolling . 157
Coordinate Systems 158

Working With Views 163
The PowerPlant Book PPB–5

Table of Contents
Creating a View . 163
Drawing a View . 170
Managing Subpanes and the Visual Hierarchy 170
Managing the View Image 172
Managing Scrolling 172
Managing Coordinate Transformations 175

Some Specific Views 177
Summary . 181
Code Exercise . 182

The Interface . 182
Implementing a Custom View 187

8 Controls and Messaging 197
What Is a Control . . 197
Control Characteristics 199

Control Values . 200
Control Descriptor 201
The Hot Spot . 201
Broadcasting and Listening 202

Working With Controls 203
Creating a Control 203
Drawing a Control 207
Managing Control Characteristics 207
Broadcasting . 209
Being a Good Listener 212

Specific Control Classes 214
Summary . 226
Code Exercise . 227

The Interface . 227
CColorControl . 235
The Controls Application 240

Intermission . 246

9 Applications and Events 249
The Application Object 249

Application Class Hierarchy 250
Application State 251
PPB–6 The PowerPlant Book

Table of Contents
Deriving an Application 252
Initializing an Application 252

Set Debugging Options 254
Initialize the Heap 259
Initialize the Toolbox 260
Setup Memory Management 260
Check the Environment 263
Register PowerPlant Classes 265
Run the Application 266

Event Handling and Dispatch 266
PowerPlant and Apple Events 267

Summary . 269
Code Exercise . 270

The Interface . 270
Setting Up an Application 271

10 Commanders and Menus 283
Introduction to Commands 283

Command Chain 285
Target Handling . 286
Duty Handling . 287
Command and Keystroke Handling 290

Making and Managing Menus 291
Menu Strategy . . 292
Menu-Related Resources 293
Command Numbers 294
Adding Menus . 297
Responding to Menu Commands 298
When To Update Menus 300
Updating Menu Items 302
Working With LMenuBar and LMenu 306

Summary . 308
Code Exercise . 308

The Menu Resources 309
Implementing Menus 311
The PowerPlant Book PPB–7

Table of Contents
11 Windows 325
What is a Window . 325
Window Characteristics 327

Window Attributes 327
Window Size and Zooming 332
Window Descriptor 333
Window Kind . 334

Working With Windows 334
Creating a Window 335
Drawing a Window and Its Contents 341
Managing Window Behavior 343
Window Utilities in PowerPlant 347
Dealing with the Window Manager 350

Summary . 351
Code Exercise . 352

The Interface . 352
The Windows Application 355

12 Dialogs 369
What Is a Dialog . 369

Traditional Dialogs 369
PowerPlant Dialogs 370
LDialogBox Hierarchy 371

Dialog Characteristics 372
Working With Dialogs 373

Creating a Dialog 373
Messages in Dialogs 377
StDialogHandler 380
Simple Movable Modal Dialogs 381
Traditional Dialogs 382

Summary . 383
Code Exercise . 383

The Simple Dialog Interfaces 384
Implementing Simple Dialogs 384
The Complex Dialog Interface 391
Implementing a Complex Dialog 392
PPB–8 The PowerPlant Book

Table of Contents
13 File I/O 403
The Document Strategy 404
LDocApplication . . 406
What Is a Document 409

LDocument . 409
LSingleDoc . 412

What Is a File . 413
What Is a Stream . 415

LStream . 416
LFileStream . . 418

Saving and Opening Files 419
Implement an Application 419
Implement a Document 420
Implement a Preferences File 423

Summary . 424
Code Exercise . 424

The Interface . 425
Implementing Documents 425

14 Printing 439
Printing Strategy . 439
LPrintout . 442

LPrintout Characteristics 442
LPrintout Behaviors 444

LPlaceHolder . 445
LPlaceHolder Features 445
LPlaceHolder Behaviors 447

UPrinting . 447
Printing in Views and Panes 448
The Mac OS, LPrintout, and LPlaceHolder 450
Printing in PowerPlant 451

Building a Printing Hierarchy 451
Printing a Document 455
The Print Record 460
Printing Utilities 461

Summary . 461
Code Exercise . 463
The PowerPlant Book PPB–9

Table of Contents
The Interface . 463
Implementing Printing 467

15 Periodicals and Attachments 473
Periodicals . . 474

What Is a Periodical 474
Periodical Characteristics 475
Working With Periodicals 475

Attachments . . 479
What Is an Attachment 480
Attachment Strategy 482
Attachment Characteristics 483
Working With Attachments 485
Specific PowerPlant Attachments 489

Summary . 492
Code Exercise . 492

The Interface . 493
Implementing Goodies 495

Looking Backward, Looking Forward 505

A PowerPlant Utilities 507
PowerPlant Utilities Overview 507
Classes Discussed Elsewhere 508
More Utility Classes. 508

LClipboard . 509
Arrays . 512
LString . 523
LSharable . . 524
UScreenPort . . 525
UDrawingState . 525
UDrawingUtils . 526
UKeyFilters . . 529
UProfiler . 531
UReanimator . 532
UResourceManager 532
UTextTraits . 533
PPB–10 The PowerPlant Book

Table of Contents
B Resource Notes 537
PowerPlant-Specific Resources 537
Standard Resources 537

PP Copy & Customize.ppob 538
PP Copy & Customize.rsrc 539
PP Action Strings.rsrc 540
PP DebugAlerts.rsrc 541
PP Document Alerts.rsrc 541
PP AppleEvents.rsrc 541
ColorAlertIcons.rsrc 542

ToolServer and Rez . 542
Using ToolServer 543
Rez . 543
DeRez . 544

Index 547
The PowerPlant Book PPB–11

Table of Contents
PPB–12 The PowerPlant Book

1
Introduction

Welcome to PowerPlant®!

Although some folks like to skip introductions, we strongly
recommend you read this one. Why? It serves several important
purposes, not the least of which is that you write a complete
PowerPlant application! This chapter is really your introduction to
PowerPlant, not just this book.

What is PowerPlant? PowerPlant is Metrowerks’ world-class,
object-oriented, Macintosh application framework. Using
PowerPlant you can quickly build the reliable interface your
program needs to be successful with your customers or clients.
PowerPlant gives you a complete, powerful, ready-to-run
application that takes advantage of the latest features of the Mac OS.
All you have to do is add the content that makes your application
unique.

Exactly what PowerPlant is—what its parts are, and how to use
them—is what this book is all about. This book gives you a
thorough understanding of the design principles and
implementation details behind PowerPlant. Along the way you’ll
discover that PowerPlant is not that hard to learn. It is complex,
sure. But it is also logical, organized, and very well designed.

This Introduction gives you a road map so that you will have an
idea of what to expect as you read this book. At the end of the
introduction you write your first PowerPlant application. The
Introduction discusses these principle topics:

• What’s New in This Release—overview of changes to
PowerPlant and this manual.

• What You Should Know—the background knowledge this book
assumes you have.
The PowerPlant Book PPB–13

Introduction
What’s New in This Release
• The Master Plan—the structure of the book, its chapters, and
how they are organized.

• Starting Points—where you should jump into the book if you are
already conversant with some of the ideas and concepts.

• Strategies For Learning—how to use the contents of this book to
enhance your learning experience.

• Other Resources—where to go to learn more about frameworks,
object-oriented design, and PowerPlant.

• Your First PowerPlant Application—in which you write a
simple text-editor application from scratch, using PowerPlant.

These sections will help you find your way through what will be an
enjoyable and worthwhile project: learning how to use PowerPlant.

What’s New in This Release
PowerPlant is a growing, evolving framework. There have been
many changes and additions to PowerPlant. Some of the more
significant changes include:

• removed Try_, Catch_, & EndCatch_ macros

• updated existing classes

• support for Carbon

Exception macros

Previous versions of PowerPlant included Try_, Catch_(), and
EndCatch_ exception handling macros. At the time, the
CodeWarrior compilers did not support true C++ exception
handling. These macros are now obsolete. You should update your
code to use the proper C++ try, catch mechanism. PowerPlant uses
the LException class for all exceptions so a standard try/catch block
looks like:

try {
// do something
} catch(LException& inErr)
// catch exception here
}

PPB–14 The PowerPlant Book

Introduction
What You Should Know
 Updated classes

Many PowerPlant classes have been improved, expanded and
debugged. Some changes include:

• New class files UScrap.cp & UProcessMgr.cp. You will need
to add these files to existing PowerPlant projects.

• New UPrinting.cp as part of PowerPlant’s Carbon support. If
you use LDocument or LDocApplication in your projects, you
need to remove UPrintMgr.cp from your existing projects and
add UPrinting.cp in its place.

• New LStringRef class which lets you use LString functions to
manipulate an arbitrary string

• All old integer types are now obsolete. Update your code to use
new types.

See also PowerPlant Release notes for more detailed
information.

Carbon support

CodeWarrior now supports Apple’s Carbon API’s for transistioning
code to Mac OS X. You can now target Carbon in PowerPlant. The
new target means changing files in existing projects.

The PowerPlant Book does not cover how to change your code for
Carbon, nor does it cover Carbon-specfic issues.

See also PowerPlant Release notes and the PowerPlant Carbon
Converstion document for more detailed information.

What You Should Know
This book assumes you are familiar with:

• Macintosh application programming

• the C++ language

• the CodeWarrior development environment

To be familiar with Macintosh application programming means you
understand concepts such as the event loop, creating and managing
menus, creating and managing windows, creating and managing
The PowerPlant Book PPB–15

Introduction
The Master Plan
dialogs and control items, idle time processing, memory
management, and so forth.

To be familiar with C++ implies that you not only understand C++
syntax (such as what a class is, a constructor, a destructor, and so
forth), but also that you are familiar with the features of an object-
oriented language such as inheritance, polymorphism, overriding,
and overloading.

If you are unfamiliar with these topics, you should pursue them
before you expect to use PowerPlant effectively.

To learn C++ programming, you can register for a C++ course at the
CodeWarriorU website, http://www.codewarrioru.com. You
can also enroll for a PowerPlant course at this website. The exercises
in this book use the CodeWarrior environment.

For more information about the CodeWarrior development
environment, consult the CodeWarrior documentation, especially
the IDE User Guide. These will familiarize you with the
environment.

In the code exercises in this book you will regularly encounter and
use PowerPlant’s view-editing sidekick, Constructor. This book
explains what Constructor is and what you use it for. However, we
will not go into detail about how to use Constructor. While
performing the code exercises in this book, if you have questions
about Constructor, you can consult the Constructor for PowerPlant
User Guide that comes with the CodeWarrior documentation.

See Also “Other Resources” for more on PowerPlant and object-
oriented programming.

The Master Plan
This book is divided into a series of chapters. The chapters can be
grouped into three sections:

• Background

• Basic Building Blocks

• Writing PowerPlant Code
PPB–16 The PowerPlant Book

http://www.codewarrioru.com

Introduction
Background
Each section has several chapters.

Background

Chapters 2 through 5 make up the Background section. Chapter 2,
“Installing PowerPlant” discusses installing PowerPlant, and
PowerPlant resource templates. Chapter 3, “PowerPlant
Conventions” discusses name and style conventions in PowerPlant
code. Chapter 4, “Application Frameworks” discusses the nature of
application frameworks in general, and the kinds of design features
you are likely to encounter in an application framework. Chapter 5,
“PowerPlant Architecture” introduces you to the basic design of the
PowerPlant framework, and the classes, objects, and resources you
will encounter as you use PowerPlant.

The chapters in the Background section are informational. They
give you the big picture overview of PowerPlant, and how
PowerPlant fits into the world of object-oriented programming.
These chapters do not have any code exercises.

Basic Building Blocks

Chapters 6 through 8 comprise the Basic Building Blocks section.
The chapters in this section give you an early look at PowerPlant’s
most important objects. The chapters are:

• Chapter 6, “Panes”—all about panes, the fundamental visible
objects in PowerPlant.

• Chapter 7, “Views”—pane containers that create a visual
hierarchy.

• Chapter 8, “Controls and Messaging”—more about panes, and
how they communicate with each other.

In these chapters you write real PowerPlant code. You will use this
experience in the Writing PowerPlant Code section.

Writing PowerPlant Code

Chapters 9 through 15 cover various aspects of PowerPlant
application programming from a task-based perspective. The
chapters are:
The PowerPlant Book PPB–17

Introduction
Writing PowerPlant Code
• Chapter 9, “Applications and Events”—an introduction to the
command hierarchy.

• Chapter 10, “Commanders and Menus”—adding menus to a
PowerPlant application.

• Chapter 11, “Windows”—creating and managing windows,
including floating palettes.

• Chapter 12, “Dialogs”—creating and managing dialogs,
including modal, movable modal, and modeless dialogs.

• Chapter 13, “File I/O”—saving and opening files.

• Chapter 14, “Printing”—printing a document with PowerPlant.

• Chapter 15, “Periodicals and Attachments”—idle time
processing and attachments.

Chapters 6 through 15—the Basic Building Blocks and Writing Code
sections—are more practical and detailed. Here you find the solid
information you need to answer the real-world question, “How do I
use PowerPlant?” Each chapter has two parts.

The first part of the chapter discusses PowerPlant fundamentals. It
introduces you to the classes involved in that chapter and how you
use them. We’ll discuss their member functions and data members,
their inheritance chain, and the common situations in which you
use the class.

The second part of each chapter is a code exercise. In this part of the
chapter you write real PowerPlant code following step-by-step
instructions. This gives you an opportunity for hands-on practice
with the real thing.

The code exercises are all application-based. PowerPlant is first and
foremost an application framework, after all. However, you can use
PowerPlant classes for other programming projects such as code
resources and shared libraries. As you learn about PowerPlant,
you’ll see how the very design of this framework allows you to use
just those parts of the framework that you need for your particular
project.

A good application framework has lots of utility functions to aid
you in your work. PowerPlant is no exception. We discuss many
task-based utilities in the chapters as we work through the book.
PPB–18 The PowerPlant Book

Introduction
Starting Points
However, you should consult Appendix A, “PowerPlant Utilities”
for a potpourri of additional helpful ditties in PowerPlant.

Starting Points
The chapters in this book are more or less sequential. Each chapter
builds on the knowledge gained in previous chapters. As a result,
the typical path through these sections is linear. For the most part,
you start at the beginning and work through to the end.

Everyone who is new to PowerPlant should read Chapter 2,
“Installing PowerPlant” to ensure that you are familiar with the
various source and header files you will encounter. You should also
read Chapter 3, “PowerPlant Conventions” so you understand the
naming conventions used throughout PowerPlant.

Programmers unfamiliar with application frameworks in general
should continue with Chapter 4, “Application Frameworks” to
learn about the common design patterns you encounter. If you are
an experienced object-oriented programmer and you know about
application frameworks and the design patterns you encounter in
them, you can safely skip this chapter. From that point on, if you are
new to PowerPlant you should read all the remaining chapters
sequentially.

Experienced or somewhat experienced PowerPlant programmers
can examine the Table of Contents for a chapter that addresses an
application programming topic of interest, and go to that chapter.
You can always revisit a topic in some other chapter if you
encounter something you don’t understand.

Strategies For Learning
The best way to learn PowerPlant is to learn about the concepts,
then play with example code. This simple fact is reflected in the
structure of the code-intensive chapters: we discuss fundamentals
first, and then work with real code right away.

You can skip the code exercises if you wish. If you do, the lessons
learned in the fundamental section of each chapter will remain
theoretical. While theory is both necessary and useful, theory can
The PowerPlant Book PPB–19

Introduction
Other Resources
only take you so far when it comes time to implement real working
solutions in code. We recommend that you also work with the code
exercises in each chapter to master the intricacies of PowerPlant.

As you perform the code exercises, think about what you’ve learned
in the fundamentals discussion. Apply those lessons to the
problems presented in the coding steps. All of the code you need
will be included in with the steps, tutorial fashion. However, feel
free to attempt your own solution to the problem.

Solving problems in your own way is the best way to learn. You
may discover on some occasion that your solution fails because you
didn’t understand some subtlety in the framework design or the
code. That’s fine. The lessons you learn from the failure will be far
more valuable and stick with you much longer than those you learn
from blindly copying code in the tutorial steps.

As you become familiar with the general structure of the
PowerPlant framework, you’ll gain confidence. You’ll find your
own solutions becoming more reliable, and more accurate. Very
soon you’ll be able to apply these lessons to your own programs.
When you do, you’ll find that you can create better, more powerful,
and more reliable Macintosh software faster than you ever could
before.

Other Resources
After you have completed this book, or those parts of the book you
find of personal interest, you may want to go further. This book
does not cover a variety of advanced PowerPlant programming
topics. However, do not be alarmed. There are places to go to learn
more about PowerPlant.

PowerPlant Information

Your first and most common stop on the path to learning more
about PowerPlant will be PowerPlant Referemce. This document is
available in electronic form as part of the CodeWarrior
documentation. It is a series of HTML files describing all the
PowerPlant classes, their data members and member functions. This
PPB–20 The PowerPlant Book

Introduction
Object-Oriented Programming Information
hypertext reference allows you to locate specific functions, trace
class derivations, look up inherited data members, and so on.

The comments found in the PowerPlant source files are another
valuable source of insight about PowerPlant. This information is
frequently duplicated in the PowerPlant Reference.

Metrowerks provides additional PowerPlant documentation as
well. The PowerPlant Advanced Topics manual covers a variety of
subjects in-depth. The precise nature of what’s available varies from
release to release, and as PowerPlant evolves. Check out the
PowerPlant documentation folder for the latest information.

PowerPlant is a hot topic on various on-line services and the
Internet newsgroups comp.sys.mac.oop.powerplant and
comp.sys.mac.programmer.codewarrior. Experienced
PowerPlant programmers and Metrowerks employees often answer
questions in these groups. The newsgroup discussions are archived
on the Reference CD, in the Metrowerks Documentation folder. You
can search through the archives for information on a wide variety of
PowerPlant topics. They are a useful resource.

Metrowerks maintains a World Wide Web site where you can find
updates to PowerPlant classes as well as third-party classes based
on PowerPlant. These classes extend PowerPlant’s functionality in
unique and useful ways. You can find the web page at:

http://www.metrowerks.com/db/
powerplant.qry?function=form

Object-Oriented Programming Information

There is a wealth of knowledge available if you want to learn more
about object-oriented programming in general. There are several
books on the subject. A quick sampling of titles includes:

• Design Patterns: Elements of Reusable Object-Oriented Software by
Erich Gamma et al. (Addison-Wesley, 1995).

• Design Patterns for Object-Oriented Software Development by
Wolfgang Pree (Addison-Wesley, 1994).

• Developing Object-Oriented Software for the Macintosh by Neal
Goldstein and Jeff Alger (Addison-Wesley, 1992).
The PowerPlant Book PPB–21

http://www.metrowerks.com/db/powerplant.qry?function=form

Introduction
Third Party Books on PowerPlant
• C++ Primer Plus, Third Edition by Stephen Prata (Waite Group
Press, 1998)

• Effective C++ , 2nd Ed. by Scott Meyers (Addison-Wesley, 1997).

• More Effective C++ by Scott Meyers (Addison-Wesley, 1996).

Third Party Books on PowerPlant

If you want to learn more about programming with PowerPlant,
there are a few books to look at. They include:

• The Metrowerks CodeWarrior Professional Book by Dan Parks
Sydow (Ventana, 1998)

• CodeWarrior:Software Development Using PowerPlant by Jan
Harrington (AP Professional, 1996)

• Metrowerks, CodeWarrior Programming by Dan Parks Sydow
(M&T Books, 1995)

Online Resources

In addition, there are many web sites dedicated to object-oriented
programming. Some of these sites are specific to the Mac OS.

• http://www.codewarrrior.org/

• http://www.apple.com/developer/

• http://www.themost.org/

• http://cafe.AmbrosiaSW.com/alt.sources.mac/
macintosh-c/

• http://www.cernet.com/~mpcline/C++-FAQs-Lite/

• http://www.lysator.liu.se/c/index.html

Conventions Used in This Book
This book uses various typographical conventions to make reading
easier.

Computer Voice is used for source file names and code examples.

Bold text is used when refering to menu names and items, as well as
specific buttons in dialogs. For example, click the Save button.
PPB–22 The PowerPlant Book

http://www.codewarrrior.org/
http://www.apple.com/developer/
http://www.themost.org/
http://cafe.AmbrosiaSW.com/alt.sources.mac/macintosh-c/
http://www.cernet.com/~mpcline/C++-FAQs-Lite/
http://www.lysator.liu.se/c/index.html

Introduction
Your First PowerPlant Application
Key words or book names are presented in italic text.

Additionally, this book may reference a hypothetical application
called HyperApp with main application files CHyperApp.cp,
HyperApp.rsrc, and HyperApp.PPob. Unless otherwise stated,
descriptions of this hypothetical application apply to all PowerPlant
applications.

Your First PowerPlant Application
Assuming that you have never done any PowerPlant programming,
you’re in for a treat. Admittedly, you’re not going to learn a lot of
PowerPlant specifics by following the steps in this exercise, because
you haven’t got all the background information that will help you
process and categorize the new knowledge.

Nevertheless, by writing a real application right away you will see
first hand the tremendous advantages that PowerPlant gives you
when you’re developing software. And that should give you all the
incentive you need to absorb the background material. Soon you’ll
be ready for some intense PowerPlant coding.

NOTE This exercise assumes you have installed PowerPlant. If you have
not installed PowerPlant and you wish guidance on what you need
to do, Chapter 2, “Installing PowerPlant” will help. In addition, the
screenshots in this book are from the latest version of Constructor. If
you are using an earlier version, the appearance of the Constructor
windows and some features may vary.

So, let’s get coding!

We’re going to do this in two stages. In the first stage, you use
Constructor to build a visual interface for a very simple text-editing
application. In the second stage, you’ll write the code to create the
application.
The PowerPlant Book PPB–23

Introduction
Building the Interface
Building the Interface
1. Open the project file.

The necessary files are in the “Chap 01 Start Code” folder, inside the
“PP Book Code” folder. Locate this folder on the Reference CD-
ROM and copy it to your hard drive.

As always, you have two ways you can open a file. Double click the
PPEdit.mcp project file icon, or launch CodeWarrior IDE and open
the project using the Open command from the File menu.

When you do, a project window opens. It should look like Figure
1.1. Choose the appropriate target for your computer (Classic or
Carbon) from the Target Menu on the Project Window. The Classic
target works on all Mac OS 8.1 through Mac OS 9.X computers. The
Carbon target works on all Mac OS 8.1 through Mac OS 9.X
computers, if CarbonLib is installed. The Carbon target runs
natively on Mac OS 10.

See also The IDE User Guide for more information on “Targets.”
PPB–24 The PowerPlant Book

Introduction
Building the Interface
Figure 1.1 The PPEdit project

2. Open the Constructor file.

In this project we have divided the application resources into two
resource files, PPEdit.ppob and PPEdit.rsrc. The file creator
for the .ppob file is Constructor. The file creator for the .rsrc file is
ResEdit. You will not have to modify the .rsrc file at all.

Target
Menu
The PowerPlant Book PPB–25

Introduction
Building the Interface
NOTE Constructor is used to create and edit PPob, Txtr, MBAR, MENU,
Mcmd, CTYP and bitmap resources. We’ll discuss PowerPlant
resources in detail in Chapter 5, “PowerPlant Architecture”.

In the project window, double-click the PPEdit.ppob file.
Constructor launches and opens a Constructor project window, as
shown in Figure 1.2.

Figure 1.2 The PPEdit.ppob project window

There are already menu bar, menu, and text trait resources in this
file. In this exercise you add a window and view (PPob) resource
that describes the text editor’s visual interface.

3. Create a window.

Choose New Resource (command-K) from the Edit menu. A dialog
appears, as shown in Figure 1.3. Set the values in this dialog to
match the illustration.
PPB–26 The PowerPlant Book

Introduction
Building the Interface
Figure 1.3 Creating a new PPob resource

Set the resource type to Layout. Set the view type to LWindow.
Enter the name of the new resource. Set the resource ID to 128. Then
click the Create button. The new resource appears in the project
window, as shown in Figure 1.4.

Figure 1.4 The new resource

You have just created the beginnings of a PPob resource. The ID
number is significant. You use the ID number to tell PowerPlant
which PPob resource to use when creating a new window. The
name you assign isn’t significant. The name helps you identify the
correct resource when you have several. In this application you
have one PPob resource. When you’re through, the PPob resource
will define the entire view and its contents.
The PowerPlant Book PPB–27

Introduction
Building the Interface
In the Constructor project window, double-click the new Text
Window resource. A window opens that displays the new (untitled
and empty) window, as shown in Figure 1.5. This is the Constructor
layout window. The layout window itself identifies that you are
working with a PPob resource, with ID number 128, named “Text
Window.”

Figure 1.5 The new window

4. Set the window characteristics.

You can double-click the area of the new window, or click it once to
select it (four little selection handles will appear at the corners) and
choose Property Inspector from the Window menu. When you do,
the Property Inspector window appears, as shown in Figure 1.6.
PPB–28 The PowerPlant Book

Introduction
Building the Interface
Figure 1.6 The window properties

This window allows you to specify the various characteristics of the
window, including location, size, type, title, and several other
features. Set up your new window to match the characteristics
displayed in Figure 1.6.

To do this, you need to set the window title, set its minimum size to
150 by 150, and set its auto position to be Stagger on the Main
Screen. All the other characteristics use default values.

When you’re through, close the property inspector window. Save
your work. It’s always wise to save your work often.
The PowerPlant Book PPB–29

Introduction
Building the Interface
5. Create a scrolling view.

In any text-editor, you want to be able to scroll text. In PowerPlant,
that means you want a scrolling view. Adding a scrolling view to
your new window is simple.

First, make sure the Catalog window is visible. If it isn’t, choose the
Catalog item from the Window menu.

Figure 1.7 Adding a scroller

When the window is visible, display Views, then click and drag the
LScroller icon from the Catalog window and drop it anywhere in
the layout window, as shown in Figure 1.7.

6. Set the scroller characteristics.

Double-click the new scroller, or select it to see its properties in the
Property Inspector. Set the values to match those shown in Figure
1.8.

Set the top left to (-1,-1), the width to 302, and the height to 202.
These dimensions are one larger on all sides than the underlying
PPB–30 The PowerPlant Book

Introduction
Building the Interface
window. Set the new view to be bound on all sides to the
“Superview” by clicking the appropriate check boxes. Views and
superviews are a hierarchy of drawing areas. In this case the
superview is the window. Binding means that as the window
resizes, the scrolling view (which is inside the window) stays
pinned to the top left of the window and resizes along with the
window.

Figure 1.8 Scroller characteristics
The PowerPlant Book PPB–31

Introduction
Building the Interface
Set the Pane ID to 1000. Each pane in a view usually has a unique
ID.

Set the Scrolling View ID to 1001. Putting that number in the
Scrolling View ID tells PowerPlant that this scrollbar controls the
pane numbered 1001. In the next step you’ll create pane 1001, the
text edit pane.

Finally, set the horizontal scroll bar left indent to -1 so that you
won’t have a horizontal scroll bar. The other values are defaults.

When you’re through setting the scroller characteristics, close the
Pane property inspector window and save your work.

TIP Have you noticed a pattern here? You create the object you want,
then you modify its characteristics. Some characteristics—like size
and location—you modify interactively by dragging and resizing the
object in the window. To set most characteristics, you open the
Pane property inspector window.

7. Create and set the characteristics for the text edit pane.

Now, click and drag the LTextEditView icon from the Catalog
window, and drop it inside the scrolling view. Then set the
properties for the new text edit pane.

Set the characteristics to match those in Figure 1.9.

Set the top left to (2, 2), the width to 280, and the height to 196. These
dimensions mean that the text edit pane is slightly smaller than the
window (and allows room for the scroll bar on the right). As a
result, the text in the pane will not come right up against the very
edge of the window or the scroll bar.

Set the edit text pane to be bound on all sides to the superview. The
superview in this case will be the scroller pane. What this means is
that as the window resizes, the text pane will resize along with the
scroller and the window.

Set the Pane ID to 1001. This matches what you set in the scroller
characteristics. Set the text traits ID to 129. We’ll look at text traits in
step 9. Set the vertical scroll unit to 20.
PPB–32 The PowerPlant Book

Introduction
Building the Interface
Figure 1.9 Edit text characteristics

When you’re through, close the property inspector window and
save your work.
The PowerPlant Book PPB–33

Introduction
Building the Interface
8. Examine the view hierarchy.

In a view hierarchy, some views contain other views. This is critical
in some situations, such as when you have a view inside a scrolling
view. When you drop a pane inside a view in Constructor, as you
did in the previous step, Constructor puts the pane inside the view
hierarchically.

To view the current hierarchy, choose Show Object Hierarchy from
the Layout menu. When you do, the hierarchy window appears as
shown in Figure 1.10.

Figure 1.10 The hierarchy window

Notice that LTextEditView is “inside” LScroller and both are in the
LWindow object. If your hierarchy window looks like this, you’re
all set. You can go to the next step.

If LTextEditView is not inside the LScroller, you can set the
hierarchy manually. To accomplish this, click and drag the
LTextEditView object one position to the right underneath
LScroller. This can be a little tricky the first time you do it, but the
secret is to put the mouse over the item inside which you wish the
object to appear, as shown in Figure 1.11.
PPB–34 The PowerPlant Book

Introduction
Building the Interface
Figure 1.11 Changing the hierarchy

As you drag, a tiny black triangle and flashing line appear to
indicate where in the hierarchy you are about to drop the item.
When you are through, your hierarchy should look like Figure 1.10,
with the LTextEditView object underneath and indented one
position to the right of the LScroller object. The LTextEditView
doesn’t actually indent until after you finish the drag. A disclosure
triangle appears to the left of the LScroller to show you that it has
contents.

When you are through, close the hierarchy window, and save your
work.

9. Examine text traits.

Constructor allows you to create text traits resources that you can
then apply to panes that contain text.

Return to the Constructor project window, and double-click any one
of the text traits resources. A window appears that allows you to
edit the characteristics for the text, as shown in Figure 1.12.
The PowerPlant Book PPB–35

Introduction
Building the Interface
Figure 1.12 Setting text traits

You don’t have to make any changes to the resource, this step is just
to show you what the text traits resource is. Remember that you set
the text edit pane you created in step 7 so that it uses the text traits
resource with the ID number 129.

When you are through studying, close the text traits window.

10. Quit Constructor.

Save your work and quit Constructor. You have just specified a
complete visual interface for our simple text-editor. In the process,
you created a single PPob resource and a visual hierarchy. That
PPB–36 The PowerPlant Book

Introduction
Writing PPEdit
resource describes the window and all of its contents: the scrolling
view and the text view.

In the next section you write the code to display that window on the
screen, and use it to enter text. You may be surprised to learn that
the steps you have just completed are more complicated than
writing the code to create the application! Let’s write the code and
see.

Writing PPEdit

In code-related steps, you will encounter a feature that helps you
identify what function or location in the file you are working with,
and what file it is in. It looks like this:

function name() File.cp

You’ll see a line like this at the beginning of every step. We assume
that you have opened the file and located the right spot in the code.

In the following steps you write all the code necessary to fully
realize the PPEdit text-editor. Each step lists the code you must
write in the step. Some code has already been provided for you. The
code printed in each step usually includes some of the existing code,
to make sure you put the new code in the right spot. Existing code is
always in italic.

If you don’t understand exactly what it is you’re doing in any of
these steps, don’t worry about it. Just follow along. The mysteries
will become clear as you work through the rest of the book.

1. Examine the CPPEditApp.h file.

class declaration CPPEditApp.h

To make a PowerPlant program, you typically make a new
application class derived from LApplication. This new class
overrides certain member functions of LApplication—such as
The PowerPlant Book PPB–37

Introduction
Writing PPEdit
ObeyCommand()—to perform specific program actions. In the
following steps you complete the functions of CPPEditApp.cp.

If you haven’t already done so, switch back to the CodeWarrior IDE
and take a look at the CPPEditApp.h file, located in the Chap 01
Start Code folder.

As you see from the class declaration, the CPPEditApp class derives
from LApplication. There are no new functions added to this class.
However, this class overrides three functions in the base class. They
are:

• ObeyCommand()

• FindCommandStatus()

• Startup()

You’ll modify each of these functions in the next few steps. For now,
just note their existence. When you are through, close this file.

2. Declare a constant for the PPob resource.

near start of file CPPEditApp.cp

Near the beginning of the file, you’ll see a comment as shown in the
code below. Define a constant with the value 128 to match the ID
number of the PPob resource you created earlier in this exercise.

// Step 2: declare a const for the PPob resource
const ResIDT textWindow = 128;

The correct data type is ResIDT. This is a PowerPlant-defined data
type used for resource ID numbers. You’ll meet it again later.

3. Register required PowerPlant classes.

CPPEditApp() CPPEditApp.cp

PowerPlant must create the objects you specified in the PPob
resource. There are functions in each class to create the objects of
each class. However, you must tell PowerPlant where those
functions are. That’s the purpose of “registering” the PowerPlant
classes.

You register each PowerPlant class you need individually. (You use
the same registration method when you create your own classes and
objects. We’ll talk about how to do that later in this book).

In the CPPEditApp() constructor, write the following code.
PPB–38 The PowerPlant Book

Introduction
Writing PPEdit
CPPEditApp::CPPEditApp()
{

// Register classes required to create our window

RegisterClass_(LWindow);
RegisterClass_(LScroller);
RegisterClass_(LTextEditView);

}

4. Open a window at startup.

Startup() CPPEditApp.cp

When the application launches, your application receives one of
three Apple events from the Finder—open application, open
document, or print document. If you launch without documents,
the application calls its own Startup() function in response to the
open application Apple event.

Add this code to the function (existing code is in italics).
CPPEditApp::StartUp()
{

ObeyCommand(cmd_New, nil);
}

You are telling the application to perform a specific command. In
this case, the command is cmd_New. The cmd_New value is a
constant defined in the PowerPlant headers. It corresponds to the
New item in the File menu. (We’ll discuss exactly how menu
commands work later in the book).

NOTE The Startup() function is only called if the application is aware of
Apple events. To ensure that it is, you should make sure that the
isHighLevelEventAware flag (in the SIZE flags) is on in the
project preferences. This flag has been set for you in this project.

5. Respond to the New command.

ObeyCommand() CPPEditApp.cp

Your application should obey the “New” command, and make a
new window. Add this code to the switch statement, before the
existing default case.
The PowerPlant Book PPB–39

Introduction
Writing PPEdit
case cmd_New:
LWindow *theWindow;
theWindow = LWindow::CreateWindow(textWindow,this);
break;

This code tells PowerPlant to make and display an LWindow object
with the PPob resource ID textWindow (that you defined in step 2
to be 128). And it says that this window’s commander is the
application.

NOTE PowerPlant doesn’t just create the window, it creates everything
inside the containment hierarchy of the window, including the
scrollbars and the editing pane. PowerPlant was designed to let the
PPob resource format do a lot of the organizational work, so you can
design a program interactively in Constructor.

All other commands, such as Quit, are passed to the
LApplication::ObeyCommand() function by the default case.

6. Enable the New menu item.

FindCommandStatus() CPPEditApp.cp

This application must have the New command on the File menu
enabled. Setting a menu item’s status is accomplished with the
FindCommandStatus() function. PowerPlant calls this function for
each menu item.

Add this code to the switch statement, before the existing default
case.

case cmd_New:
outEnabled = true;
break;

This code means that the New item in the File menu is always
enabled.

7. Run the application.

That’s it! Honest!

Save your work. Then choose the Make command to build the new
application. Compiling will start slowly, because the environment
PPB–40 The PowerPlant Book

Introduction
Writing PPEdit
must search for the headers. Subsequent compiles in this project will
be much faster.

If you have any errors, carefully examine your code against the
steps in this exercise, to see where you might have forgotten a
detail. If you cannot find the problem, you can use the code in the
Solution Code folder for this exercise.

When the project has been successfully built, choose Run from the
Project menu.

The PPEdit application will appear, with just three menus: Apple,
File and Edit. A new blank window appears as well. Click in the
window and start typing.

Figure 1.13 The PPEdit Window

Look at all the functionality you get for free! You can enter text, cut,
copy, paste (from outside applications as well), clear, and select all.
You can display an About Box. You can create new windows, close
them, zoom, resize, drag, and grow the windows. You can add more
windows, limited only by memory. You can switch windows freely,
and they activate and deactivate appropriately. The scroll bar
works! And you did all this with about ten lines of code.

All of this behavior is a gift to you from PowerPlant. The classes that
you are using—LApplication, LWindow, LScroller, and
LTextEditView—all have default behavior to support these
activities. That gift—the default behavior of a complete and
The PowerPlant Book PPB–41

Introduction
What Next?
powerful Macintosh application—is why using PowerPlant is so
worthwhile.

When you are through playing with your new application, choose
Quit from the File menu, and you’re done. (Yet another freebie
from PowerPlant.)

If you’re the curious sort and you’d like to follow along with the
PowerPlant code, you can do so easily. To trace the commands and
keystrokes, choose Enable Debugging from the Project menu. The
next time you run the application, it will invoke the CodeWarrior
Debugger. You can step through each command as you choose. For
more information on debugging, see the Debugger User Guide.

If you look at the size of your new application, you may be
surprised at how big it is for how little work you did. When we
build PPEdit according to the instructions, the application occupies
about 175K on disk depending on which build target you use. You
can make it smaller if you compile with optimizations on, and
without debugging.

What Next?

Of course, there are a lot of things this little application doesn’t do,
like printing, or saving and opening files. We’re going to be talking
about those topics and much more in the chapters ahead of us.

If you are new to PowerPlant programming, and you’d like to learn
more before you go off adventuring, feel free to ignore the
suggestions for enhancements we’re about to make. However, if
you’re in an adventurous mood, here are some suggestions for what
you can do with PPEdit.

As you have seen, you can get a lot from just a few lines of code in
PowerPlant. But there are a number of features that would make
this little text editor nicer. You can try to add these features. If you
do, we guarantee you’ll learn a lot about PowerPlant.

Of course, because you don’t know much about PowerPlant yet,
things may not go right. That’s often what happens when you
explore unfamiliar territory. But you will be exploring and you’ll
remember the places you visit and the sights you see. Try these on
for size.
PPB–42 The PowerPlant Book

Introduction
What Next?
• Make the window ready for typing when opened by using the
calls FindPaneByID() (with the ID of the text edit pane) and
SetLatentSub()

• Implement dynamic scrolling, where the text scrolls as you
move the thumb in the scroll bar. You’ll have to do a little work
in Constructor (using an LActiveScroller object). You’ll also need
to register the LActiveScroller class.

• Implement support for Undo and Redo!

• Add Font, Size and Style menus to update the text style in the
window. (LTextEditView supports multiple fonts, sizes, and
styles.)

• Support opening and saving files by deriving the application
class from LDocApplication.

• Add some dialogs using LDialogBox or StDialogHandler.

The first two suggestions are probably the easiest. Did you notice
that when the window appears, you have to click in the window to
activate text entry? Wouldn’t it be nice if the window was already
set for text entry when it opened? Dynamic scrolling is a breeze to
add. PowerPlant provides all the functionality automatically.

We realize that at this point you may feel you don’t know enough
about PowerPlant to pursue these ideas. You may be saying to
yourself, “What’s this SetLatentSub() stuff?” and “How do I use
StDialogHandler?”

That’s perfectly normal. PowerPlant is big and powerful, and it is
based upon high-level design concepts with which you may not be
familiar. That situation is about to change. Before long, easy
solutions that allow you to implement all of these features will be
apparent to you.

How is that going to happen? You’re going to read this book. In the
next few chapters—the Background chapters—we’re going to talk
about installing PowerPlant, PowerPlant naming conventions, and
the high-level design principles upon which the PowerPlant
architecture is based.

After you have that solid foundation in the fundamental
underpinnings of PowerPlant, we’re going to take you through
every aspect of application programming using PowerPlant.
The PowerPlant Book PPB–43

Introduction
Starting Your Own PowerPlant Projects
Starting Your Own PowerPlant Projects
PPEdit and the other example projects in this book come already set
up for you with all the files already part of the project. To start your
own PowerPlant project, you would use one of the stationery
projects supplied with CodeWarrior. To use the supplied stationery,
choose New from the File menu. Select Mac OS PowerPlant
Stationery as shown in Figure 1.14.

Figure 1.14 New project dialog

Type the name of your project in the Project name field. Set the
location to save your project. Click OK.

The available PowerPlant stationery is shown in Figure 1.15. Choose
the stationery project that satisfies your requirements and click OK.
Once your project is created, you can add or remove files as
required.
PPB–44 The PowerPlant Book

Introduction
Starting Your Own PowerPlant Projects
Figure 1.15 PowerPlant stationery

Table 1.1 describes each stationery project.

Table 1.1 PowerPlant stationery descriptions

Stationery Description Build Targets Main Files

Appearance Appearance
manager savy
application
derived from
LApplication.

Classic, Classic Bundle,
Classic Profile, Carbon,
Carbon Bundle,
Carbon Profile, and
Mach-O

CAppearanceApp.cp,
CAppearanceApp.h,
Appearance.ppob, &
Appearance.rsrc

Basic Basic PowerPlant
application.
Application class
derived from
LApplication.
Includes only
basic PowerPlant
classes

Classic, Classic Bundle,
Classic Profile, Carbon,
Carbon Bundle,
Carbon Profile, and
Mach-O

CBasicApp.cp,
CBasicApp.h,
Basic.ppob, &
Basic.rsrc
The PowerPlant Book PPB–45

Introduction
Starting Your Own PowerPlant Projects
Each stationery project is a fully functional application. You may
want to change the main application file names to coincide with the
name of your program.

For example, if you want to write a new document-based
application called HyperApp, you choose the PowerPlant
Document stationery and create your project. You would then
change the files CDocumentApp.cpp, CDocumentApp.h,
Document.ppob, and Document.rsrc to CHyperApp.cp,
CHyperApp.h, HyperApp.ppob, and HyperApp.rsrc.

You are not required to rename any files, but it is a good idea to do.

See also The IDE User Guide for information on renaming files in
a CodeWarrior project.

Advanced More advanced
setup of a
PowerPlant
Application
derived from
LApplication.
Includes most of
PowerPlant

Classic, Classic Bundle,
Classic Profile, Carbon,
Carbon Bundle,
Carbon Profile, and
Mach-O

CAdvancedApp.cp,
CAdvancedApp.h,
Advanced.ppob,
Advanced.rsrc

Document PowerPlant
Application
derived from
LDocApplication.

Classic, Classic Bundle,
Classic Profile, Carbon,
Carbon Bundle,
Carbon Profile, and
Mach-O

CDocumentApp.cp,
CDocumentApp.h,
Document.ppob, &
Document.rsrc

NetClient Local network
(non-internet)
client application
derived from
LDocApplication.

Classic, Classic Bundle,
Classic Profile, Carbon,
Carbon Bundle,
Carbon Profile, and
Mach-O

CNetClientApp.cp
CNetClientApp.h
NetClient.ppob
NetClient.rsrc

NetServer Local network
(non-internet)
server based
application
derived from
LDocApplication.

Classic, Classic Bundle,
Classic Profile, Carbon,
Carbon Bundle,
Carbon Profile, and
Mach-O

CNetServerApp.cp
CNetServerApp.h
NetServer.ppob
NetServer.rsrc

Stationery Description Build Targets Main Files
PPB–46 The PowerPlant Book

Introduction
Starting Your Own PowerPlant Projects
NOTE Our hypothetical application file names are substituted for the file
names used in the stationery projects throughout this book.
The PowerPlant Book PPB–47

Introduction
Starting Your Own PowerPlant Projects
PPB–48 The PowerPlant Book

2
Installing PowerPlant

Before you can begin developing software with PowerPlant, you
must have the necessary hardware and software. This chapter
covers the details on these topics:

• PowerPlant Requirements—system requirements for
development, and what a finished PowerPlant application needs
to run.

• Installing PowerPlant—how to install PowerPlant, and what
gets installed in the process.

• Installing Resource Templates—adding templates to ResEdit
and Resorcerer so you can edit PowerPlant-specific resources.

PowerPlant Requirements
There are two kinds of requirements you should consider:

1. Hardware and system software you need to write a
PowerPlant application.

2. Hardware and system software the user needs to run the
final application.

Development Requirements

Memory and hardware requirements to develop applications with
PowerPlant are the same as to run the CodeWarrior IDE. More
RAM may be required if you run the IDE, Constructor, and your
application concurrently.

See also The IDE User Guide for information on system
requirements.
The PowerPlant Book PPB–49

Instal l ing PowerPlant
Installing PowerPlant
Runtime Requirements

All PowerPlant applications (programs that you create with
PowerPlant) require the following minimum Macintosh setup:

• A minimum of 384 KB of available RAM. (Your particular
application may need more.)

• A 68020, 68030, or 68040 (LC versions are fine) or PowerPC
processor. PowerPlant applications require Color Quickdraw and
thus do not run on 68000 systems.

• System 7.0 or later.

• For PowerPC systems, the ObjectSupportLib shared library.
This library is an integral part of System 7.5 and later.
ObjectSupportLib is built into Mac OS 8.0 and later.

NOTE For earlier systems, the user must have installed the
ObjectSupportLib shared library in their Extensions folder. This file
is on the CodeWarrior Tools CD in several locations. You may ship it
with your products without additional licenses.

Installing PowerPlant
You should follow the installation instructions provided with
CodeWarrior to install the files for PowerPlant. The safest way to
install PowerPlant (and ensure you aren’t missing anything vital) is
to use the CodeWarrior installer.

Examine the options available in the installer. Most of the Mac OS-
related options install PowerPlant as part of the process. The only
options that do not are the minimal Mac OS installations. Even if
you choose a minimal install, you can still select the “Metrowerks
PowerPlant” option in the installer.

The installer does all the rest of the work. Installing PowerPlant
creates a folder named Metrowerks PowerPlant inside your
CodeWarrior folder. That folder contains the following items:

• Constructor—the PowerPlant view editor

• Custom Types—folder of custom resource types used by
Constructor
PPB–50 The PowerPlant Book

Instal l ing PowerPlant
Installing PowerPlant
• Converters—folder containing conversion applications to
convert older PPob files and resource types

• PowerPlant—an alias to the PowerPlant source code

PowerPlant Source Code

The original PowerPlant folder referred to by the alias is located in
the “MacOS Support” folder inside the Metrowerks CodeWarrior
folder.

This folder contains all the PowerPlant source code, both header
and source files. They are grouped according to functionality into a
series of folders such as Pane Classes, Commander Classes, and so
forth. You will meet most of these classes as you read this manual.

All the PowerPlant source code is directly available to you so that
you can study it, use it, see it in the debugger, and even modify it if
modification is vital to your project.

WARNING! Although you can do so, you should think twice before modifying
PowerPlant code. The whole purpose of an object-oriented
application framework is to give you a structure that you can easily
extend to suit your needs. You should rarely if ever run into a
situation where modifying the actual PowerPlant code is either
necessary or advisable.

The PowerPlant folder also contains the PowerPlant Resources
folder. The PowerPlant Resources folder contains templates for both
ResEdit and Resorcerer so that you can use those applications to
edit and manipulate vital PowerPlant resources. We’ll revisit this
topic in “Installing Resource Templates.”

PowerPlant Documentation

The “PowerPlant Doc” folder is on the CodeWarrior Reference CD
in the CodeWarrior Documentation folder. The PowerPlant
documentation consists of this manual, PowerPlant Advanced Topics,
the PowerPlant Reference, and the Constructor for PowerPlant User
Guide.
The PowerPlant Book PPB–51

Instal l ing PowerPlant
Installing Resource Templates
PowerPlant Advanced Topics covers a variety of significant
PowerPlant issues. It is a collection of independent chapters
complete with example code.

The PowerPlant Reference is a series of HTML files that covers
detailed information on PowerPlant classes, methods, and member
variables. PowerPlant Reference can be viewed using any graphical
web browser.

The Constructor for PowerPlant Guide provides the information
necessary to use PowerPlant’s view editor. You’ll find it very useful
as you get to know and use Constructor.

PowerPlant Example Code

The tools installer does not install PowerPlant example code.
Nonetheless, there is an abundance of PowerPlant example code
available to you on the CodeWarrior Reference CD. You’ll use some
of that code in the code-intensive chapters of this manual.

The example code is located on the CodeWarrior Reference CD in
the MacOS Examples folder inside the CodeWarrior Examples
folder. Inside the PowerPlant Examples folder there are several
folders full of PowerPlant-related code.

The PP Book Code folder contains the code you use in this
manual. We’ll discuss installing and using that code in detail when
we reach the first code exercise in this manual.

TIP Visit the PowerPlant contributed class archive available at http://
www.metrowerks.com/support/powerplant/ for more
classes written by other PowerPlant enthusiasts.

Installing Resource Templates
In the process of writing a PowerPlant-based application, you will
create and use several unique resource types:

• PPob—specifies the view hierarchy and elements

• Mcmd—specifies menu commands
PPB–52 The PowerPlant Book

Instal l ing PowerPlant
Installing Resource Templates
• RidL—an ID list of controls

• Txtr—specifies the text traits used by objects that display text

Constructor is the principal tool you use to create and edit PPob
(PowerPlant object) resources. The PPob resource specifies the
contents of a view (typically a window or part of a window), and
how the contents relate to each other hierarchically. Constructor
allows you to interactively create and design windows with lists,
controls, pictures, and more by simply selecting items from a palette
and placing them where you want them to appear in the window.

NOTE Constructor does not generate code, it simply creates the PPob
resource. PowerPlant itself contains the code necessary to build the
standard objects you specify in the PPob resource.

You can also use Constructor to create and edit MBAR, MENU, and
Txtr resources. Constructor creates but cannot edit RidL resources.
Constructor also lets you create and edit Mcmd resources right in
the menu editor.

Although Constructor lets you work directly with all the necessary
resources, you may wish to use a third-party resource editor such as
ResEdit or Resorcerer to manipulate these resources. We have
provided Rez and Resorcerer templates for all the resources, and
ResEdit templates for some of them. Follow the instructions below
for the editor you want to use.

See Also “Basic PowerPlant Resources” for more information on
PowerPlant resources.

Resorcerer

The Resorcerer templates for all four PowerPlant resources are in
the PowerPlant Resorcerer TMPLs file. Locate this file in the
PowerPlant Resources folder inside the PowerPlant folder (the one
that contains all the source code).

Be sure that Resorcerer is not running. Copy the file PowerPlant
Resorcerer TMPLs to the “Private Templates” folder inside your
Resorcerer folder. The new templates will be available the next time
you launch Resorcerer. It’s really that easy.
The PowerPlant Book PPB–53

Instal l ing PowerPlant
Installing Resource Templates
ResEdit

The ResEdit templates for three PowerPlant resources are in the
PowerPlant ResEdit TMPLs file. Locate this file in the
PowerPlant Resources folder inside the PowerPlant folder (the one
that contains all the source code).

Open the PowerPlant ResEdit TMPLs file with ResEdit. Then
open the ResEdit Preferences file (in the Preferences folder of
your System folder). Go back to the PowerPlant file, select the
TMPL resources, and copy them. Paste the resources into ResEdit
Preferences, then save and close the file. The new templates will
appear immediately.

NOTE The PPob resource does not have a ResEdit template. You can’t
edit PPob resources in ResEdit because the layered containment
hierarchy in a PPob resource is too complex for ResEdit’s template
mechanism.

Rez

Rez is a resource compiler that translates text files into resources.
(DeRez is the corresponding decompiler). You can use Rez as a tool
under ToolServer (an MPW tool available under the CodeWarrior
IDE) or by using the plug-in Rez compiler that comes with
CodeWarrior. The necessary information to use Rez with
PowerPlant resources is in the PowerPlant.r file in the
PowerPlant Resource folder. You’ll find this file in the PowerPlant
Resources folder inside the PowerPlant folder (the one that contains
all the source code).

Most programmers who use Rez typically use it for resources that
have convenient text representations. This includes all resources
whose data is primarily strings or numbers, but also PPob
resources, which have a simple textual format. You do not need any
special templates to work with PowerPlant resources in Rez.
PPB–54 The PowerPlant Book

Instal l ing PowerPlant
Summary
Summary
After you install PowerPlant, locate the source files so you can find
them when you need them. You might want to locate the
documentation files, and copy the PowerPlant Reference folder to
your hard drive.

Also remember to install the resource templates for the resource
editor of your choice, ResEdit, Resorcerer, or both.

Now you’ve got some great tools lined up, and you’re ready to go to
work! Before you do, let’s cover some PowerPlant terminology and
get comfortable with how the tools are organized.
The PowerPlant Book PPB–55

Instal l ing PowerPlant
Summary
PPB–56 The PowerPlant Book

3
PowerPlant Conventions

In this chapter we discuss the style in which PowerPlant code is
written, including standardized naming conventions you’ll find
very useful. As with all things stylistic, you are not required to
follow these guidelines in your own code. However, understanding
these conventions will help you understand what’s happening
when you are studying PowerPlant source code.

This chapter explains the following naming and coding conventions
to you:

• Class and File Names

• Variable and Parameter Names

• Data Types

• Other Names

• Calling Macintosh Toolbox Routines

Class and File Names
Source files usually contain only one class. Occasionally, a file
contains several classes, for example, LStdControl.cp.

Class names and file names begin with a capital letter with
embedded uppercase letters for word breaks. The first letters of the
class name or file name are a prefix, reflecting the kind of class.
Table 3.1 lists the naming conventions.

Table 3.1 Source and class naming conventions

Prefix Meaning Example

L PowerPlant library class LControl
The PowerPlant Book PPB–57

PowerPlant Conventions
Variable and Parameter Names
PowerPlant uses stack-based classes to save and restore state
information. Their constructors have the side effect of saving state
information, and their destructors restore it. See the
StHandleLocker class in UMemoryMgr.cp for an example.

Variable and Parameter Names
Variable and parameter names begin with a lowercase letter and use
embedded uppercase letters for word breaks. The first letters of the
variable name are a prefix, reflecting how the variable is used. Table
3.2 lists the naming conventions.

Table 3.2 Variable and parameter naming conventions

Pointers and handles are identified by a single-letter suffix. Table
3.3 lists the naming conventions.

Table 3.3 Pointer and handle naming conventions

U PowerPlant utility class UKeyFilters

St a stack-based class StHandleLocker

Prefix Meaning Example

Prefix Meaning Example

m data member of a class mFrameSize

s static data member sClickCount

in input parameter inCommand

out output parameter outMenuH

io input/output parameter ioParam

the a local variable thePane

Suffix Meaning Example

P a pointer theStringP

H a handle theMenuH
PPB–58 The PowerPlant Book

PowerPlant Conventions
Data Types
Data Types
PowerPlant declares several data types for its own use based on
standard C data types.

Integer types

The type names describe the number of bits in each type.
PowerPlant uses these types.

Table 3.4 PowerPlant integer types

Synonyms for integer types

Type definitions that are synonyms for other integer types end with
a capital T. Table 3.5 lists the most common such types.

Table 3.5 Other integer types

Name C type

SInt8 signed char

SInt16 signed short

SInt32 signed long

UInt8 unsigned char

UInt16 unsigned short

UInt32 unsigned long

Uchar unsigned char

Char16 UInt16

ConstStringPtr const unsigned char

 Name Type

CommandT SInt32

MessageT SInt32

ResIDT SInt16

PaneIDT SInt32

ClassIDT FourCharCode
The PowerPlant Book PPB–59

PowerPlant Conventions
Data Types
Enumerated types

Enumerated types begin with a capital E. All constants in an
enumeration begin with the same prefix that identifies the type. The
prefix is separated from the rest of the constant name by an
underscore. For example:

enum EProgramState {
programState_StartingUp,
programState_ProcessingEvents,
programState_Quitting

};

Constants

Constants always contain an underscore, used as a word break. The
underscore is never the first or last character. Embedded capitals are
used for other word breaks. Usually the word or words before the
underscore indicate a category or kind of constant. This is similar to
the naming of enumeration constants. For example:

const ResIDT resID_Default = -1;
const ResIDT resID_Undefined = -2;
const ResIDT cursor_Arrow = -1;

Resource IDs

Constants used as resource ID numbers begin with the four-
character resource type code. If the resource uses illegal characters,
use an approximation for those characters. For example:

const ResIDT MENU_Apple = 128;
const ResIDT ALRT_About = 128;
const ResIDT STRx_Names = 128;

Structures

Structure names begin with a capital S. PowerPlant never uses the
struct keyword to define a class. In PowerPlant, a struct contains
only data members and never contains member functions. For

DataIDT FourCharCode

ObjectIDT FourCharCode

 Name Type
PPB–60 The PowerPlant Book

PowerPlant Conventions
Other Names
example, this is the structure that LDialogBox uses to respond to
clicks in dialog buttons:

struct SDialogResponse {
LDialogBox *dialogBox;
void *messageParam;

};

Other Names
Preprocessor macro function names end with an underscore (_),
such as Assert_() and ThrowIf_().

“Mac” embedded in a name means that the item is related to a
Macintosh Toolbox data structure. “Count” embedded in a name
designates a quantity, such as the number of items in a container.

The terms “Image,” “Port,” and “Local” used as suffixes in member
function declarations relate to the coordinate system that the
function uses. We’ll discuss the various coordinate systems in
Chapter 7, “Views.”

Calling Macintosh Toolbox Routines
The PowerPlant application framework builds on the Macintosh
Toolbox, it does not replace the Toolbox. Most of your programs—
like PowerPlant itself—will use Macintosh Toolbox routines.

To avoid any possible name collision between a Toolbox routine
and a member function of a PowerPlant class, you should always
use the unary scope resolution operator (::) when you call
Macintosh Toolbox routines. The PowerPlant code follows this
convention almost all the time.

This practice makes it easy to distinguish Toolbox routines from
member functions. Here’s a code snippet from
LWindow::DoSetZoom().

SetWindowStandardState(mMacWindowP, &zoomBounds);
FocusDraw();
::EraseRect(&mMacWindowP->portRect);
::ZoomWindow(mMacWindowP, inZoomOut, false);
ResizeFrameTo(zoomWidth, zoomHeight, false);
The PowerPlant Book PPB–61

PowerPlant Conventions
Summary
The calls to EraseRect() and ZoomWindow() are Macintosh
Toolbox calls. The other calls are to member functions of the
LWindow class.

Notice that PowerPlant code does not use the this-> specifier for
the current object.

Summary
File, class, variable, parameter, and data type naming conventions
make PowerPlant code consistent in style. This helps you
understand the code more easily. Macintosh Toolbox functions are
almost always called using the unary scope resolution operator. In
most cases PowerPlant code does not use the this-> specifier for
the current object.

You have absorbed a lot of information in this chapter. You’ll find it
very useful when you start exploring PowerPlant code a little later.
In the next two chapters we’ll explore the power and patterns you
find in application frameworks in general, and in PowerPlant in
particular. You’re going to master the high-level design patterns
used in the PowerPlant architecture.
PPB–62 The PowerPlant Book

4
Application Frameworks

This background chapter discusses in general terms what a
framework is, the kind of power it has, and the kinds of design
patterns you typically encounter in a framework. This will give you
an understanding of the universe within which PowerPlant lives.

This overview gives you an invaluable perspective when you work
with PowerPlant code. In the next chapter you’ll see how
PowerPlant implements the high-level relationships that designers
have found to be vital in a good, object-oriented application
framework.

This chapter discusses the following topics:

• Reusable Code—a general introduction to the concept of
reusable code, and how the concept has matured.

• Application Frameworks—the purpose and nature of
application frameworks.

• Framework Design Patterns—the typical solutions that
framework designers have created to solve common application
programming problems.

Reusable Code
Programmers want and benefit from reusable code. Reinventing the
wheel is not a reasonable or productive use of your time and effort.
In this section we’re going to talk about three different ways in
which programmers have organized useful collections of reusable
code. They are:

• Procedural Code Libraries

• Class Libraries

• Frameworks
The PowerPlant Book PPB–63

Application Frameworks
Procedural Code Libraries
Each collection of reusable code is more sophisticated and more
powerful than its predecessor. Because procedural libraries are
familiar to most programmers, we’ll start with them.

You should realize, however, that some programmers use these
terms interchangeably. You will regularly hear frameworks called
class libraries, and libraries referred to as frameworks. Nonetheless,
there is a distinction between each of these collections, as you’ll
soon see.

Procedural Code Libraries

Code libraries have been around for a long time. It is quite likely
that you are familiar with one or more procedural libraries. The
ANSI standard C library is an excellent example of a function-based
code library.

A procedural code library is a collection of routines (functions,
procedures, subroutines) you can use in your own code. Such a
library is usually designed to serve the lowest common
denominator, so the routines in the library tend to be simple and
generic to a fault. The routines are usually of a “housekeeping” or
utility nature. They help you take care of programming chores, such
as converting lower case characters to upper case, formatting
strings, performing basic math, and so forth.

There are libraries designed for specific areas of programming, and
these can be very helpful in solving programming problems in that
area. You might find libraries for astronomy-related code, database
manipulation, and so on.

Unfortunately, in many cases the library’s routines are not perfectly
suited to your particular programming problem. You may find you
need to modify some of the code, or replace it. Modifying library
code is always a chancy proposition, because there may be hidden
dependencies between the function you’re modifying and the rest of
the library. This is a pitfall best avoided. Moreover, replacing code
defeats the purpose of the library.

Despite their limitations, procedural libraries are very useful. They
have saved many programmers thousands of hours of work. The
limitations are real however, and the desire for greater flexibility
and more reusable code has led to significant advancements.
PPB–64 The PowerPlant Book

Application Frameworks
Class Libraries
Class Libraries

A class library, in its most general sense, is simply a procedural
library rewritten in an object-based language. A class library is a
collection of classes designed to be of some use to you in
accomplishing your programming chores.

The various classes may not even be related to each other,
depending upon the nature and purpose of the library. Like a
procedural code library, the class library is usually a collection of
utility classes.

The main advantage that a class library has over a procedural
library is extensibility. Because of object-oriented features such as
inheritance and derivation, you can easily extend the utility of the
library to meet your particular programming challenge.

When the library does not solve your problem completely, you can
declare your own class, inherit from the library class, and override a
few functions to make it fit precisely with your particular needs.
You are no longer modifying the library code directly, you are
extending it.

While you are replacing part of the underlying class by overriding
behavior, the mechanism is simpler and more reliable than
replacing functions in a procedural library. You aren’t modifying
the library’s internal dependencies, and you still inherit all the
behavior you do not override. No generic solution is ever going to
perfectly solve all programmers’ problems all the time. But the class
library gives you a more flexible and robust mechanism for
modifying the generic solution.

So, where do frameworks fit into this picture?

Frameworks

A framework is a structured form of class library designed to assist in
solving a specific programming problem, a concept called the
problem domain. A framework is a collection of classes designed to
form a cohesive whole aimed at the problem domain.

Because they are all aimed at the same domain, the classes in a
framework tend to be more integrated and more interdependent
The PowerPlant Book PPB–65

Application Frameworks
Application Frameworks
than in a simple class library. This can make a framework both more
powerful and more difficult to use.

It is more powerful because the entire collection of reusable code is
aimed at a single problem. This makes everything more focused.
Because the problem domain is limited, the “generic” solution can
be that much more specific.

A framework may be more difficult to use because, being more
interdependent, you must get your head around the entire design to
see how all the pieces work together. Only then can you figure out
how to use the framework to solve your own particular version of
the problem domain.

No matter how well designed or focused, a framework is still a
generic solution to the problem. You must take advantage of the
flexibility of an object-oriented language to derive your own
solution from within the bounds of the framework.

A framework may be aimed at any sort of problem domain. You
might design a framework to help solve database problems, physics
problems, inventory control problems, and so forth. One potential
problem domain—the one we’re most interested in here—is
application programming.

Application Frameworks
An application framework is an object-based framework whose
problem domain is application programming. The framework is
aimed at solving the problems that application programmers
encounter when writing software for a particular platform. The
platform of interest to us here is the Mac OS.

In general, an application framework concerns itself with the
application interface, not the application content. This is an important
distinction, and one you should remember, because it drives much
of the design of a good framework.

The reason is simple. The interface elements of most applications
are fairly standard, and therefore lend themselves to a generic
solution. The content of applications is highly variable from
PPB–66 The PowerPlant Book

Application Frameworks
Application Frameworks
application to application, thus making any generic solution almost
worthless.

NOTE There are some common types of data that many applications
contain, such as text or tables. You will find support for this kind of
data in some application frameworks (PowerPlant among them). All
the same, the principal focus of an application framework is in the
visible interface.

Beyond interface solutions, the second area in which an application
framework provides solutions is in the flow of control in an
application. A good framework identifies and dispatches events to
the appropriate elements in the application.

The application framework can usually create a completely
functional—but empty—application with very little effort. The
framework provides a series of default or empty behaviors that
serve as hooks. You override those behaviors in your own classes
when necessary to mold the framework to your specific needs.

For example, an application framework is likely to have a “Draw”
behavior somewhere to draw the contents of a window (or part of a
window). You override the Draw behavior to draw your unique
content, but you never have to worry about when or whether the
Draw behavior should be called. The flow of control and basic
functionality is provided for you in the application framework.

The advantages of a powerful application framework are
immediately obvious. With little or no work, you already have a
complete application shell ready to be filled with your own content.
In addition, because many programmers have worked on or with
the framework, its code is likely to be extremely reliable.

In a well-designed framework, you may find yourself using 90% or
more of the framework without change. Common problems like
event parsing, menu management, and idle time processing have
already been solved by expert programmers.

Their solutions are embedded within the application framework. A
good application framework like PowerPlant lets you take
advantage of their work and reuse their code. You can really
concentrate on the particular areas where your application needs
The PowerPlant Book PPB–67

Application Frameworks
Framework Design Patterns
special behavior. This, after all, is a lot more fun than reinventing
the wheel, and is a much better use of your time and skills.

Application frameworks are often very complex, with dozens of
highly interdependent classes. Learning the ins and outs of an
application framework can be a daunting task. On the other hand,
the architecture of a modern, well-designed application framework
like PowerPlant can make the learning process a lot easier. You’ll see
how in the next chapter, when we discuss how PowerPlant
implements the design patterns you typically find in an application
framework.

Framework Design Patterns
If you have never used an application framework, you are about to
acquire a new and very powerful tool.

However, one of the principal hurdles you will encounter is the
obscure and seemingly strange code you find hiding in the source
files. It’s rather like being dropped into a maze where the walls not
only block your view, they reorganize themselves every time you
turn around.

Although it doesn’t look like it from the inside of the maze, there
really is a plan to the apparent madness. The path out of the maze is
not obvious when you’re lost at the code level. However, it is easy
to see the solution from high above the maze. When you look down
on the maze, patterns can emerge.

A design pattern is an intentional, coherent system based on the
interrelationship of component parts.

For example, take a look at a stone building. You are quite likely to
see one or two patterns used to span a gap in a wall (such as for a
doorway or a window). One pattern you’ll see is the post and lintel,
where two uprights support a crossbeam that carries the load.
Another is the arch, where a series of shaped stones carry the load
across the gap. These are design patterns in masonry.

In object-oriented programming, the components in a design
pattern are the classes or groups of classes that have, over time, been
found to work well together to accomplish some specific task.
PPB–68 The PowerPlant Book

Application Frameworks
Applications
All applications encounter similar problems. Although the details of
solutions vary from framework to framework, most frameworks
have followed established patterns that work well. These patterns
are part of the architecture of the framework. They are the steel
skeleton that makes it strong.

Once you understand the patterns, complex and obscure code will
become clear. You will know its place in the scheme of things, and it
will no longer seem strange.

You’ll be visiting these patterns again in the next chapter when you
see how PowerPlant solves these high-level problems.

The patterns discussed in this section include:

• Applications

• Event Handling

• Command Hierarchy

• Visual Hierarchy

• Messaging Systems

• Persistence

• Utilities

NOTE The terminology used in this discussion matches that used in
PowerPlant. You may hear these patterns called by other names in
other frameworks, but the underlying pattern and functionality are
essentially the same.

Applications

An application framework usually has an application object. This
object is responsible for providing application-level services. It
launches, initializes the environment, runs an event loop, and quits.

The application object is usually the final dispositor of events not
handled elsewhere in the application. As a result, it is responsible
for basic menu control, document creation, and events that are not
related to any particular window or part of the application, such as
displaying the About box that is a familiar part of any Mac
application.
The PowerPlant Book PPB–69

Application Frameworks
Event Handling
Event Handling

A Macintosh application is event driven, and a framework must
handle events. You will usually find event handling and/or
dispatching classes that take care of this service for you. This class
or group of classes is responsible for parsing the event and
dispatching control after determining the nature of the event.

Event dispatch can be a tricky business. For example, assume you
receive an event that contains a keystroke, and you have several
editable text fields available in a window. Which one should receive
the event?

Command Hierarchy

To simplify the event dispatch problem, the application framework
establishes an object hierarchy so that every object that can respond
to an event is owned by some other object. Ultimately the
application owns them all.

An object that can handle events and respond to commands is called
a commander. In the chain of command, those higher up are called
supercommanders and those lower down are called
subcommanders. Any given commander may be both a
supercommander to its own subcommanders, and a subcommander
to some other supercommander.

NOTE The application object is typically the ultimate supercommander and
is not a subcommander to any other object.

Typically the command hierarchy is a tree. No object may have
more than one supercommander, but it may have several
subcommanders. A commander may have no subcommander at all
if that particular commander is a leaf on the command tree.

Even with a command hierarchy, there are still two possible
solutions to the event dispatch problem. You can dispatch events
from the top down, or from the bottom up.

The top-down approach starts at the application level and moves
down the command hierarchy looking for an object that can handle
PPB–70 The PowerPlant Book

Application Frameworks
Command Hierarchy
the event (a leaf object). This approach is less common, but certainly
reasonable. It has some advantages and disadvantages. Because
control starts at a high level, you can process many events right
there (meaning that your leaf objects can be simpler because they
don’t have to understand those events). On the other hand, if the
event is destined for a leaf object—and most events are—dispatch
must proceed down through the entire tree before the event is
ultimately handled, as shown in Figure 4.1.

Figure 4.1 Top-down command hierarchy

The other approach (the one you’ll find in PowerPlant) is to
dispatch events from the bottom up. In this design pattern, the
application keeps track of a target object. The target object is the
currently active command object destined to be the recipient of all
(or most) events. When an event is dispatched, it goes directly to the
target object, which is always a commander, as shown in Figure 4.2.

If the target object is incapable of handling the event, it passes the
event back up the command hierarchy to its owner/
supercommander. The supercommander may handle the event, or
pass it on to the next commander up the chain. Ultimately, if no
object handles the event the application object receives the event
back, and must handle the event itself.
The PowerPlant Book PPB–71

Application Frameworks
Visual Hierarchy
Figure 4.2 Bottom-up command hierarchy

NOTE The framework usually takes care of tracking the target object
automatically. There will be times when you want to switch targets
manually.

The principal advantage of the bottom-up approach is that the
target object can adjust the context of the application to match the
object’s own capabilities. Because it gets events first the target object
can set up menus properly to reflect its behavior. If the target object
is a text object for example, it might enable a font menu.

This gives you tremendous flexibility. You can put a great deal of
power down deep into the leaves of your command hierarchy, and
let them take care of things for you. This makes the central control
system a lot simpler. If you add a new kind of object, you don’t have
to redesign the control system, you simply give that new object the
knowledge necessary to adapt the entire application to its needs.

As an additional advantage, tracing the command chain is a lot
simpler from the bottom up. Each supercommander may have
several subcommanders. Figuring out which way to go from the top
down is a non-trivial task. Figuring out which way to go from the
bottom up is simple—there is only one path because each
commander has one supercommander.

Visual Hierarchy

Because an application framework deals primarily with the visual
interface, how the framework draws is an important design pattern.
PPB–72 The PowerPlant Book

Application Frameworks
Visual Hierarchy
To make drawing as flexible as possible, an application framework
establishes a visual hierarchy similar in concept to the command
hierarchy.

A view is an area within which drawing occurs. A view is not a
window (although a window may be a view).

NOTE You may encounter the term “pane” used synonymously with “view.”
In PowerPlant, panes and views are specific classes with specific
features. We’ll discuss their differences in the next chapter, and we’ll
discuss their features in great detail later in this manual. For now,
we’ll use the term view very generally to mean a drawing area, and
nothing more.

The important feature of most application frameworks with respect
to drawing is that views can form a hierarchy. A view may contain
other views (subviews), which may contain other subviews, and so
on.

In other words, views may have a superview-subview relationship.
Like commanders, a view may be a superview to its own subviews,
and a subview to its own superview. No view may have more than
one superview, but it may have several or no subviews.

Figure 4.3 A visual hierarchy

The view hierarchy is responsible for maintaining the coordinate
systems and the relative relationship, position, and appearance of
the view objects in the chain. With a little imagination you can see
that this kind of system is excellent for accomplishing tasks like
scrolling, creating different views on the same data, and so forth.
The PowerPlant Book PPB–73

Application Frameworks
Visual Hierarchy
In a good application framework, the view system is also
responsible for maintaining knowledge of the drawing
environment. On a Macintosh, this means tracking and maintaining
the clipping area, graphics port, and so forth.

Setting up these features for a particular view is called setting the
focus for that view. The view focus is an important concept. In order
for view objects to draw properly, they must be the focus of
attention within the operating system’s graphics environment.

NOTE Like the target object in the command hierarchy, the framework
usually handles focus automatically. There will be times when you
manually force a view to become the focus before drawing it.

Views are usually responsible for drawing themselves in response
to messages from the control system. Drawing occurs from the top
down, so that superviews are drawn before subviews. As a result,
the subviews are drawn last—on top of all the superviews in the
view hierarchy.

A view may also be a commander. For example, you may have a
certain kind of view that displays a picture. You may want certain
features enabled or disabled when the user is manipulating the
picture. In order for that to happen, the view containing the picture
must also be a commander so that it can respond to events.

NOTE Do not confuse the visual hierarchy with the command hierarchy.
The visual hierarchy is concerned with drawing things. The
command hierarchy is concerned with handling events and
commands. An object may occupy a position in either or both
chains. As a result, the chains are interconnected but the chains
remain distinct.

In a typical application framework you encounter a wide variety of
classes derived from a base view class. These subclasses describe
standard visual features of the Macintosh environment such as
scroll bars, text boxes, check boxes, radio buttons, standard buttons,
lists, pictures, popup menus, and more. You will encounter a bevy
of these classes in PowerPlant, and you’ll find them extremely
useful.
PPB–74 The PowerPlant Book

Application Frameworks
Messaging Systems
Messaging Systems

You have already encountered an important messaging system, the
command hierarchy. A message is received by the application,
parsed, dispatched to a target object, and processed. This messaging
system is vital to the functioning of an application. However, it is
limited because communication only occurs vertically through the
command hierarchy, and it only involves events.

In many cases you will need objects that communicate with each
other when they are not part of the same chain of command, or the
same view hierarchy, or when the message involved is not an event.

Framework designers have created a wonderfully flexible
messaging system to solve this problem—the broadcaster-listener
system (also known as the notifier-responder).

A broadcaster is an object that sends a message on certain occasions.
For example, a check box may send a message that it has been
clicked. The nature of the message may vary depending upon
circumstances. In a typical message, a control will broadcast its
current setting to all its listeners so that they may respond
accordingly.

A listener is an object that listens for messages. Depending upon the
messages it receives, it may or may not respond with some action.
For example, if a listener receives a message that a particular check
box has been clicked and is now on, the listener may activate some
new feature in a window or within the application.

Figure 4.4 Broadcaster and listener relationships

The flexibility in this system comes from the fact that the
broadcaster has a dynamic list of listeners to whom it sends
The PowerPlant Book PPB–75

Application Frameworks
Persistence
messages when appropriate. You may add or remove listeners at
any time. The broadcaster doesn’t need to know the nature of the
listener, or what the listener will do in response to the message.
Likewise the listener doesn’t need to know anything about the
nature of the broadcaster. The listener must understand the nature
of the message in order to respond appropriately, but not the nature
of the broadcaster.

This loose coupling between broadcaster and listener keeps the
entire messaging system extremely flexible. You’ll use it extensively
when you work with PowerPlant.

Persistence

Persistence refers to the concept that some data (or more precisely,
objects that contain data) should continue to exist even when the
application is not running. To do that—to be persistent—this data
must be stored on a medium other than volatile RAM.

A common solution is to use file and document classes to support
reading and writing data from disk, and stream classes to help
move that data around.

A file is stored data. An application framework provides classes that
help you manipulate files in the standard fashion, with behaviors to
open, close, revert, save, and print.

On the Macintosh, a file’s contents are typically displayed in a
window. In the PowerPlant architecture, the document class is the
link between a file and a window. It connects a specific file to a
specific window, and keeps track of whether the contents of the
data have been changed. The document also provides support for
printing the data.

A stream is an ordered series of bytes of data. Streams are extremely
useful in a variety of programming tasks, particularly the transfer of
data from one place to another (such as saving data to a disk or
sending data over a network).

Files and streams, linked to windows by a document, work hand in
hand to make the process of saving data to disk and reading the
data from disk as painless as possible. The document keeps track of
which window is attached to which file, and the physical location of
PPB–76 The PowerPlant Book

Application Frameworks
Utilities
the file. You use the stream classes to write data to or read data from
the associated file.

Taken together, the document/file/stream combination can
insulate you from the details of managing file I/O at the operating
system level.

Utilities

Any good application framework provides a variety of services to
you to make your programming chores easier. In addition to the
command, view, and messaging systems, the framework also
provides utility-level services.

The precise services will vary from framework to framework, but
you are likely to encounter classes designed to help you with:

• linked lists

• sorted lists

• dynamic arrays

• memory management

• menu management

• periodical events

• idle time processing

• string manipulation

• window management

• exception handling

Learning about all the features available to you in a major
application framework is a non-trivial task. There are close to 2,000
functions in PowerPlant. The good news, as you may recall from
earlier in this chapter, is that you get to inherit the vast majority of
them without ever seeing or being concerned with the functions in
any way.

You’ll discover that there are a few important places in PowerPlant
where you must derive classes, a few common functions you must
override, and a few places where you must provide new
functionality. These places are well known and easily identifiable.
The PowerPlant Book PPB–77

Application Frameworks
Summary
Once you know what they are, you can create a simple and unique
application fairly easily.

Summary
In an ever-improving attempt to create reusable code, code
designers created procedural libraries, class libraries, and ultimately
frameworks aimed at specific problem domains.

Application frameworks provide a generic solution to the
significant coding problems faced when writing an application.

The design patterns used in application frameworks include
features that support event handling and dispatch, command flow
control, the visual display of standard interface elements, inter-
object messaging, file I/O, and utility functions.

The PowerPlant universe is expanding before your eyes. You know
what an application framework is, and what it does. In the next
chapter we’ll talk about the specific PowerPlant classes that
implement the design patterns we have talked about here.

After that we’ll start writing real PowerPlant code. In the process
we’ll introduce you to all the places where you will usually interact
with PowerPlant. Soon you’ll be able to use PowerPlant’s immense
power easily and effectively.
PPB–78 The PowerPlant Book

5
PowerPlant Architecture

In this background chapter we are going to talk about the structure
of PowerPlant on three levels: object-oriented design, classes, and
resources.

The first section of this chapter introduces you to some of the critical
design decisions that make PowerPlant much easier to manage than
your typical Macintosh application framework.

Because PowerPlant is a carefully designed application framework,
you will see a clear relationship between the design patterns
discussed in the previous chapter, and the important classes we’re
going to introduce to you here. We’re also going to visit the basic
PowerPlant resources so that you know what they are, what they
are for, and how to use them.

Finally, we’re going to talk about the steps you would follow as you
develop a PowerPlant application.

The principal topics in this chapter are:

• Design Principles—the underlying “philosophy” behind
PowerPlant.

• Framework Implementation—the classes that create the main
features of the PowerPlant framework.

• Basic PowerPlant Resources—the resources you create for a
PowerPlant application.

• PowerPlant Development—what it’s really like to develop a
PowerPlant application.

Design Principles
PowerPlant is a third-generation Macintosh application framework.
Its designers learned a lot from the problems encountered in other
The PowerPlant Book PPB–79

PowerPlant Architecture
Multiple Inheritance
application frameworks. PowerPlant has always been a pure C++
application framework. It hasn’t inherited any baggage from earlier
versions originally implemented in languages lacking object-
oriented features. PowerPlant uses fundamental object-oriented
behavior such as derivation and inheritance to build its class
hierarchy and add functionality and behavior to the framework.

The design of the PowerPlant application framework is guided by
the following fundamental principles:

• Multiple Inheritance—a mix-in architecture based on multiple
base classes.

• Factored Design—classes are as independent as possible.

• Factored Classes—classes are as small as possible.

• Factored Behavior—individual behaviors within a class are
carefully separated into simple, component parts.

These principles taken together ensure that the PowerPlant
application framework is small enough that you can learn it quickly,
yet powerful enough that you can create full-featured, world-class
applications. Let’s look at each of these principles to see how they
affect the PowerPlant framework, and why they make PowerPlant
easier to learn and use.

Multiple Inheritance

PowerPlant takes full advantage of C++’s support for multiple
inheritance. As a result, the class hierarchy in PowerPlant is a series
of small, interconnected trees rather than a monolithic monster tree.

Mix-in and base classes

PowerPlant has a large set of classes whose sole purpose is to be
mixed into other classes by multiple inheritance. Among the
common PowerPlant base or mix-in classes are:

• LCommander—for command objects.

• LPane—for visible objects.

• LBroadcaster—for all objects that broadcast messages.

• LListener—for all objects that listen for messages.
PPB–80 The PowerPlant Book

PowerPlant Architecture
Multiple Inheritance
• LPeriodical—for objects that should receive time on a regular
basis.

• LAttachable—for objects to which attachments can be
connected.

• LModelObject—for AppleEvent support, scriptability, and
recordability.

Several important PowerPlant classes inherit from one or more of
these mix-in classes to add functionality where and when necessary.
For example the LControl class (which encapsulates control object
behavior) not only inherits from LPane (because it is a visible
object), but from LBroadcaster so that any control can also broadcast
a message when something happens to it.

LPeriodical is another good example. Any object that should receive
attention on a regular basis inherits from LPeriodical. For example,
the LTextEditView class inherits from LPeriodical because it must
keep the cursor blinking when it is active.

In subsequent chapters you’ll learn all the details about how these
objects work. The beauty of using multiple-inheritance in a mix-in
architecture is that understanding the framework becomes much
easier. In a very real sense, PowerPlant can mix and match classes to
combine them into powerful subclasses with a rich feature set.

A mix-in example

For example, consider the class, LEditField. This class encapsulates
the behavior of an editable text field like you commonly see in a
dialog box. LEditField is part of the LPane hierarchy. In addition, it
inherits directly or indirectly from:

• LCommander—to respond to typing and to the commands in
the Edit menu.

• LPeriodical—to flash the cursor when the field is active.

• LAttachable—because you may want special things to happen
when an editable text field is present.

TIP Attachments are an extremely powerful feature of PowerPlant that
we’ll discuss later on in this manual.
The PowerPlant Book PPB–81

PowerPlant Architecture
Multiple Inheritance
Figure 5.1 illustrates how LEditField inherits from LPane, from two
mix-in classes directly, and via LPane from LAttachable.

Figure 5.1 LEditField inheritance chain

NOTE In class hierarchy diagrams in this manual, abstract classes have a
grey bar across the top instead of a black bar. There is no example
of an abstract class in this diagram. Mix-in classes are represented
by rounded rectangles (whether abstract or not). Identifying any
particular class as a mix-in class is arbitrary, and based upon the
most common way in which the class is used for derivation. If the
class is used as a base class by classes in different class
hierarchies, then we have identified it as a mix-in class.

In addition to making the entire framework easier to understand
(because behavior is factored out into mix-in classes), the fact that
PowerPlant uses multiple inheritance has an even bigger advantage
for you as a programmer—enhanced code reusability.

When you write PowerPlant applications, you will create your own
classes derived from the PowerPlant framework. Because common
types of object behavior have been intelligently grouped into a
series of relatively small and distinct base classes, you can simply
add the desired behavior to your own class without inheriting a
tremendous quantity of unnecessary baggage.

To understand how this works, let’s take a look at what happens if
you derive a class based on a single-inheritance hierarchy.

A single-inheritance example

In a single-inheritance hierarchy, commonly-used behaviors must
appear high in the chain so that those classes that need the behavior
can inherit them. Features tend to be piled onto classes not because
PPB–82 The PowerPlant Book

PowerPlant Architecture
Multiple Inheritance
all classes need them, but because some classes need them
somewhere down the chain.

Consider how the editable text field would be implemented with
single inheritance. The text object must draw itself in a window, so
the text field class derives from a class in the view system. The text
object should respond to mouse-clicks and typing, so the text field
class also derives from the command system. Of course, that means
that the view system must be part of the command system! Editable
text needs a blinking insertion point, so the text object also needs to
handle periodic tasks. That feature must be added somewhere up
the chain, probably in the command system.

Figure 5.2 Single inheritance for a hypothetical edit field class

So, what’s the problem? You’ve got all the same behaviors, just
what’s necessary and no more. It works fine for one kind of object,
but there are many kinds of objects in an application.

Imagine you want a caption object that simply displays one line of
text. The caption object doesn’t respond to commands or perform
periodic tasks, it only needs to draw itself. In the single inheritance
design, the caption class would derive from the display classes,
which are derived from the command classes and the periodical
classes. The innocent caption class ends up inheriting a lot of
baggage it will never use. When you look at that class in a browser,
all sorts of spurious and useless functionality appears. You have to
hunt through all the useless parts to find the behavior you need.
The PowerPlant Book PPB–83

PowerPlant Architecture
Factored Design
Figure 5.3 Single vs. multiple inheritance for a caption class

Using multiple inheritance as a principal design element in
PowerPlant does not automatically make every class simple. But it
does mean that any given class is far more likely to have just the
behavior it needs. Some classes are still very complex, with dozens
and even hundreds of behaviors. Nevertheless, without multiple
inheritance the situation would be that way for almost every class,
even those that are inherently simple.

Factored Design

PowerPlant works on the principle that isolating classes from one
another reduces complexity and enhances code reusability. Multiple
inheritance and the mix-in architecture are the principal reasons
why PowerPlant can implement its second design goal—to keep
classes as independent as possible.

Beyond the important base classes cited in the previous section,
PowerPlant has a large collection of small base classes that you can
use in a whole variety of circumstances—without using any other
part of PowerPlant!

PowerPlant classes refer to as few other classes as possible. For
example, the LMenu and LMenuBar classes refer to each other, but
to no other classes. If you want to take advantage of PowerPlant’s
PPB–84 The PowerPlant Book

PowerPlant Architecture
Factored Design
menu creation services, you can use those classes in your own
projects without using any other part of PowerPlant. Not bad!

This design excellence makes PowerPlant a treasure trove of
reusable code. Here are some more examples.

The LBroadcaster and LListener classes refer only to each other and
the LArray and LArrayIterator classes. If you would like to
implement a messaging system in your project, you can use these
classes, and you’re on your way. There’s no need to inherit views,
panes, commanders, or any of the other trappings of a powerful
application framework.

PowerPlant includes a powerful class for string manipulation,
LString. It is a complete, stand-alone class. You don’t have to use
any other part of PowerPlant to have access to the power of LString,
as shown in Figure 5.4.

Figure 5.4 Using LString

If you need to maintain dynamic lists in your project, you can use
the LArray and LArrayIterator classes independently. If you want
to filter keystrokes before processing them, check out the
UKeyFilters class which has a variety of filters ready for your use.
Interested in some powerful debugging code? Examine the
The PowerPlant Book PPB–85

PowerPlant Architecture
Factored Classes
UDebugging class and UExceptions.h. The list goes on and on.
There are, quite literally, dozens of useful classes that have been
purposely designed to be completely or almost completely
independent of the rest of PowerPlant.

Of course, in an application framework some dependencies are
unavoidable. You’ll find these most often in the visible objects in the
view hierarchy. For example, the classes that describe control
objects assume that they exist in a containment hierarchy headed by
a window or equivalent object.

All the same, you can see the difference between a monolithic
application framework that requires you to buy the entire store
every time you want to use one tool, and a well-designed
application framework based on multiple inheritance and a factored
design where you can take the tools you need and leave the rest of
the hardware store behind.

Factored Classes

The third principle that guided the PowerPlant designers is that
behavior should be placed as low as possible in the class hierarchy.

This process goes hand-in-hand with the overall factored design of
PowerPlant we discussed in the previous section. The distinction
between a factored design and factored classes is simple. A factored
design looks at the problem domain horizontally. What parts of the
problem can we separate from what other parts? The process of
factoring class behaviors is vertical. How far down in the chain do
we place a particular behavior that belongs in this hierarchy?

A careful analysis of the design of a typical Macintosh application
identifies the behaviors that various aspects of the application must
provide. What does a window do? What does a scroll bar do? What
does a radio button do?

By analyzing the behavioral demands on the various identified
objects in the system, the designers of PowerPlant have carefully
factored behavior so that it appears only when necessary. General
behavior appears early on in base classes, so it can be inherited by
all those subclasses that need it. Behavior that is more specific to a
certain kind of object doesn’t appear in a class declaration until
necessary.
PPB–86 The PowerPlant Book

PowerPlant Architecture
Factored Classes
This doesn’t mean that some classes aren’t large and complex. The
class that defines window behavior for example, LWindow, is quite
complex. It has more than 60 member functions declared in the
class, plus a couple of hundred more inherited from a variety of
base classes.

NOTE Don’t let LWindow scare you. Most of the functions are for internal
use, and you won’t use them directly. In PowerPlant, many if not
most classes are small, with only a handful of member functions of
their own.

However, because the designers paid attention to the underlying
design, this complexity is easier to manage. Even in a complex class
like LWindow you’ll be able to recognize that certain member
functions come from the LCommander base class, others from the
LView base class, and still others from other base classes from
which LWindow inherits. This logical structure allows you to break
down even the most complex class into its constituent parts, making
the whole that much more understandable.

Class Implementation Details

In the process of actually writing the code for these well-considered
classes, the PowerPlant authors also made some code-level
decisions. To ensure that all derived classes have access to the
protected members of their base classes, base classes are always
public, and all derivation is also public.

There are very few private data members or member functions.
Almost everything in PowerPlant has either public or protected
access.

Generally, the private member functions are those that are called
from within constructors. In C++, if you call a function from within
a constructor, it is not treated as a virtual function call. Overriding
such a function in a subclass has no effect—it will not be called.
Therefore, we make such functions private, so that you will not
mistakenly think that you can override such functions.

Of course, like any class hierarchy, PowerPlant uses function
overriding extensively. Function overloading is not so common.
PowerPlant uses function overloading for constructors, and in a few
The PowerPlant Book PPB–87

PowerPlant Architecture
Factored Behavior
other cases where the designers deemed it advisable. The only
exception to this rule is the LString class and its derived classes.
These classes use both function and operator overloading
extensively.

For beginners Function overriding occurs when a derived class declares a function
with the identical signature as a virtual function in the base class (i.e.
same return type, function name, and parameter list). Function
overloading occurs when (usually within a single class) two
functions have the same name, but a different signature (different
parameters). Operator overloading occurs when a class declares a
replacement behavior for a standard operator, such as the addition
operator (the + sign). For example, in the LString class, the +
operator is defined to mean “append one string to another,” as
opposed to adding two numbers together.

Factored Behavior

The final principle that guided the creators of PowerPlant is that
complex behaviors should be factored into simple, constituent parts.
Once again, like the emphasis on factored classes and a factored
design, factoring behaviors into their component parts continues
the trend toward small, simple building blocks that you see
throughout PowerPlant.

To implement this principle, member functions that affect an object
are usually split into two parts. We’ll call them the setup part and
the action part.

The setup part handles any state-testing or adjusting that must
happen before the action takes place, and restoring any state after
the action takes place.

The action part implements the actual desired behavior.

The name of the member function that handles the setup part is
usually the name of the action; for example, Draw(). The name of
the member function that handles the action part is the same as the
general function with the word “Self” added; DrawSelf() for
example.
PPB–88 The PowerPlant Book

PowerPlant Architecture
Factored Behavior
When you work with PowerPlant, you will find that you rarely if
ever call a “Self” routine, but you regularly call setup routines.
Conversely, you rarely if ever override a setup routine, but you
regularly override the action or “Self” routine.

An example will help here. The LPane class declares two member
functions, Draw() and DrawSelf(). Together these functions
draw the contents of the pane. If you derive a class from LPane, you
would typically call Draw() and override DrawSelf().

The Draw() function makes sure that the pane is visible and that its
coordinate system is set up. Then it calls DrawSelf()—the action
routine. You have to do the setup work no matter what you draw.
Setup work is usually constant so it rarely needs to be replaced, but
it almost always has to be called. You can’t skip the setup, but you
don’t normally need to replace it.

The action, on the other hand, will vary. The DrawSelf() function
does the actual drawing, and because each pane varies you will
certainly override it in a class derived from LPane. (In fact, the
LPane::DrawSelf() function does nothing!) However, you
shouldn’t call DrawSelf() directly because the necessary setup
work won’t be performed and “unexpected results” will occur.

Figure 5.5 Calling Draw()

Because the PowerPlant designers factored these two behaviors into
separate functions—setup and action—you don’t have to write
housekeeping code every time you override a function for a derived
class.
The PowerPlant Book PPB–89

PowerPlant Architecture
Framework Implementation
You will find this type of factoring throughout PowerPlant. As you
work with the code you will become familiar with what functions
perform what behaviors, what functions you commonly override,
and what functions you commonly call. You’ll start working with
code intensively in the next chapter.

Before then, however, let’s take a quick tour of the actual
PowerPlant classes you’ll be working with. In the process, let’s keep
an eye on how they fit into the overall application framework
design we talked about in the previous chapter. By the time you
finish this chapter, you will have a really solid foundation on which
to build your PowerPlant expertise.

Framework Implementation
When we start working with the different PowerPlant classes in
detail, we must present them to you in piecemeal fashion. You can’t
do everything all at once. In addition, the remaining chapters in this
book are task-based. That is, we’re going to be talking about how to
accomplish particular programming tasks, and discuss what
PowerPlant classes you use in that context.

This section gives you a class-based and relatively brief introduction
to the various classes you’ll meet in PowerPlant. This will give you
an idea of what the classes are, and how they fit into the overall
application framework. As a result, when you encounter them later
on in this manual (from a task-based perspective) you’ll know how
the work you’re doing fits into the big picture.

This section is organized exactly like the discussion of application
frameworks in the previous chapter. Instead of theoretical design
patterns, we’re going to be talking about real classes. The discussion
is divided into:

• Application Classes

• Event Classes

• Commander Classes

• Visual Classes

• Messaging Classes

• Persistence Classes
PPB–90 The PowerPlant Book

PowerPlant Architecture
Application Classes
• Utility Classes

This is not all of PowerPlant. Beyond these groups of classes, there
are several more classes for advanced programming issues like
threads, drag and drop, scriptability, tabular data, and so forth.
These additional classes are not covered in this book.

Application Classes

Applications are the core of PowerPlant programs. There are two
application classes in PowerPlant, as shown in Figure 5.6.

Figure 5.6 PowerPlant application classes

LApplication encapsulates the common behavior of an application.
You create a single object of this class. The application object
manages the execution of an application program. It handles start
up and shut down, runs the main event loop, executes application-
level events (using LEventDispatcher), handles Apple events,
updates menus and the menu bar, and adjusts the cursor.

LDocApplication inherits from LApplication. Additional member
functions support opening, closing, and printing documents.
Because most Macintosh applications store data in files on disk,
you’ll most likely use LDocApplication as the basis for your own
application.

Typically you will derive your own application class based on one
of these two classes, and override several member functions to
create your application’s unique behavior, handle your own menus,
The PowerPlant Book PPB–91

PowerPlant Architecture
Event Classes
open, close, and print your own documents, and so forth. The
functionality provided by PowerPlant for free includes initializing
the environment, running the event loop, and quitting the
application.

The main event loop retrieves events, and passes them on to
LEventDispatcher for parsing and dispatch. The main event loop
also distributes time to objects that need attention every time
through the event loop.

The application is also the top of the command chain described
below in the Commander Classes section. Any event not handled by
some subcommander will reach the application, where you can
either process or ignore it, as appropriate. In other words, the
application gets the last chance at the event.

Event Classes

LEventDispatcher takes care of all event processing after the
application retrieves the event in the main event loop. Event
dispatch is a fairly constant process, and in many cases you won’t
have to override any functions in LEventDispatcher. For the most
part, PowerPlant gives you event dispatch for free.

NOTE Unless you use the Mac Toolbox directly for tasks such as running a
dialog box with ModalDialog(), all event processing goes through
the main event loop and LEventDispatcher, even for modal dialogs.

LEventDispatcher is also responsible for adjusting the cursor,
distributing time to idle-time processes, and initiating menu
updates before displaying menus.

Commander Classes

LCommander is the base class from which all commander objects
inherit. It has functions for command chain maintenance (changing
supercommanders, or adding or removing subcommanders). Each
commander can also manage the target object with member
functions to set the target, be the target, not be the target, and so
forth.
PPB–92 The PowerPlant Book

PowerPlant Architecture
Commander Classes
For beginners If you are not familiar with the concept of a target, see “Command
Hierarchy.”

A commander may be on or off duty, and has functions to manage
the duty state. This is an important concept, because an off-duty
commander will not receive or respond to events. When off duty,
however, it is important to keep track of which subcommander (if
any) was the target object the last time this particular commander
was on duty. Then, when this commander resumes duty, the
framework can activate the correct subcommander as the target
object. This is called the latent subcommander. Each commander
has the ability to set or change its latent subcommander.

Commanders are responsible for managing the state of menu items
while they are the active target object or in the active chain of
command. Each commander has a FindCommandStatus()
function. When the application wants to know the state of a menu
item, it calls the target object’s FindCommandStatus() function.
In response, the target object tells the application whether that
particular item should be enabled, disabled, have a check mark, and
so forth. If the target object does not concern itself with a particular
menu item, it passes the message back up the chain of command.
You will become very familiar with and override this function
regularly.

Finally—and perhaps most importantly—each commander has
member functions to respond to commands. You will become very
familiar with the ObeyCommand() member function, and override
it regularly as well.
The PowerPlant Book PPB–93

PowerPlant Architecture
Commander Classes
Figure 5.7 LCommander hierarchy

NOTE LDocument is an abstract class. Some of the classes that inherit
from LCommander also inherit from other classes, such as LPane,
LView, or LControl. In this diagram we emphasize LCommander. In
other diagrams we’ll highlight the LPane, LView, and LControl
hierarchies and treat LCommander as a mix-in class.

There are several classes in PowerPlant that inherit from
LCommander. Among them are:

• LApplication and LDocApplication

• LDocument and LSingleDoc

• LWindow and LDialogBox

• LGrafPortView
PPB–94 The PowerPlant Book

PowerPlant Architecture
Visual Classes
• LEditField

• LListBox

• LEditField

• LTextEditView

• LTabGroup

In addition to these PowerPlant classes, you are likely to derive
your own classes from LCommander (or one of its descendants),
when your object needs the ability to respond to commands.

Visual Classes

Classes designed to create the visual interface form the most
complex and numerous group of classes in PowerPlant. That’s not
surprising, because the primary purpose of an application
framework is to create the visual interface.

For beginners If you are not familiar with the concept of a view, see “Visual
Hierarchy.”

We’re going to be very careful with terminology here. A “view” is a
generic concept in application framework design, as described in
the previous chapter.

In this section we’re going to talk about two important PowerPlant
classes, LPane and LView. Objects of the LView class are frequently
referred to as “views,” and in fact that’s what they are. But a view
object is a very special and distinct item, in addition to being a
“view” in the generic sense.

In the rest of this chapter we will refer to views (meaning the
framework concept) and LView objects (meaning any object derived
directly or indirectly from LView). In subsequent chapters we leave
the general discussion of frameworks behind, and we will use the
term “view” more loosely to mean both the concept and the object.
Context will tell you which meaning is intended.
The PowerPlant Book PPB–95

PowerPlant Architecture
Visual Classes
The LPane class

In PowerPlant, the fundamental visual class is LPane. Every area
you draw in, and everything you draw, is an LPane derivative.
There are about 30 classes derived from LPane to handle different
kinds of visual elements. There are pane-based classes for text,
pictures, lists, tables, controls, and much more. We’ll discuss all the
details about panes and the various kinds of pane classes in the next
chapter.

The LView class

Recall from our discussion of views in application frameworks that
views are typically arranged in a hierarchy. PowerPlant is no
exception. The LView class forms the basis of the visual hierarchy.

An LView object is a pane that can contain other panes. LView
inherits from LPane in the class hierarchy. However, in the visual
hierarchy LView objects come first and contain all the panes that
you draw. A simple way of looking at this relationship is that an
LView object is a container. The panes are the contents. (Remember
that an LView object can contain another LView object, creating a
hierarchy of arbitrary depth).

In general, then, objects that derive directly from LPane (with the
exception of LView) are those that you actually draw—objects like
radio buttons, check boxes, captions, icons, and so forth. Objects
that derive from LView are usually places where you draw things—
objects like windows, dialog boxes, grafPorts, text views, scrolling
areas, and so forth.

Figure 5.8 illustrates the different hierarchies. The simplified class
hierarchy shows that LView inherits from LPane. By contrast, the
topmost object in the view hierarchy is a type of LView. The
contents of the window is a series of panes of various types
including edit fields, captions, popup menus, check boxes, standard
buttons, and so on. The scrolling list in the bottom part of the
window is a scrolling view inside of the window view.
PPB–96 The PowerPlant Book

PowerPlant Architecture
Messaging Classes
Figure 5.8 LPane and LView class and view hierarchies

Because it inherits from LPane, LView has all the behaviors of
LPane. In addition, LView has behaviors for managing the view
hierarchy by adding and removing subpanes. In PowerPlant
terminology, when an LView object contains other LView objects or
panes, it is a superview. Its contents (regardless of whether they are
in fact panes or LView objects) are called subpanes.

NOTE You create the view hierarchy in Constructor. In a typical application
the view hierarchy doesn’t change. Some applications modify the
view hierarchy at runtime.

Messaging Classes

Inheriting from LBroadcaster gives an object the ability to broadcast a
message. A broadcaster has a list of listeners. This simple class has
functions to add and remove items from the list of listeners, and to
broadcast a message.

In PowerPlant, classes that descend from LControl are all
broadcasters, as is LListBox. When you create your own classes you
can inherit from LBroadcaster when necessary.

Inheriting from LListener gives an object the ability to receive a
message from a broadcaster. This simple class has a
The PowerPlant Book PPB–97

PowerPlant Architecture
Persistence Classes
ListenToMessage() function that receives and can respond to
messages received from broadcasters.

You will work with broadcasters and listeners often while writing
PowerPlant code. We’ll save the details for Chapter 8, “Controls and
Messaging.”

Persistence Classes

PowerPlant provides built-in support for files and streams. The
LStream class is the basis for stream operations. It has subclasses to
handle pointer-based and handle-based streams. The LStream class
provides functions for reading and writing data, as you would
expect.

LFile is the principal file-related class. It provides functions for
opening, closing, reading, and writing both the data and resource
forks of a file.

The LFileStream subclass inherits from both LStream and LFile,
allowing you to stream data into or out of a file. We’ll work
extensively with these classes in Chapter 13, “File I/O.”

Figure 5.9 Stream and file class hierarchy

Utility Classes

Like a good application framework, PowerPlant provides a wide
variety of utility classes. We will encounter some of these classes at
various points throughout this manual. We discuss the rest in
Appendix A, “PowerPlant Utilities.”
PPB–98 The PowerPlant Book

PowerPlant Architecture
Basic PowerPlant Resources
Among the more important utility classes are:

• LString—for string manipulation

• UDebugging—for exceptions and signals while debugging

• UEnvironment—for gestalt-related operations

• UKeyFilters—for filtering keystrokes

• UModalDialogs—for managing a simple dialog that returns a
single number or string

• UDrawingUtils—for determining drawing state

• UWindows—window management functions

• StProfileSection—for profiling parts of your code with the
CodeWarrior Profiler

There are many, many more small classes for managing memory,
preserving drawing state, and performing PowerPlant-related
housekeeping such as registering classes.

In many of the utility classes, the member functions are static. You
do not create objects based on those classes, you simply call the
static member function to get the service provided.

According to PowerPlant naming conventions, classes that begin
with the letters “St” are stack-based classes. Typically the class
constructor does all the setup work, and the destructor does all the
tear-down work. Stack-based classes are frequently used in
PowerPlant to preserve state information like the state of the pen,
the current colors, the current grafPort, and so on.

Basic PowerPlant Resources
The final element of PowerPlant architecture is its resources.
PowerPlant depends upon the presence of certain resources.
Without them, a PowerPlant application simply won’t work. They
are:

• PPob Resource

• Mcmd Resource

• RidL Resource

• Txtr Resource
The PowerPlant Book PPB–99

PowerPlant Architecture
PPob Resource
PPob Resource

A PPob resource describes the visual hierarchy: the various LView
objects and panes, where they are located, and which LView objects
contain which other LView objects and/or panes.

The easy way to create a PPob resource is with Constructor.
Essentially, each class has a unique, four-character identifier, like
the Finder’s file type and creator codes for documents. When you
issue a command to build a window based on a PPob resource,
PowerPlant reads the data from the resource and recreates the
necessary objects of the appropriate classes, based on the data you
specified.

In Constructor you specify the nature of the pane or LView object,
its position within the view hierarchy, and all the appropriate
characteristics of the pane. For example, when you create a standard
button you specify location, size, pane ID number, and a variety of
other characteristics as shown in Figure 5.10.
PPB–100 The PowerPlant Book

PowerPlant Architecture
Mcmd Resource
Figure 5.10 Specifying a standard button in Constructor

We’ll discuss each of these fields when you start building a PPob
resource a little later. The point here is that you specify the complete
visual appearance of a window using Constructor, and PowerPlant
rebuilds the window from the PPob resource.

See also The Constructor Manual for details of Constructor’s
operation.

Mcmd Resource

PowerPlant uses specific command numbers for each menu item. In
a classical Macintosh program, you determine what menu item the
The PowerPlant Book PPB–101

PowerPlant Architecture
Mcmd Resource
user has chosen by identifying which menu the user picked, and
then what item number in the menu the user picked.

This approach works fine, but has one significant disadvantage. The
code that dispatches menu choices is dependent upon the order of
items in the menu. If you add, remove, or relocate an item in a
menu, you must rewrite dispatch code to adjust for the change.

In PowerPlant, you assign each menu item a unique ID number, the
menu command number. You store these numbers in Mcmd resources.
There is one Mcmd resource for each menu, and each has a
command number for each item in the corresponding menu.

Figure 5.11 shows the Constructor menu bar editor window. Each
menu item has an associated command number. The command
numbers are kept in an Mcmd resource. Constructor builds the
Mcmd resource automatically. See the Constructor manual for
details of how to build MBAR, MENU and Mcmd resources.

Figure 5.11 Menu bar, menus, and Mcmd resources

If you use Constructor to build your MENU resources, when you
modify menus you don’t have to change your source code at all. The
commands stay with the menu item wherever you put it. At
PPB–102 The PowerPlant Book

PowerPlant Architecture
RidL Resource
runtime, PowerPlant reads the menu and menu item selected, looks
up the corresponding menu command number, and sends that
number to your menu dispatch code for processing. Because the
command number is constant, your code remains constant.

You can also build MENU and Mcmd resources with ResEdit,
Resorcerer, or Rez. If you use these editors, you are responsible for
making sure the MENU and Mcmd resources remain synchronized.

See also “Installing Resource Templates” for information on
installing Mcmd resource templates.

RidL Resource

A RidL resource is a list of one or more LControl pane IDs. A control
is always a broadcaster but a broadcaster isn’t necessarily a control.
The RidL resource links a listener to controls and is a useful tool for
messaging within a PowerPlant application.

In order for a listener to hear the message from a broadcaster, you
must link the two of them. Suppose you have a dialog box (which
inherits from LListener) that contains controls. If you want the
dialog to “hear” the messages from the controls, you can use a RidL
resource and the function
UReanimator::LinkListenerToControls() to link it to each
control in the dialog.

NOTE There is another way to link a listener to an individual broadcaster.
We’ll discuss the topic of linking listeners with broadcasters in detail
in “Broadcasting.”

The Constructor view editor creates a RidL resource automatically
for every window that contains controls. The RidL lists every non-
zero control pane ID in the window. However, you cannot see or
edit the RidL in Constructor.

There are other kinds of broadcasters besides controls, and they are
not included in the automatic RidL resource. If you wish to make a
custom RidL resource, or edit an existing resource, you must use
ResEdit or Resorcerer.
The PowerPlant Book PPB–103

PowerPlant Architecture
Txtr Resource
Txtr Resource

The Txtr resource (text traits) describes the font, size, style, and
alignment, color, and drawing mode for text. You can create and
modify Txtr resources in Constructor. Figure 5.12 shows the text
traits editor window for setting these traits.

Figure 5.12 Txtr Settings

When you create text-related panes in Constructor, you can specify
a Txtr resource by ID number. The text in that pane will be drawn
according to the values in the specified Txtr. You can switch the Txtr
resource for a pane at runtime if you wish, by using the
SetTextTraitID() function for the class.
PPB–104 The PowerPlant Book

PowerPlant Architecture
PowerPlant Development
The Txtr resource lets you encapsulate standard text-related settings
into a single resource, which PowerPlant then uses to display text
according to your wishes.

There are other PowerPlant resources, but the PPob, MBAR, MENU,
Mcmd, RidL, and Txtr resources are the resources you see most
frequently.

PowerPlant Development
Now that you have a clear picture of the architecture behind
PowerPlant, you might be asking yourself, “What’s it really like to
write a PowerPlant application?”

If you have never written an object-based application before, you’re
going to find the process quite a bit different than what you’re used
to as a procedural programmer, and very rewarding.

In this section we’ll list the typical tasks you’ll perform while
developing a PowerPlant application. Of course, depending upon
your personal style, and the needs of your project, you may perform
the necessary tasks in a different order.

The development process breaks down into three segments:

• Layout

• Coding

• Testing

This is an iterative process where each segment provides feedback
for the others.
The PowerPlant Book PPB–105

PowerPlant Architecture
Layout
Figure 5.13 The PowerPlant development process

This task list assumes you use Constructor to build an interface
based on an LWindow object. Other objects may be the top-level
LView object, including LDialogBox, LPrintout, LGrafPortView, or
LView. You may not understand some of the items in the list of
tasks presented here. However, keep them in the back of your
mind. When you perform these tasks later in this manual, you’ll
recognize them.

Layout

Your first step (after designing your interface) is to do the initial
layout work in Constructor. You performed most or all of these
tasks in the code exercise in the Introduction to this manual.

• Make a new project file in Constructor, or use the starter
resource from a new PowerPlant project and save it under a new
name.

• Create a window.

• Design the layout by dragging panes from the Display Classes
window to the layout view, and arranging the panes.

• Give each pane a unique ID, and note them for your later coding.

• For controls, start a sequence of message IDs and give each
control a unique message ID.

• Use the Hierarchy window in Constructor to install objects
inside of other LView objects, create any necessary radio button
groups or tab groups

• Save and close your project file.
PPB–106 The PowerPlant Book

PowerPlant Architecture
Coding
Of course, you won’t get the entire layout done on the first run.
You’ll come back to these tasks again after you write some code and
test your work.

TIP Many PowerPlant developers like to have at least two resource files
for a project. One contains the PPob, MBAR, MENU, Mcmd, Txtr,
RidL, and WIND resources built by Constructor. The other contains
the remaining resources. That way, you can have Constructor as the
creator for your PowerPlant resources, and your favorite resource
editor as the creator for your other resources. Include both resource
files in your project. When you double-click the resource file, the
right editor opens up.

See also The Constructor Manual for more information about
Constructor.

Coding

Writing PowerPlant code is in principle the same as writing any
kind of object-oriented code. However, you’ll be writing code that
takes advantage of PowerPlant’s many outstanding features.

• Create a new PowerPlant project from the stationery.

• Add your PowerPlant project file (as noted above).

• Save the stationery starter source and header files with new
names.

• Name and define your application class, and start implementing
the required functions.

• Write the code to perform actions in response to commands and
messages.

• Link listeners to broadcasters.

• Be sure that the MENU and Mcmd resources are correct, and
enable any menu items that you will handle.

• Compile your file and fix compiler errors.

Testing

Of course, no project is complete without testing.
The PowerPlant Book PPB–107

PowerPlant Architecture
Summary
• Update the project, compiling all the PowerPlant library files

• Choose Enable Debugger from the Project menu.

• Make the project, and fix any linker errors.

• Choose Run from the Project menu to run your code with the
Debugger.

• Check the appearance of the window.

• Use the menus and check the behavior of menu commands.

• Put breakpoints in the debugger windows wherever you want to
trace the processing.

• Quit your application when you’re done.

These tasks—layout, coding, testing—are not linear. You will
perform all of these tasks more or less simultaneously at times.
Running the project will allow you to discover ways of improving
your interface, so you’ll go back to Constructor and revise the
resources.

You’ll add new windows, perhaps floating palettes, dialog boxes,
and other objects as necessary. Over time the interface will become
more complex. However, building incrementally makes the process
a lot more manageable.

Ultimately you will create your own pane classes, add them to the
resources, and watch your application achieve its final form. It’s an
exciting process, and one that we are about to embark on.

In the next chapter we start looking at panes and LView objects
(from now on simple “views”) in detail. We’ll examine the class
hierarchy, and the typical view hierarchies you’ll likely use. For
now, let’s look at where we’ve been.

See also The Debugger User Guide for information on debugging
tools as well as the PowerPlant Advanced Topics chapter on the new
PowerPlant Debugging Classes.

Summary
In this chapter you have learned many important concepts about
the design philosophy behind PowerPlant, and how that design
PPB–108 The PowerPlant Book

PowerPlant Architecture
Summary
leads to a remarkably flexible and extremely powerful application
framework for the Mac OS.

You have seen how that design extends itself directly into class
implementation, function implementation, and even into the
PowerPlant resources. Whenever possible, resources, functions,
classes, and groups of classes are modular. You’ve met the principal
classes and resources, and you know something about how they
work together.

This is also the end of the background section of this manual. Taken
together, the background chapters have given you a solid
understanding of what an application framework is, why it is
useful, how it works, and how PowerPlant in particular implements
the features of a framework.

Now it’s time to put that knowledge to work. In the next chapter
you start serious work with an outstanding world-class
development tool—PowerPlant.
The PowerPlant Book PPB–109

PowerPlant Architecture
Summary
PPB–110 The PowerPlant Book

6
Panes

This chapter and the next two chapters—on views and controls—
form the Basic Building Blocks section of the book. These chapters
deal with the visual objects you use in PowerPlant. Because an
application framework is often used as a tool for creating a visual
interface, panes, views, and controls are fundamental to
PowerPlant.

This chapter discusses panes in general, and certain specific pane
classes. Views and controls are also panes, but they have additional
features that make them worthy of a separate discussion. Talking
about views and controls in separate chapters also breaks the visual
hierarchy in PowerPlant into more digestible bites.

The principle topics in this chapter are:

• What Is a Pane—including the different kinds of panes in
PowerPlant.

• Pane Characteristics—a detailed look at the things that make a
pane a pane.

• Working With Panes—how to make and use panes.

• Some Specific Panes—details on some pane classes.

After we complete this discussion, you’ll create and manipulate real
panes in this chapter’s coding exercise.

What Is a Pane
In its most general sense, a pane represents a rectangular drawing
area. In a more precise sense, a pane is usually a visible object such
as a button or text box that appears in a view.

The fundamental pane class in PowerPlant is LPane. LPane
describes a rectangular object that can display graphics. Some panes
The PowerPlant Book PPB–111

Panes
What Is a Pane
also respond to mouse clicks. You will rarely, if ever, create an
actual LPane object. The LPane class serves to encapsulate a
common interface for all the pane subclasses. Although LPane is not
an abstract class, several important functions in the LPane class do
nothing. They are overridden in LPane’s descendants.

Now that you know what a pane is, let’s talk about the different
kinds of panes available in PowerPlant.

Figure 6.1 shows the class hierarchy for the pane classes.

Figure 6.1 Pane hierarchy

Notice that the LView class inherits from LPane. Chapter 7, “Views”
discusses views in detail. The LControl class has several subclasses.
PPB–112 The PowerPlant Book

Panes
Pane Characteristics
Chapter 8, “Controls and Messaging” covers controls. We’ll talk
about the other individual pane classes in “Some Specific Panes.”

TIP For detailed information on any PowerPlant class, including a list of
its ancestors, member functions, and data members, you can and
should refer to the PowerPlant Reference.

In a PowerPlant application, you typically work with subclasses of
LPane. LPane encapsulates a common interface for pane objects. As
a result, all panes share certain common characteristics.

Pane Characteristics
In this section we talk about the various features of panes. We talk
about how PowerPlant allows you to modify and manipulate those
features in the next section, “Working With Panes.”

We’re going to be careful here to not cause confusion with the terms
“pane” and “view.” The LView class inherits from LPane, and it has
many subclasses. We discuss views extensively in the next chapter.

The principal distinction between a pane and a view is that a view
can contain other panes. Therefore, we can divide pane classes into
two groups: those that inherit from LView, and those that do not.
Those panes that do not inherit from LView we will call “simple
panes” because they cannot contain any other pane. If you look at
the hierarchy diagram in Figure 6.1, the simple panes are all the
classes in the diagram except LView and its descendants.

Although each of the view classes is a “pane” in the general sense,
some of the characteristics we’re about to discuss apply to simple
panes—panes that are not also views.

Characteristics of Simple Panes

Panes that are not views comprise most of the real visual objects you
draw on screen, including static text, editable text fields, buttons,
check boxes, popup menus, icons, and so forth.
The PowerPlant Book PPB–113

Panes
Characteristics of All Panes
A simple pane is a leaf in the visual hierarchy. Every simple pane
resides in a view of one sort or another. This view is called the
pane’s superview.

NOTE Most views also reside in some other view. However, some views
are at the top of the view hierarchy and have no superview
(LWindow for example).

Simple panes use the coordinate system of their superview. The
view is responsible for maintaining coordinates, as you’ll see when
we discuss views.

Finally, a simple pane cannot scroll its own contents. Views are
responsible for scrolling. You can scroll panes inside a view, but you
cannot scroll the contents of an individual simple pane.

See also “Coordinate Systems.”

Characteristics of All Panes

Everything discussed in this section applies to all panes, including
LView and its descendants. Chapter 7, “Views” covers several
additional features specific to views.

All panes have the following features:

• Pane ID

• Frame

• Frame binding

• Pane state

• Value and descriptor

• Mouse information

• Contents

To see how many of these characteristics are reflected in
Constructor, see Figure 6.5.
PPB–114 The PowerPlant Book

Panes
Characteristics of All Panes
Pane ID

Each pane has an all-important ID number. Typically you assign the
pane ID in Constructor when you define the pane’s characteristics.
The pane ID is a number of type PaneIDT, a 32-bit number. You
may also specify the pane ID as a “text” ID—a sequence of four
characters analogous to a resource type or file creator.

The LPane class has functions for managing the ID number, and
finding a pane by ID. You will use FindPaneByID() regularly.
Clearly each pane must have a unique ID or you’re going to run into
problems where the FindPaneByID() function returns a pointer
to the wrong pane.

TIP Actually, the limitation is that all panes in a single window for which
you call FindPaneByID() must have unique ID numbers. You
might have several panes with the same ID if you never look for
them by ID number.

Frame

The frame is the rectangular area that the pane occupies. Like most
rectangular areas in PowerPlant, the frame is specified by two
structures: the location and the size. The location specifies the
position of the top left corner of the rectangle in the superview’s
local coordinates. The size specifies the height and the width of the
bounding rectangle.

See also “Coordinate Systems.”
The PowerPlant Book PPB–115

Panes
Characteristics of All Panes
Figure 6.2 Parts of a pane

Frame binding

Each side of the frame has a binding option that specifies what
happens to that edge when the pane’s superview changes size.
When an edge of a pane is bound, it is always the same distance
from the corresponding edge of the superview. As a result, a pane
may or may not change location or size in response to a change in
the dimensions of its superview. Figure 6.3 illustrates the effect of
binding on the size and location of panes.

Whether it is appropriate for a pane to change size or location
depends upon the nature of the pane and the needs of your
application. For example, a radio button should probably remain
the same size no matter how the window grows or shrinks, but it
may need to change position. A text object, on the other hand, may
need to resize itself to fill its enclosing window.
PPB–116 The PowerPlant Book

Panes
Characteristics of All Panes
Figure 6.3 Frame binding

Each pane has an SBooleanRect data structure that specifies
frame binding. This structure is a series of four Boolean values, one
for each of the four sides of the frame.

Pane state

Each pane has three states, as illustrated in Figure 6.4:

• Visible/hidden

• Enabled/disabled

• Active/inactive

Figure 6.4 uses a standard popup menu control to illustrate the
effect of different states.
The PowerPlant Book PPB–117

Panes
Characteristics of All Panes
Figure 6.4 Pane states

The visible/hidden state controls whether you see the pane. The
effect of visibility is obvious.

The enabled/disabled state determines whether the pane responds
to clicks. For example, a click on a disabled popup menu results in
no action.

The enabled/disabled state usually affects the pane’s appearance,
particularly if the pane is a control item. In the Mac human
interface, disabled controls are dimmed as shown in Figure 6.4.

The active/inactive state refers to whether the window containing
the pane is active or inactive. When you make a window inactive,
that change propagates down through all the panes in the window.
An inactive pane is not responsive to a click because it —and the
window that contains it—are inactive.

The active/inactive state may or may not affect the visual
appearance of the pane. For example, some controls looks the same
in an inactive window. A scroll bar hides itself when inactive. A text
pane may display a selection as an outline rather than highlighted
when it is in an inactive window.

In a typical PowerPlant application, you may modify a pane’s
visible or enabled state if you need to do so. PowerPlant usually
manages the active state for you.

When drawing a pane, consider whether the pane’s state affects its
appearance, and draw it accordingly.
PPB–118 The PowerPlant Book

Panes
Characteristics of All Panes
Value and descriptor

Some panes have two other important features: a value and a
descriptor. The value is a numerical representation of the contents of
the pane.

While this is a feature available to all panes, only certain PowerPlant
panes have a value, as summarized in Table 6.1. In each case, the
value is an SInt32—a 32-bit integer. The value feature is used for
different purposes in different classes.

Table 6.1 Panes with values

Table 6.2 Panes with descriptors

For LCaption and LEditField, the value is useful if the text string
represents an integer. In that case, you can use the value as the
mathematical equivalent of the text string.

In addition to the value, some panes (Like LCaption and LEditField)
also have a descriptor. This is a Pascal string. Like the pane’s value,
its purpose depends on the kind of pane, as summarized in Table
6.2

Class Purpose of value

LCaption numerical equivalent of a text string

LControl (and
descendants)

current value of the control

LEditField numerical equivalent of a text string

LListBox row number of first selected cell

Class Purpose of descriptor

LCaption text in caption

LControl (and
descendants)

control title

LEditField text in edit field

LListBox text of first selected cell

LWindow title of window
The PowerPlant Book PPB–119

Panes
Characteristics of All Panes
TIP The LSingleDoc class also has a Pascal-string descriptor. It is either
the name of the associated file (if there is one) or the name of the
associated window.

You have a great deal of flexibility in how you implement either the
value or the descriptor in your own classes derived from LPane.
However, when appropriate you should follow the convention that
a pane’s value represents a numeric quantity and its descriptor is
the name of the pane or the textual representation of the value.

NOTE The LPane class itself has no data member to store either value or
descriptor. These are declared in the subclasses, when necessary.
Some subclasses that use value and/or descriptor have data
members to store this information. Other classes access data stored
in Macintosh Toolbox structures. What LPane provides are the
general functions for accessing the contents of the value or
descriptor.

Panes also have a “generic” 32-bit data member, the mUserCon, that
you can use for any purpose whatsoever. The purpose of mUserCon
is analogous to the refCon field found in many Macintosh data
structures.

Mouse information

The LPane class maintains several pieces of information related to
mouse movements and actions as they affect the pane. This
information is stored in data members as described in Table 6.3.

Table 6.3 Mouse-related information

Type Data Member Purpose

LPane* sLastPaneClicked pointer to the last pane
clicked

LPane* sLastPaneMoused pointer to the last pane
the mouse moved over

UInt32 sWhenLastMouseUp time of last mouse up
PPB–120 The PowerPlant Book

Panes
Working With Panes
If you need to examine the contents of any of these data members,
use the accessors provided in the class. Each of these data members
is static. In other words, these data members are pane globals. There
is exactly one instance of each data member, and that instance is
shared by all panes. As a result, you can always determine which
was the last pane clicked, when it was clicked, if it was a double-
click, and so forth.

Contents

A frame typically has something inside it. What is inside the pane
depends entirely upon the nature of the specific pane. For example,
the contents of a static text pane is a string of characters. The
contents of a scrolling view may be a series of subpanes, text, or an
image.

The contents are drawn by the specific pane’s DrawSelf()
function. Every subclass of LPane overrides this function to draw
itself.

Working With Panes
LPane is a complex class with quite a few member functions.
However, we can associate these functions into groups. Many of
these groups are related to the characteristics we just studied.
Grouping functions like this makes the purpose and use of the
functions much easier to grasp. We’re going to talk about

• Creating a Pane—using Constructor, and pane constructor
functions.

• Drawing a Pane—drawing and updating panes.

UInt32 sWhenLastMouseDown time of last mouse down
(for timing double-clicks)

Point sWhereLastMouseDown location of last mouse
down

SInt16 sClickCount number of recent clicks
that are close in both time
and space

Type Data Member Purpose
The PowerPlant Book PPB–121

Panes
Creating a Pane
• Managing Pane Characteristics—modifying or accessing the
features of a pane such as ID number, frame, binding, and so
forth.

NOTE The LPane class also provides functions for managing coordinate
systems. These are of primary importance in the view classes. We’ll
talk about these functions in “Managing Coordinate
Transformations.”

Creating a Pane

You can create a pane using Constructor, or on the fly in your code.
We talk about each method. Then we discuss what you do when
you derive your own class from LPane or its descendants.

Using Constructor

You can use Constructor to define the characteristics of PowerPlant
classes and your own derived classes. PowerPlant uses stream-
based constructors to build entire containment hierarchies based on
the 'PPob' data structure. You can edit a PPob in Constructor,
Resorcerer, or Rez. The structure of the PPob resource is too
complex for ResEdit to handle.

Creating a pane object in Constructor is simple. While in
Constructor, you drag a pane object from the tool palette into a
containing view. When you double click the object, an Info window
opens so you can set the characteristics for that object. The precise
contents of the window will vary for each pane, but most of them
have the fields shown in Figure 6.5.
PPB–122 The PowerPlant Book

Panes
Creating a Pane
Figure 6.5 Creating a pane in Constructor

The top left coordinate is relative to the pane’s immediate
superview. In Constructor, if you rearrange the view hierarchy to
move a pane from one view to another, its position becomes relative
to the top left corner of the new superview. We’ll discuss views in
the next chapter and revisit this point.

You’re familiar with the Pane ID. Set it to a an appropriate value,
(unique if you intend to access the pane by ID). You can use the
User Constant for any purpose you see fit. It is a 32-bit value, and
you can specify it as a number or a series of four characters (like a
file’s type or creator codes).

The Class ID field is a four-character code that PowerPlant uses to
identify the appropriate routine for building the new pane.

If you are using PowerPlant classes, the class ID is set for you by
Constructor with the correct value. When you derive your own
classes, you must change the class ID to your own unique value.
The PowerPlant Book PPB–123

Panes
Creating a Pane
You must also register the class ID with PowerPlant before creating
any objects of that class.

PowerPlant defines constants for the ID of each class that can be
created from the 'PPob' resource. The value is an enum named
class_ID specified within the declaration of each class.

For example, here’s a snippet from the declaration of LCaption.
class LCaption : public LPane {
public:
 enum { class_ID = 'capt' };

This is a standard C++ technique used to define class-specific
constants. You can access the class ID as LCaption::class_ID.
You must provide a unique class ID in any derived pane class.

NOTE PowerPlant reserves the set of all-lowercase class IDs for internal
use. If you use at least one uppercase letter in your class ID, you will
avoid a conflict with any and all PowerPlant classes, past, present,
or future.

See also “Register PowerPlant Classes.”

Creating a pane on the fly

The typical approach used when creating a pane object on the fly is
to define an SPaneInfo structure. This structure specifies the
values required to build a generic pane. You then call the
appropriate constructor. Depending upon the particular pane you
are creating, you may need to provide additional information.

Listing 6.1 The SPaneInfo structure
struct SPaneInfo {
 PaneIDT paneID;
 SInt16 width;
 SInt16 height;
 Boolean visible;
 Boolean enabled;
 SBooleanRect bindings;
 SInt32 left;
 SInt32 top;
 SInt32 userCon;
PPB–124 The PowerPlant Book

Panes
Creating a Pane
 LView* superView;
};

Each pane class has specific constructors, one of which receives a
pointer to the SPaneInfo structure. Most have additional
parameters you must provide. Refer to the PowerPlant Reference for
details on the various constructors and the parameters you must
provide to successfully create a specific object on the fly.

After you have created a pane and installed it in a view, you should
call FinishCreate(). This function ensures that the pane’s state
(visible/invisible, active/inactive, enabled/disabled) matches its
superview. It also calls FinishCreateSelf(). The
FinishCreateSelf() function gives you the opportunity to
provide “finishing touches” when creating a pane or view, because
there may be times when you can’t fully initialize a pane in its
constructor.

For example, for performance reasons you may want a view to
maintain pointers to some of its subpanes. (This saves the overhead
of repeatedly calling FindPaneByID() when the view wants to
access a subpane.) You cannot initialize the view’s list of subpanes
during view construction, because subpanes are created after the
superview. However, you can override FinishCreateSelf() to
create the list after the subpanes are built.

There are additional member functions in the LPane class that you
may use when creating a pane on the fly, if you don’t use the
SPaneInfo structure.

You may use PutInside() to make the pane a subpane of a view.
To remove a pane from a superview, call PutInside() and pass
nil as the new superview.

PlaceInSuperFrameAt() places the pane at a location relative to
the superview’s frame and PlaceInSuperImageAt() places the
pane at a location in the superview’s image. The distinction between
a view’s frame and its image is discussed in the “Views” chapter, in
the section “Image.”

See also “Managing Pane Characteristics” for information on
setting individual features of a pane.
The PowerPlant Book PPB–125

Panes
Creating a Pane
Deriving your own panes

When you derive a class from LPane or one of its descendants, you
typically define a class creator function and several constructors: a
default constructor, a constructor that receives an SPaneInfo
structure, a copy constructor, and a constructor to build the pane
from a stream. The class creator function and the stream constructor
are worthy of special attention.

See also “Creating a pane on the fly” for more on the SPaneInfo
structure.

Class creator function

Older PowerPlant classes use a creator function when creating a
pane-based object. These creator functions are static. The function
receives a pointer to an LStream (the stream that contains the data
from which to create the object), and returns a pointer to the new
object. The prototype for a CCustomPane creator function is listed
here as an example.

static CCustomPane* CreatePaneStream(LStream *inStream);

This method is no longer used, but may still be encountered in older
classes. Class creator functions can be safely removed from any
class that uses them.

When you derive a pane class, you must provide a stream
constructor and a class_ID.

See also “Register PowerPlant Classes.”

Stream constructor

A stream constructor receives a pointer to an LStream object, reads
data from the stream, and builds the object based on that data.

Here’s the code for the LPane stream constructor.

Listing 6.2 The LPane stream constructor
LPane::LPane(LStream* inStream)
{
 SPaneInfo thePaneInfo;
 inStream->ReadData(&thePaneInfo, sizeof(SPaneInfo));
PPB–126 The PowerPlant Book

Panes
Creating a Pane
 InitPane(thePaneInfo);
}

Chapter 13, “File I/O” discusses LStream in more detail.

This code tells the stream to read in a certain amount of data and
put it in an SPaneInfo structure. It then calls InitPane() to
initialize the object based on that information.

When you derive your own pane classes, you must provide a
stream constructor. If your pane does not need to read any data
from the stream, you still need to have an LStream constructor, but
your derived stream constructor can simply call the base class’s
stream constructor.

For example, assume you derived a class from LIconPane, and it
needed no additional data. Your stream constructor might look like
this.

Listing 6.3 Stream constructor for a hypothetical icon pane class
CMyIconPane::CMyIconPane(LStream* inStream)
 : LIconPane(inStream)
{
}

If you need to create custom panes that have additional data, you
can do so in Constructor. See the Constructor for PowerPlant Guide for
details. In this case, your stream constructor would read the
additional data and initialize the object based on that data.

Overriding LPane functions

Of course, you may override whatever functions are necessary in
your own pane class. The functions you are likely to override
include:

Table 6.4 Commonly overridden pane functions

Function Purpose

ClickSelf() respond to a mouse click

DrawSelf() draw the pane contents
The PowerPlant Book PPB–127

Panes
Drawing a Pane
Of course, you would only override the value and descriptor
accessors if your pane class used those features.

NOTE Views and controls have additional functions specific to those types
of classes that you would typically override. See “Creating a View,”
and “Creating a Control.”

Drawing a Pane

Like most Macintosh applications, PowerPlant draws the contents
of a pane when an update event occurs. When your application
receives an update event for a window, PowerPlant’s default
behavior calls the window’s UpdatePort() member function,
which in turn calls the window’s Draw() member function.
Draw() sets up the coordinate system (described in more detail in
“Drawing a View”), calls the window’s DrawSelf() function, and
then calls Draw() for each subpane in the window.

The pane’s Draw() function does the necessary setup work. The
default LPane::Draw() function prepares for drawing the pane
by calling the local LView::FocusDraw(). Panes rely on the
superview to set the focus and manage coordinate transformations.

TIP The preferred way to draw a pane is to call the Draw() function.
You should never call DrawSelf() directly. If you do any drawing
that does not go through the Draw() function, you must call the
view’s FocusDraw() directly to ensure that the port and coordinate
system are set up correctly.

After setting the focus (and performing some other housekeeping
details), the pane’s Draw() function then calls DrawSelf(). All

GetValue() get the pane’s numerical value

SetValue() set the pane’s numerical value

GetDescriptor() get the pane’s descriptor string

SetDescriptor() set the pane’s descriptor string

Function Purpose
PPB–128 The PowerPlant Book

Panes
Drawing a Pane
classes derived from LPane must override DrawSelf() to draw the
contents of the pane.

To draw the contents of a pane or a view, you use standard
Macintosh drawing routines as you would for any other Macintosh
program. PowerPlant does not replace QuickDraw.

For example, Listing 6.4 shows the DrawSelf() function for
LStdControl—the class that represents standard Macintosh controls.
(The actual code is more elaborate, but this gives you the idea.)

Listing 6.4 LStdControl::DrawSelf()
void LStdControl::DrawSelf()
{
 // mMacControlH is a data member of LStdControl
 // that contains a Macintosh control handle

 ::Draw1Control(mMacControlH);
}

For a pane that draws an X from one corner of the pane to the other,
the DrawSelf() function might look like this:

Listing 6.5 DrawSelf() for a derived pane
void MyPane::DrawSelf()
{
 Rect frameRect;

 // CalcLocalFrameRect returns the pane’s frame
 // as a QuickDraw rectangle in local coordinates
 CalcLocalFrameRect(frameRect);
 ::MoveTo(frameRect.left, frameRect.top);
 ::LineTo(frameRect.right, frameRect.bottom);
 ::MoveTo(frameRect.right, frameRect.top);
 ::LineTo(frameRect.left, frameRect.bottom);
}

Validating and invalidating drawing areas

On occasion, you may wish to force an update event or prevent one
from happening. The LPane class provides the functions listed in
Table 6.5 to assist you.
The PowerPlant Book PPB–129

Panes
Managing Pane Characteristics
Table 6.5 Validating and invalidating areas

The rectangle or region specified should be in port coordinates.

WARNING! You should use these routines rather than the corresponding
Toolbox calls InvalRect(), InvalRgn(), ValidRect(), and
ValidRgn(). For one thing, the PowerPlant calls handle
coordinate transformations correctly. In addition, the Toolbox calls
require that the current GrafPort be a window. However, a pane
could be in another kind of GrafPort, such as a printer port or a
GWorld. If the pane is not in a window, calling one of these Toolbox
routines will cause a crash (when the Toolbox tries to access a
nonexistent update region).

Additional drawing considerations

If your pane draws or behaves differently when its state changes,
override the functions ActivateSelf(), DeactivateSelf(),
EnableSelf(), and DisableSelf().

Managing Pane Characteristics

As you know, panes have many features. PowerPlant lets you
adjust those features freely.

View hierarchy

Panes reside in views. Typically you set the view hierarchy in a
PPob resource using Constructor. However, you can modify the

Function Purpose

Refresh() invalidate the entire pane

DontRefresh() validate the entire pane

InvalPortRect() invalidate the rectangle specified

ValidPortRect() validate the rectangle specified

InvalPortRgn() invalidate the region provided

ValidPortRgn() validate the region specified
PPB–130 The PowerPlant Book

Panes
Managing Pane Characteristics
view hierarchy at runtime if you wish. This lets you create panes on
the fly and install them in existing views.

To get a pane’s current superview, use GetSuperView(). To put a
pane inside a view, use PutInside().

Pane ID

Every pane has a unique ID that you can retrieve with the function
GetPaneID(). You can set this value with SetPaneID(). You
won’t normally need to use the setter function. The pane ID is
typically set in Constructor, or by using the SPaneInfo constructor
function appropriate for the pane you are building on the fly.

The more common occurrence is that you want a pointer to a pane
when you already know the ID number. You usually know the ID
number because you assigned it at some point. To get the pointer,
you call FindPaneByID(). You will use this function often. It
searches the current view hierarchy and returns a pointer to the
specified pane. This is analogous to the Mac Toolbox routine
GetDialogItem() used to retrieve a pointer to a dialog item.

TIP You can also retrieve a pane hit by a mouse click with
FindSubPaneHitBy(). However, this function is only useful in
views (which have subpanes).

Frame

Recall that the pane’s frame is described by two structures, the
location and size. Table 6.6 lists some functions you may use for
managing frame characteristics.

Table 6.6 Some frame management functions for panes

Function Purpose

GetFrameSize() returns current size

GetFrameLocation() returns current location

ResizeFrameTo() set new size to absolute value

ResizeFrameBy() set new size to relative value

MoveBy() relocate frame by a relative value
The PowerPlant Book PPB–131

Panes
Managing Pane Characteristics
Frame binding

The frame binding is usually specified in a PPob resource using
Constructor, or in the SPaneInfo record if you build the pane on
the fly.

Use GetFrameBinding() to retrieve the current settings, and
SetFrameBinding() to change the current settings.

Contents

If you derive a class from LPane or its descendants, you are
responsible for rendering the appearance. See “Drawing a Pane” for
full details. You can study PowerPlant’s own panes to see how they
draw themselves.

Value and descriptor

Use GetValue() and SetValue() to access the value data
member. Use GetDescriptor() and SetDescriptor() to
access the descriptor data member.

Remember that all pane classes have the value and descriptor
accessors, but only a few PowerPlant classes actually use them. In
LPane, the accessors do nothing.

NOTE If you are using PowerPlant’s debugging features, these accessors
throw a signal to alert you to inappropriate use.

Use GetUserCon() and SetUserCon() to access the mUserCon
data member.

CalcPortFrameRect() get the frame in port coordinates

CalcLocalFrameRect() get the frame in local coordinates

PlaceInSuperFrameAt(
)

position frame in superview frame
at absolute coordinates

PlaceInSuperImageAt(
)

position frame in superview image
at absolute coordinates

Function Purpose
PPB–132 The PowerPlant Book

Panes
Managing Pane Characteristics
State

Table 6.7 lists the pane functions used to manipulate the pane’s
state. You can query the pane to determine current state, and set the
state to an appropriate value.

Table 6.7 Pane state-related functions

TIP These functions modify the pane’s state, not its behavior or
appearance. Override ActivateSelf(), DeactivateSelf(),
EnableSelf() and DisableSelf() for changing appearance or
modifying behavior as state changes.

Adjusting the cursor

Mouse information in panes is typically maintained for you
automatically by PowerPlant. You may wish to perform two mouse-
related tasks: adjusting the cursor and identifying whether a click
hits a particular pane.

If your pane uses its own cursor, override AdjustCursorSelf().

You should also be aware of the MouseEnter(), MouseWithin(),
and MouseLeave() functions. These are empty member functions
defined in the LPane class. PowerPlant does not use these functions
at all. They allow you to implement your own mouse tracking. For

Function Purpose

IsVisible() returns true if pane is visible

Show() make a pane visible

Hide() make a pane invisible

IsActive() returns true if pane is active

Activate() make a pane active

Deactivate(
)

make a pane inactive

IsEnabled() returns true if pane is enabled

Enable() make a pane enabled

Disable() make a pane disabled
The PowerPlant Book PPB–133

Panes
Managing Pane Characteristics
example, you might create a pane that also inherits from
LPeriodical. The SpendTime() function would be called regularly,
and would determine if the mouse was entering, within, or leaving
a pane. The SpendTime() function would then call
MouseEnter(), MouseWithin(), or MouseLeave() as
appropriate.

You can also manage cursor adjustment using attachments. Create a
subclass of LAttachment that responds to msg_AdjustCursor,
and attach it to the pane. Your attachment could be a highly
reusable bit of code that you could connect to almost any pane when
cursor adjustment was important.

See also “Periodicals” and “Attachments.”

Hit testing

PowerPlant manages most hit testing for you. There will be times
when you’ll want to test whether the mouse is in a pane, and
whether a click is in a pane. You’ll also respond to clicks.

The LPane class has the functions listed in Table 6.8.

Table 6.8 Hit testing in panes

Function Purpose

Contains() returns true if a point is within a
pane, regardless of pane state

IsHitBy() returns true if a point is within a
pane, and the pane is enabled

GetLastPaneClicked(
)

returns a pointer to the last pane
clicked

Click() performs click-related
housekeeping, calls ClickSelf()

ClickSelf() respond to a click

FindSubPaneHitBy() for views, find subpane of this pane
that contains the point
PPB–134 The PowerPlant Book

Panes
Some Specific Panes
Most hit testing is provided for you automatically by PowerPlant. In
a simple application, the only function in Table 6.8 that you’ll
override in your own classes is ClickSelf().

The three functions related to finding subpanes are useful for LView
and its descendants. These are the only classes of panes that can
contain subpanes. In the LPane class these are empty functions.

Some Specific Panes
Now that you have absorbed all that knowledge about panes in
general, let’s take a quick look at some specific pane classes and the
features that are unique to them. Remember, we’ll be discussing
views and controls in subsequent chapters.

In this section we’ll talk about every pane class that is neither a view
nor a control. The classes covered are:

• LCaption—display static text

• LGroupBox—display bounds of a group of items

• LDefaultOutline—outline the default button

• LIconPane—display an icon

• LFocusBox—display a black box around a frame

• LMovieController—display a QuickTime movie controller

• LEditField—display an editable text box

• LListBox—display a Macintosh List Manager list

FindDeepSubPane
Containing()

for views, search through subpanes
for deepest pane containing the
point

FindShallowSubPane
Containing()

for views, search through subpanes
for shallowest pane containing the
point

Function Purpose
The PowerPlant Book PPB–135

Panes
Some Specific Panes
LCaption

LCaption displays text. This class uses a text traits resource to
specify characteristics such as font, size, style, color, and
justification. LCaption uses the UTextDrawing class to draw text.

You can set the text and the text traits resource in Constructor, or
you can modify these characteristics at runtime.

You may encounter a drawing problem if you change the contents
of the caption at runtime. LCaption::DrawSelf() uses
UTextDrawing::DrawWithJustification(). This does not
erase the previous contents of the caption. The best way to erase the
contents is to attach an LEraseAttachment object to the caption.

See also “Attachments.”

LGroupBox

This class derives from LCaption. The text is
the title of the group. The object draws a box
around the confines of the group.

Note that the top of the object’s frame does
not coincide with the top line drawn for the
group box.

The other panes that are visually within the group box do not
“belong” to the group box in any hierarchy. They simply overlap
visually. The group box is a visual decoration. It does not control or
affect the panes within the box in any way.

LDefaultOutline

The primary use for this class is to draw an outline around the
default button in a dialog. You will typically not create an object of
this class yourself. You cannot create one in Constructor.
PowerPlant makes one for you when you create a dialog and specify
a default button.
PPB–136 The PowerPlant Book

Panes
Some Specific Panes
LIconPane

LIconPane draws a single icon from an icon family. It stores the ID
of an icon family and draws it on the screen. Because it uses the
Mac OS icon-handling routines, an LIconPane object draws the
member of the icon family that best fits the color status and bit
depth of the current device.

LFocusBox

An LFocusBox object outlines a pane to indicate that the pane is the
current focus for keystrokes. This class is used internally by
PowerPlant in conjunction with LListBox to highlight entries in the
list. Like LDefaultOutline, you will typically not create an object of
this class directly. You cannot create one in Constructor.

LMovieController

This is a wrapper class that creates, draws, and disposes of a
standard QuickTime movie controller. You would typically use this
in conjunction with UQuickTime if your application supports
QuickTime movies.

The LMovieController class inherits from LPeriodical, so it can
receive and process every event retrieved by the event loop.

LEditField

LEditField uses single-style TextEdit to implement an editable text
field, such as those in standard Macintosh dialog boxes. PowerPlant
also handles undo and redo for most text-related actions. This class
derives from LPane, LCommander, and LPeriodical.

This object does not have a scrollbar. You can set the object to “auto-
scroll,” meaning that the displayed text will scroll as the text cursor
moves through the text. Figure 6.6 shows some of the options you
can set in Constructor. The initial text and text traits can also be set
using Constructor.
The PowerPlant Book PPB–137

Panes
Some Specific Panes
Figure 6.6 Some LEditField options

Notice that PowerPlant allows you to attach a key filter to the
LEditField. There are several default key filters available. Look up
the UKeyFilters class in the PowerPlant Reference for more
information. PowerPlant also implements Undo and Redo for most
standard actions.

If you have two or more edit fields in a view, human interface
guidelines suggest that typing the Tab key should advance the text
entry cursor from one field to the next.

You can implement this behavior very easily by using a helper class
named LTabGroup. In Constructor, you choose the Make Tab
Group item from the Arrange menu. This adds the LTabGroup
object to the PPob resource.

The LTabGroup object is faceless—you cannot see it. It is not a pane.
LTabGroup inherits from LCommander. It will receive the Tab
keypress and automatically shift the target object to the next
PPB–138 The PowerPlant Book

Panes
Some Specific Panes
editable text object in the view. LTabGroup also supports Shift-Tab
for moving to the previous editable text object.

TIP Some key filters handle Tab keypresses before the tab group gets
them. You may need to create your own filter to ensure that Tab
keypresses are passed to an LTabGroup object.

See also “LTextEditView.”

LListBox

LListBox is a wrapper class for the Mac OS List Manager. With some
work, this class allows you to create a two-dimensional table of cells
that scroll, respond to keystrokes, and so forth. Figure 6.7 shows the
inheritance hierarchy that leads to LListBox.

Figure 6.7 LListBox hierarchy

If you use Constructor to create an LListBox object, you can only
create a list with one column. To add columns (or rows) on the fly,
call GetMacListH() to get the Toolbox ListHandle. Then use the
List Manager—calling ::LAddRow() and/or ::LAddColumn().

The default LDEF resource (list definition) used by the Toolbox
draws text in each cell. If you want to display other types of data,
you must provide your own LDEF resource.

TIP The LTable class provides basically the same functionality as
LListBox with greater flexibility and better performance. See
“LTable.” The LTableView class is even more powerful. LTableView
is discussed in PowerPlant Advanced Topics.
The PowerPlant Book PPB–139

Panes
Summary
The ClickSelf() function in LListBox responds to double-clicks.
All clicks are passed to the List Manager for processing by the
Toolbox LClick() routine. If that call returns true, the click in the
cell was a double-click. LListBox broadcasts a message to that effect
so that any listeners can respond.

If you want listeners to be aware of single clicks, you must derive a
new class from LListBox and override the ClickSelf() function.
Listing 6.6 shows one way to do that.

Listing 6.6 Broadcasting single clicks from a list box
void
CMyListBox::ClickSelf (const SMouseDownEvent &inMouseDown)
{
 SwitchTarget(this);
 FocusDraw();

 if (::LClick(inMouseDown.whereLocal,
 inMouseDown.macEvent.modifiers,mMacListH))
 {
 BroadcastMessage(mDoubleClickMessage, this);
 } else {
 // msg_SingleClick is a const that you define
 BroadcastMessage(msg_SingleClick, this);
 }
}

Summary
Panes are the fundamental visual objects in PowerPlant. There are
many kinds of panes, including views, controls, LCaption,
LGroupBox, LIconPane, LEditField, LMovieController, and others.

Panes have a variety of characteristics including position in a view
hierarchy, ID number, frame, frame binding, contents, value,
descriptor, state, and mouse information.

You typically create a pane with Constructor. You can build panes
on the fly in code, using the SPaneInfo structure and passing any
other necessary data to the constructor function. You can get, set, or
otherwise manipulate every characteristic of a pane at runtime.
PPB–140 The PowerPlant Book

Panes
Code Exercise
You have just absorbed a tremendous amount of information about
panes. As we said before, the LPane class and its derivatives are
fundamental to all the visual objects in PowerPlant. The LPane class
is correspondingly complex. However, you now have a really solid
understanding of panes and their offspring. That will make
understanding views and controls much easier in the next chapters.

Let’s put all this knowledge to work and see how to create and use
panes in code.

Code Exercise
Because this is the first code exercise, let’s be explicit about how
these exercises are designed, and about some assumptions we’re
going to make. You can use these exercises in several ways. They are
designed to be as flexible as possible to accommodate your
individual learning style.

Learning Paths

Each exercise has a “start code” and a “solution code.” The exercise
itself is a series of steps in which you add code to one or more files
in the start code project. In the process you learn step by step how to
implement some feature in PowerPlant. In this chapter, for example,
you learn how to work with panes.

WARNING! Do not attempt to build and run the start code project without
performing the steps. Critical code is missing, and the project will
either not build, or crash when it runs.

The solution code represents the complete project after you have
followed all the steps. It contains all the code that the exercise steps
ask you to add, and all the resources you build in Constructor.

Each exercise is a series of steps. The step title specifies a particular
task you should accomplish. The code locator specifies the precise
file and function involved in the step. The step instructions explain
what you are supposed to accomplish in the step. Each step also
includes the code you must write. We frequently include some
The PowerPlant Book PPB–141

Panes
Basic Assumptions
existing code as well, so you can locate the precise spot where you
should be adding new code. Existing code is in italic.

This design gives you at least three strategies you can use as you
perform an exercise.

First, there is the “tutorial” strategy. With this approach, you follow
the steps precisely and copy the code exactly as provided. This
technique guarantees that your final project will work. You will be
“following along in the book” as you implement the task at hand.
You will learn a lot about PowerPlant from doing it as experts do.

Second, there is the “guide” strategy. In this approach, you read the
step instructions, ignore the code, and solve the problem yourself.
You use the steps as a guide to your own work. This technique is
more suited for the adventurous programmer. If you pursue this
tack, you are likely to make mistakes and your project may not
work right the first time. As you eliminate the bugs, you’ll learn a
lot about PowerPlant by finding your own way.

Third, there is the “example” strategy. In this approach, you don’t
write any code. You use the steps in the exercise as an explanation
of example code. In this case, use the files in the solution code
project. As you read the steps, study the code. This approach is best
suited to someone who wants a theoretical understanding of the
inner workings of PowerPlant, or someone who wants a little
guidance but is eager to apply the principles directly in their own
project.

Basic Assumptions

For each chapter, there is a folder titled “Chap nn Start Code” where
“nn” is the chapter number. These folders are located in the “PP
Book Code” folder. We assume that you have located the
appropriate start code and copied it to your hard drive.

Inside each start code there is a CodeWarrior project file. There are
project files for both Classic and Carbon code. We assume that you
have launched CodeWarrior and opened the project file.
PPB–142 The PowerPlant Book

Panes
Basic Assumptions
Immediately after the step title, you will usually see a code locator:

function name() File.cp

This identifies the file and function you work on in the step. We
assume you have opened the file and located the function.

We’re going to assume that you’d rather write code than build PPob
resources. As a result, we’re going to provide most of the PPob
resources required to perform these exercises. You should keep in
mind, however, that this is a gift. In your own work you must build
PPob resources, usually from scratch.

Finally, a few words about the project files in these exercises. These
projects are not derived from the standard PowerPlant stationery
files. We wanted to make sure that all of the necessary files were
included in the project, so you can concentrate on learning
PowerPlant, not adding and removing files in CodeWarrior.

We’ll explore some of the subtle differences in the code exercise for
Chapter 9. However, there are some apparent differences worthy of
note here.

First, the PPStarterResources.rsrc file has been replaced with
two files, appname.rsrc and appname.ppob, where “appname”
is the name of the application in that project. As we mentioned in
the code exercise in the introduction, this makes it easy for you to
open the file in the correct resource manager application. Some of
the resources in PPStarterResources.rsrc have been omitted
because they are unnecessary in these projects.

We have also added two resource files, PP AppleEvents.rsrc
and ColorAlertIcons.rsrc. The first includes the ‘aedt’
resource for PowerPlant. (The ‘aedt’ resource is part of the
PPStarterResources.rsrc file.) The second replaces the black
and white alert icons with color icons. Appendix B, “Resource
Notes” discusses the PowerPlant resource files and their contents.
For more information, see “ColorAlertIcons.rsrc” and “PP
AppleEvents.rsrc.”

There are a few more changes behind the scenes with the project
prefix, included files, and so on. We’ll point those out in Chapter 9
when you work on the background details in a PowerPlant
application like setup, debugging, and memory management.
The PowerPlant Book PPB–143

Panes
The Interface
Now that we have the ground rules established, we can begin our
adventure.

The Interface

In this project you build an application titled “Panes.” The final
product looks like Figure 6.8.

Figure 6.8 The Panes window

There are ten panes in this window, as noted in the illustration. If
you examine the PPob resource with Constructor, you learn the
following about these panes.
PPB–144 The PowerPlant Book

Panes
The Interface
The LIconPane is bound to the top left of the window. It is not
enabled, so it won’t respond to clicks.

All LCaption objects are bound to the top left of the window. None
is enabled. The “New Message” caption uses a text traits resource of
zero—the system font. The others use a text traits resource ID 131—
Geneva 9 point, flush right.

The LGroupBox is bound to the top, left, and right of the window.
As the window changes width, it will too. It is not enabled. It uses a
text traits resource ID 132—Geneva 9 point, flush left, bold.

The LEditField panes are all bound to the top, left, and right of the
window. As the window changes width, they will too. They are
enabled, so they can respond to clicks and keystrokes. Each uses a
key filter to limit input to “legal” characters. Each uses the text traits
resource ID 130, Geneva 9 point, flush left.

With a series of editable text fields, the Mac OS human interface
guidelines say that typing a Tab key should advance the cursor to
the next editable field. In PowerPlant, you do this by creating an
LTabGroup object. If you examine the hierarchy window in
Constructor for this PPob, you can see the LTabGroup positioned in
the hierarchy. To make a tab group object, choose the Make Tab
Group item from the Constructor’s Arrange menu.

All of these are standard PowerPlant panes. The interface also
includes a custom pane. This one, you build yourself.

1. Create a custom pane.

If you have not already opened the Constructor project, double-click
the Panes.ppob file in the IDE project window. Constructor
launches and the Constructor project window appears. Double-click
the LWindow view to see its contents. Also, make sure the Catalog
window is open.

Drag an LPane object from the Catalog window and drop it on the
Panes window. Double-click the object to open the property
inspector window so you can set its characteristics as shown in
Figure 6.9.
The PowerPlant Book PPB–145

Panes
Implementing a Custom Pane
Figure 6.9 Setting LPane properties

The pane is bound to all four sides of the window. It is enabled and
visible. The Pane ID is 10.

2. Set the class ID.

You are creating a new class of object, and it must have its own class
ID. Change the class ID from the default value “pane” to a new
value, “ClkP”. The value “ClkP” is arbitrary. It is an acronym for
click pane. You’re going to write code so that this pane responds to
a click in a special way.

Save your changes, close all the Constructor windows, and return to
the CodeWarrior IDE. It’s time to write some code.

Implementing a Custom Pane

All the panes except for the custom pane are standard PowerPlant
objects. You don’t have to write any code to make them work
properly. The application-level code that creates the window has
PPB–146 The PowerPlant Book

Panes
Implementing a Custom Pane
been provided for you. You’ll work with applications in Chapter 9,
and windows in Chapter 11.

In the remaining steps, you write the code to implement the custom
pane. This is going to be a lot easier than you might think.

3. Declare the class ID.

Class declaration CClickPane.h

Because this is the first step, we’ll point out the code locator. Open
the CClickPane.h file, and locate the class declaration. Most of the
header has been provided for you. We assume you know what a
class is, and the C++ syntax necessary to declare one.

PowerPlant relies on each pane class having a unique class ID. In
Step 2 you specified “ClkP” as the class ID for the CClickPane class.
Each pane class has a class_ID enumerated constant. Declare that
constant to have the value ClkP.

class CClickPane : public LPane {
public:
 enum { class_ID = 'ClkP' };

4. Study the class declaration.

Class declaration CClickPane.h

Look at the rest of the code in this class declaration. The CClickPane
class inherits from LPane. There are several constructors and a
destructor. The class also declares a new function,
DrawPaneStats().

Finally, the class overrides three inherited functions: DrawSelf(),
ClickSelf(), and AdjustCursorSelf(). You write each of
these functions in subsequent steps.

Save your changes and close the header file.

5. Write the stream constructor.

CClickPane(LStream *) CClickPane.cp

Building a CClickPane object does not require any data other than
the data used to describe a simple LPane object. Therefore,
CClickPane can use the LPane stream constructor as its own stream
constructor.

Call the LPane stream constructor.
The PowerPlant Book PPB–147

Panes
Implementing a Custom Pane
CClickPane::CClickPane(LStream *inStream)
 : LPane(inStream)
{
}

The other constructors and the destructor are all empty and are
provided for you.

You have done everything you need to build a CClickPane object.
You have written both the class declaration and the stream
constructor that builds the object from the stream. PowerPlant will
call this function automatically as it reads the PPob resource. The
CClickPane object will be built based on the information you set in
Constructor.

In the remaining steps you implement CClickPane functionality.

6. Draw the pane.

DrawSelf() CClickPane.cp

This function should draw a frame around the pane, and then draw
the contents. You are free to draw anything in the pane that suits
your fancy.

In the solution code, this pane displays statistics about itself. You
can use the DrawPaneStats() function for this purpose. This
function is provided for you, because it does not directly involve
PowerPlant.

CClickPane::DrawSelf()
{
 // Calculate the frame rect.
 Rect theFrame;
 CalcLocalFrameRect(theFrame);

 // Draw a frame around the pane.
 ::FrameRect(&theFrame);

 // Draw the pane stats.
 DrawPaneStats();
}

Feel free to examine the DrawPaneStats() function if you wish. It
reads various data members from the object, converts the values to
string representations, and draws the strings.
PPB–148 The PowerPlant Book

Panes
Implementing a Custom Pane
TIP The StTextState class used in DrawPaneStats() preserves and
restores existing text settings. You can read about this class in
“UDrawingState.”

7. Respond to a click.

ClickSelf() CClickPane.cp

This function is called whenever the user clicks an enabled pane.
Write code to make something happen when the user clicks this
pane. The solution code beeps. Again, feel free to experiment.

CClickPane::ClickSelf(const SMouseDownEvent &inMouseDown)
{
#pragma unused(inMouseDown)
 ::SysBeep(9);
}

The input parameter is unused in the solution code. If you have
compiler warnings on, you may get a warning. You can avoid the
warning using the #pragma as shown.

8. Adjust the cursor.

AdjustCursorSelf() CClickPane.cp

When the user moves the mouse into your pane, you may want to
adjust the cursor. In PowerPlant, you don’t have to worry about
when to do this. The framework calls AdjustCursorSelf() at the
right time.

In this function you should get a cursor and display it. The solution
code uses a cursor provided in the project resources. The constant
rCURS_Finger is defined at the beginning of this source file. It
represents the resource ID for a finger cursor.

CClickPane::AdjustCursorSelf(Point inPortPt,
 const EventRecord &inMacEvent)
{
#pragma unused(inPortPt, inMacEvent)

 // Get the cursor.
 CursHandle theCursH = ::GetCursor(rCURS_Finger);

 // Set the cursor.
 if (theCursH != nil)
The PowerPlant Book PPB–149

Panes
Implementing a Custom Pane
 ::SetCursor(*theCursH);
}

Save your work and close the file.

9. Add header file

Top of File CPaneApp.cp

To register any PowerPlant or custom class, you need to include the
header file for that class in your main source file.

// Custom class headers
#include "CClickPane.h"

10. Register the new class.

CPaneApp() CPaneApp.cp

The Step 5 instructions said that PowerPlant calls the stream
constructor automatically. This only happens if you register your
class with PowerPlant. We don’t actually discuss registering classes
until “Register PowerPlant Classes.” However, it must be done for
your custom class to work.

Put the new code in this step after the existing call to
RegisterClass_(LTabGroup) in the CPaneApp constructor.

RegisterClass_(LTabGroup);
// Register custom classes.
RegisterClass_(CClickPane);

11. Build and run the application.

Make the project and run it. If it doesn’t build, examine the steps
and your code carefully to see where things went wrong. If all else
fails you can use the solution code.

When the project builds correctly and you run the application, a
window appears containing all the panes. See Figure 6.8. Play with
the window and watch what happens.

Resize the window. Watch what happens to the various panes as
you do. The pane binding determines the result.

Click on the various captions, and nothing happens. These panes
are not enabled. However, the editable text fields are fully
PPB–150 The PowerPlant Book

Panes
Implementing a Custom Pane
functional. Try them out! You can enter text, cut, copy, paste, and so
forth.

Press the Tab key to cycle through the three editable text fields.
Press Shift Tab to cycle backwards. This is the automatic behavior of
the invisible LTabGroup object in action. The fact that this works
has nothing to do with the group box. The group box is just an
aesthetic feature. It does not group the items functionally.

Observe the custom pane field. If you implemented the solution
code, the pane statistics appear in the field. Move the mouse until
the cursor is over the pane. The cursor should change to the finger
cursor. Click the pane, and it should beep. This is your code at work:
DrawSelf(), ClickSelf(), and AdjustCursorSelf().

PowerPlant takes care of calling your functions at the appropriate
moment. You take care of implementing the functionality.

When you are through observing, quit the application.

Congratulations! You have implemented several different kinds of
standard PowerPlant panes, as well as a completely new custom
pane. You’re on your way! In the next chapter we move on to panes
that can contain other panes—the PowerPlant view classes.
The PowerPlant Book PPB–151

Panes
Implementing a Custom Pane
PPB–152 The PowerPlant Book

7
Views

In this chapter we’re going to talk about views—LView objects and
objects that descend from LView—in detail. Like the preceding
chapter on panes, we’ll discuss background information on views
first, and then go into detail about how to use views in your
application.

The principal topics in this chapter are:

• What Is a View—including the different kinds of views in
PowerPlant.

• View Characteristics—a detailed look at the things that make a
view a view.

• Working With Views—how to make and use views.

• Some Specific Views—details on some view classes.

After we complete this discussion, you’ll create and manipulate real
views in this chapter’s coding exercise.

What Is a View
Earlier in this manual we discussed views in a general sense as a
concept in an application framework. From now on, we use the term
“view” to mean an object that descends directly or indirectly from
LView.

As you know, a view is a special kind of pane—one that can contain
another pane. As a result, the LView class is the fundamental class
for managing the visual hierarchy in an application.

Figure 7.1 illustrates the inheritance hierarchy for LView and its
descendants. (Remember, this is the class hierarchy, not the visual
hierarchy you create in an application. To keep these ideas distinct,
The PowerPlant Book PPB–153

Views
What Is a View
we will always refer to the “visual hierarchy” when talking about
how panes relate to each other on screen.)

Figure 7.1 View class hierarchy

In a PowerPlant application, you will use several kinds of views,
including LView itself. You use a plain vanilla LView object as a
way of grouping panes.

Of the subclasses, LWindow is the most significant and complex.
We will discuss LWindow in great detail in Chapter 11, “Windows.”
PPB–154 The PowerPlant Book

Views
View Characteristics
NOTE Programmers familiar with other frameworks (such as MacApp) may
wonder why there is a distinction between panes and views in
PowerPlant. Panes encapsulate the behavior of “something that
appears in a window.” Views extend that behavior to “…and
includes other panes.” By factoring these behaviors into different
classes, LPane is kept as lean as possible. Behavior for managing
lists of subpanes is restricted to LView and its descendants.

The LView class encapsulates a generic interface for all view objects.
As a result, all views share certain common characteristics.

View Characteristics
Remember that all views are also panes. Therefore, everything we
said in Chapter 6, “Panes” applies to views as well. They have an ID
number, a frame, frame binding, contents, state, and mouse
information. All of the data members and member functions
discussed in that chapter apply equally to views.

In this section we discuss the additional features of views that make
them different from panes. They are:

• Subpanes—maintaining the visual hierarchy

• Image—the content area of the view

• Scrolling—moving the image within the frame

• Coordinate Systems—keeping track of the numbers

To see how some of these characteristics are reflected in
Constructor, refer to Figure 7.7.

Subpanes

A view may contain an arbitrary number of other views and panes.
To support this characteristic, each view has an mSubPanes data
member. This is an LArray object that maintains the list of
subpanes.

PowerPlant uses this data member to step through all subpanes for
various purposes such as modifying state, getting an ID number,
The PowerPlant Book PPB–155

Views
Image
and so forth. For example, when you call FindPaneByID(),
PowerPlant walks through the subpane list in search of the pane.

You can modify the subpane list dynamically at runtime. We’ll talk
about the details in “Managing Subpanes and the Visual
Hierarchy.”

Image

In addition to a frame, a view also has an image. Like the frame, the
image is specified by a location and a size. The image defines a
rectangular area that holds the contents of the view—a picture for
example, other views, other panes, or a combination of these and
other objects.

The image may be larger than the frame, in which case only a
portion of the image is visible in the frame. A view allows you to
scroll the image area around in the frame. We will revisit scroll bars
in detail in the section on scrolling, below.

Figure 7.2 shows the relationship between a frame and an image.
PPB–156 The PowerPlant Book

Views
Scrolling
Figure 7.2 Image and frame in a view

In Figure 7.2, we’re looking at the image area of a view that is
attached to a scroller, which in turn is contained in a window view.

Scrolling

Because the frame and image may not be the same size, views
support scrolling so that you can see different parts of the image. In
practice, the only views you’ll use for scrolling are LScroller and its
subclass, LActiveScroller. From now on we will call these “scroller
views,” or simply “scrollers.”

The most important feature of a scroller view is that it has one and
only one subpane. That subpane is a view. The subview may
The PowerPlant Book PPB–157

Views
Coordinate Systems
contain an arbitrary number of panes and views. The net effect is
that the scroller view may contain (through the intermediary
subview) any number of panes of any type. We will call the single
subview contained inside the scroller the “scrolling view” because it
is the view that moves around. Remember, there is a distinction
between the scroller view (that manages the scroll bars and
coordinate system adjustments) and the scrolling view (that simply
appears inside the scroller).

WARNING! Make sure your scroller has only one subpane! To put multiple items
in a single scrolling view, use LView as the subpane to the scroller,
and put the multiple items in the LView.

Scroller views implement all the functionality of scroll bars with
which you have become familiar. They create, maintain, resize,
move, hide, show, enable, disable, and manage everything having
to do with scroll bars. The only difference between LScroller and
LActiveScroller is that the latter supports dynamic scrolling of the
view. Dynamic scrolling means that the window contents scroll
while the user drags the scroll bar thumb.

Coordinate Systems

Views are responsible for transforming coordinates among four
different coordinate systems:

• Global coordinates

• Port Coordinates

• Local Coordinates

• Image Coordinates

When you derive classes and create code to draw your own panes,
you will likely face situations where you must convert coordinates.
You should understand what the coordinate systems are so that
when you do need to manage coordinates, you’ll know what’s
going on. PowerPlant pane and view classes have a series of
coordinate conversion routines you can use to do the work.

We’ll discuss the individual routines in “Working With Views.”
PPB–158 The PowerPlant Book

Views
Coordinate Systems
NOTE Most of the coordinate transformation routines are available to all
panes, not just views. However, in the non-view classes the
functions simply call the superview’s coordinate transformation
routines. Therefore, all real work happens in the view objects.

Global coordinates

The global coordinate system has its origin (0,0) at the top left
corner of the main monitor. This is the monitor with the menu bar.
The range of coordinate values is -32,768 to 32,767 (a signed 16-bit
integer).

Figure 7.3 Global coordinates

We will call this area “QuickDraw space.” At the standard 72 dots-
per-inch screen resolution, QuickDraw space is a square about 76'
(23 m) on each side.

QuickDraw uses global coordinates to determine the positions of
multiple monitors in QuickDraw space, and to position windows.
Monitors or windows to the left or above the top left corner of the
main monitor would have negative coordinates.

You use this coordinate system when you use a Toolbox routine that
requires global coordinates.
The PowerPlant Book PPB–159

Views
Coordinate Systems
Port Coordinates

In the port coordinate system, the origin (0,0) is the top left corner
of the content space of a GrafPort (usually a window). This system
is also called the window coordinate system.

Except for the fact that it has a different origin, the port coordinate
system is identical to the global coordinate system, as shown in
Figure 7.4.

Figure 7.4 Port coordinates

Note that there is a separate port coordinate system for each open
GrafPort. Each port has its own top left corner, and that’s the (0,0)
point for its internal coordinate system. That same point also has a
global value, which can be any location in QuickDraw space.

In traditional Macintosh programming, most of your work is done
in port coordinates. In PowerPlant, you use this coordinate system
to specify the location of panes within a window. Therefore, the
location data for the frame of each pane is in port coordinates, and
represents the distance from the top left corner of the port.
PPB–160 The PowerPlant Book

Views
Coordinate Systems
PowerPlant uses this coordinate system internally to maintain the
spatial relationships among panes and views.

Local Coordinates

In PowerPlant, the origin of local coordinates is the top left corner of
the image in a view. Local coordinates are 16-bit values in
QuickDraw space. Figure 7.5 displays this relationship. There is a
scrolling view in part of the window. Parts of the view’s image
extend beyond the view frame and would normally be invisible. We
have dithered the image for illustrative purposes. The view frame is
the viewable area of the window.

The top left corner of the view frame is at location (-15,-30) in port
coordinates as shown in Figure 7.5. The image in a view may be
scrolled, so the top left corner of the image is not necessarily the
same as the top left corner of the view frame. Local coordinates
measure from the top left corner of the image, not the view frame. In
Figure 7.5, the location of the frame is (15,30) in local coordinates.

Figure 7.5 Local Coordinates

Each view has its own local coordinate system. This means that you
can draw in a view without worrying about the view’s location in a
window or in another view. PowerPlant takes care of most of the
necessary coordinate transformations automatically.
The PowerPlant Book PPB–161

Views
Coordinate Systems
Image Coordinates

The image coordinate system is PowerPlant-specific. The image
coordinate system uses 32-bit values in which the top left corner of
the image is (0,0), just like local coordinates.

Figure 7.6 Image coordinates

You may have noticed that the illustration for image coordinates is
virtually identical to that for local coordinates. At values less than
16K, local coordinates and image coordinates are identical. Most
applications do not use a drawing space larger than 16K pixels.

If you do need a large drawing space, the image coordinate system
provides the support you need to scroll an image larger than that
allowed in standard QuickDraw space.

PowerPlant uses positive numbers for image coordinates. The
drawing area ranges from 0 to 2,147,483,647 to the right and down
from the origin. At a resolution of 72 dpi, this is a square more than
470 miles (757km) on a side.

WARNING! If a view’s image size is larger than 16K pixels, you must convert
image coordinates to local coordinates before drawing. We’ll
discuss this problem in detail in “Managing Coordinate
Transformations.”
PPB–162 The PowerPlant Book

Views
Working With Views
Working With Views
In this section we discuss how to use PowerPlant for view-related
tasks. We’ll talk about:

• Creating a View—Constructor, and using view constructor
functions.

• Drawing a View—drawing and updating views.

• Managing Subpanes and the Visual Hierarchy—adding and
removing subpanes.

• Managing the View Image—adjusting location and size.

• Managing Scrolling—how to scroll a view.

• Managing Coordinate Transformations—when and how to
convert coordinates.

Creating a View

You can create a view using Constructor, or on the fly in your code.
We talk about each method. Then we discuss what you do when
you derive your own class from LView or its descendants.

Using Constructor

Creating a view object in Constructor is simple. While in
Constructor, you drag a view object from the tool palette into a
containing view. Then you set the characteristics for that object.
Figure 7.7 shows the Property Inspector window for a simple view.
The PowerPlant Book PPB–163

Views
Creating a View
Figure 7.7 Creating a view in Constructor

Note that a view has all the same information as a pane, including
location, size, pane ID, class ID, binding, and state information.
Remember, when you derive your own classes you must change the
class ID to your own unique value and register the class with
PowerPlant before creating any objects of that class.

Each view has its own location in its superview, specified by the top
left coordinates. The coordinates for any pane you place inside the
view are relative to the view’s top left corner. If you change the
pane’s superview, you may need to change the pane’s location as
PPB–164 The PowerPlant Book

Views
Creating a View
well. If you don’t, you may encounter some seemingly odd
behavior. Here’s an example.

Assume you design a window, and place a pane at coordinate 200,
300. You subsequently decide to create a new view inside the
window to contain the pane, and locate that view at 190, 290. If you
simply move the original pane to its new view, it appears at
coordinate 200,300 in the view, or 390, 590 in the window. If you
want the pane to appear at position 10,10 in the new view (200,300
in the window), you must change the pane’s location to 10,10.

The scroll unit is the number of pixels to scroll when the user clicks
in the scroll arrow. The scroll position is the starting point of the
scroll when the view is created, typically zero.

The Reconcile Overhang check box (see Figure 7.7 above) controls
how the view’s contents scroll when the superview is resized
beyond the bottom right corner of the contents. If Reconcile
Overhang is on (Figure 7.8), the contents reposition so that the
bottom right corner of the contents remain at the bottom right
corner of the window.
The PowerPlant Book PPB–165

Views
Creating a View
Figure 7.8 Reconcile overhang on

If Reconcile Overhang is off, then the contents do not reposition, as
shown in Figure 7.9.
PPB–166 The PowerPlant Book

Views
Creating a View
Figure 7.9 Reconcile overhang off

Other view classes have additional characteristics. We’ll examine
some of them in “Some Specific Views.” Remember, the general
process for creating any view object with Constructor is: drag the
item into the view, set its position in the view hierarchy, then set its
characteristics.

NOTE When you create a new PPob resource in Constructor, you
automatically get a new view. You choose from LWindow,
LDialogBox, LPrintout, LGrafPortView, or LView. This is the top view
of the visual hierarchy, and it has no superview. You must set the
characteristics for this view as well.
The PowerPlant Book PPB–167

Views
Creating a View
See also “Register PowerPlant Classes.”

Creating a view on the fly

The typical approach used when creating a view object on the fly is
to define both an SPaneInfo structure and an SViewInfo
structure. The SViewInfo structure in Listing 7.1 specifies the
values required to build a generic view. You then call the
appropriate constructor. Depending upon the particular view you
are creating, you may need to pass additional parameters.

NOTE The LWindow and LDialogBox classes use a different structure,
SWindowInfo. See “Creating a window on the fly” for more
information.

Listing 7.1 The SViewInfo structure
typedef struct SViewInfo {
 SDimension32 imageSize;
 SPoint32 scrollPos;
 SPoint32 scrollUnit;
 SInt16 reconcileOverhang;
} SViewInfo;

Note how the fields in this struct parallel the characteristics you
provide in Constructor, as shown in Figure 7.7.

Each view class has specific constructors of course, one of which
(except for windows) receives pointers to the SPaneInfo and
SViewInfo structures. Most have additional parameters you must
provide. Use the PowerPlant Reference HTML documentation to
learn details on the various constructors and the parameters you
must provide to successfully create an object on the fly.

TIP For code demonstrating window and pane creation on the fly, see
the Panes Demo code in the CodeWarrior Examples:Mac OS
Examples:PowerPlant Examples:Updated Examples folder.

After you have created a view and installed all its panes, you should
call FinishCreate(). This function ensures that each pane’s state
PPB–168 The PowerPlant Book

Views
Creating a View
(visible/invisible, active/inactive, enabled/disabled) matches its
superview.

You are also responsible for maintaining the visual hierarchy. If the
new view will have a superview, call SetDefaultView() for the
container view before creating the new view with a stream
constructor. This ensures that when you create the new view it has
the correct superview. Alternatively, you can call PutInside() as
described in “Managing Subpanes and the Visual Hierarchy”
below.

Similarly, if the new view is also a commander (LWindow,
LDialogBox, LTextEditView, LGrafPortView, or your own derived
class), you must maintain the command hierarchy as well. Call
SetDefaultCommander() before creating the view.

See also “Creating a pane on the fly” for more on the SPaneInfo
structure, “Managing Subpanes and the Visual Hierarchy,” and
“Command Chain” for more on the command hierarchy.

Deriving your own views

When you derive a class from LView or one of its descendants, you
typically define a destructor and several constructors: a default
constructor, a constructor to build the view from SPaneInfo and
SViewInfo structures, a constructor to build the view from a
stream, and a copy constructor. For more on stream constructors,
see “Stream constructor.”

NOTE The LWindow and LDialogBox classes use a different structure,
SWindowInfo. See “Creating a window on the fly” for more
information.

When you derive your own class, you may of course override
whatever functions are necessary for your needs. We’ll discuss the
specific details of deriving window classes in “Deriving your own
windows.”

See also “Creating a view on the fly” for more on the SViewInfo
structure.
The PowerPlant Book PPB–169

Views
Drawing a View
Drawing a View

The typical view is a container for panes, and the panes draw
themselves. Therefore, drawing a view requires nothing more than
calling the view’s Draw() function.

In most cases, the default behavior provided in PowerPlant will
suffice for your needs. Draw() performs housekeeping details, calls
the view’s DrawSelf() function, walks through the list of
subpanes, and sends each subpane a Draw() message.

Views, being panes, have a DrawSelf() function that you can
override if necessary to do view-specific drawing. For example, an
LWindow object may erase itself before drawing all its subpanes.
Note that the DrawSelf() function is called before subpanes draw,
because the view is visually behind its contained subpanes.

TIP Remember that if you do any drawing in a view that does not go
through the Draw() function, you must call FocusDraw()
yourself to ensure that the port is set up correctly.

Managing Subpanes and the Visual Hierarchy

All pane classes have member functions for adding themselves to a
superview (going up the tree). Use PutInside() to make any pane
or view a subpane to a superview. To remove a pane or view from a
superview, call PutInside() and pass nil as the new superview.
PutInside() is the only function you need for complete visual
hierarchy maintenance.

You do not need to work from the view level going down. If you
have a group of panes and you want to add them to a view, you do
not tell the view to add the panes. You tell each pane to add itself to
the view. The view is a container, the panes do the work.

There is no member function to identify the topmost container in a
visual hierarchy, typically a window. The code in Listing 7.2 shows
you one way to do this. It assumes you have a pointer to an LPane
object in a variable, inPane. When this code completes, the local
variable theTopView holds the topmost view in the visual
hierarchy.
PPB–170 The PowerPlant Book

Views
Managing Subpanes and the Visual Hierarchy
Listing 7.2 Finding the topmost view
LView* theTopView = inPane->GetSuperView();
if (theTopView != nil)
{ // follow chain of superviews to top
 while (theTopView->GetSuperView() != nil)
 theTopView = theTopView->GetSuperView();
}
else // thePane is the top
{
 theTopView = dynamic_cast<LView*> (inPane);
}

View classes have several functions for dealing with their subpanes,
as listed in Table 7.1.

Table 7.1 Subpane management functions

Function Purpose

GetSubPanes() returns a reference to the LList object
containing all subpanes for the view

OrientSubPane() sets subpane state to match view

ExpandSubPane() resize the subpane to fill the view
horizontally and/or vertically

DeleteAllSubPanes() destroy all subpanes

FindPaneByID() given an ID, return a pointer to the
pane

FindSubPaneHitBy() find subpane of this pane that
contains the point

FindDeepSubPane
Containing()

search through subpanes for deepest
pane containing the point

FindShallowSubPane
Containing()

search through subpanes for
shallowest pane containing the point

GetValueForPaneID() given a pane ID, return the pane’s
value

SetValueForPaneID() given a pane ID, set the pane’s value
The PowerPlant Book PPB–171

Views
Managing the View Image
The last four functions in Table 7.1 are accessors for the same value
and descriptor information we discussed in “Value and descriptor.”
These functions simply find the pane by ID number and call the
appropriate accessor.

Managing the View Image

Like the frame in a pane, you can adjust the image in a view. Table
7.2 lists the available functions and their purpose.

Table 7.2 Image and frame management function

Note that if the image is connected to a scroller, resetting the image
size means you should update the minimum and/or maximum
values of the scroll bars by calling the scroller’s
AdjustScrollBars() member function.

Managing Scrolling

All view classes have certain functions required for scroll
management. Under normal circumstances, you should never have

GetDescriptorFor
PaneID()

given a pane ID, return the pane’s
descriptor

SetDescriptorFor
PaneID()

given a pane ID, set the pane’s
descriptor

Function Purpose

Function Purpose

GetImageSize() return image size

GetImageLocation(
)

return image location

ResizeImageTo() set new size to absolute value

ResizeImageBy() set new size to relative value

CalcRevealedRect(
)

calculate the portion of the frame that
is visible through the frames of all
superviews (in port coordinates)

GetRevealedRect() return the revealed rectangle
PPB–172 The PowerPlant Book

Views
Managing Scrolling
to deal with these functions with the possible exception of three
accessors.

Table 7.3 Scroll-related accessors

For all practical purposes, scrolling is limited to two classes:
LScroller and LActiveScroller. These classes have the real functional
tools you use when scrolling. There are four data members of
general interest, listed in Table 7.4.

Table 7.4 Some LScroller data members

When you create a scroller view in Constructor, you provide scroll-
specific information, as shown in Figure 7.10.

Function Purpose

GetScrollPosition(
)

return location of a view's frame
within its image

GetScrollUnit() return the current value of the scroll
unit

SetScrollUnit() set the value of the scroll unit

Date Type Name Purpose

LView* mScrollingView pointer to scrolling view contained
in scroller view

PaneIDT mScrollingViewID ID of scrolling view contained in
scroller view

LStdControl* mVerticalBar pointer to vertical scroll bar

LStdControl* mHorizontalBar pointer to horizontal scroll bar
The PowerPlant Book PPB–173

Views
Managing Scrolling
Figure 7.10 Scroller-specific information in Constructor

The Scrolling View ID corresponds to the mScrollingView data
member. The “indent” values are the distance from the edge of the
view to the end of the scroll bar. An indent of 15 pixels at the bottom
right of the view allows room for a grow box and keeps the two
scroll bars from overlapping. If you don’t want a scroll bar in one
direction, set the left or top indent to -1.

Unless you are doing something unusual you shouldn’t have to
override any of the default behavior. Table 7.5 lists some of the
common functions in the LScroller class.

Table 7.5 Some scroll-related functions

Function Purpose

AdjustScrollBars(
)

adjust value, min, and max of scroll
bars based on scroll and scrolling view

VertScroll() scroll while clicking and holding inside
the vertical scroll bar

HorizScroll() scroll while clicking and holding inside
the horizontal scroll bar
PPB–174 The PowerPlant Book

Views
Managing Coordinate Transformations
Managing Coordinate Transformations

No matter how helpful an application framework is, from time to
time you may find yourself working at the pixel level. At that time,
coordinate manipulation may become important to you.
PowerPlant has routines for converting from one coordinate system
to another, as listed in Table 7.6.

Table 7.6 Coordinate conversion functions

Don’t forget CalcPortFrameRect() and
CalcLocalFrameRect(). These functions return any pane’s
frame (views are panes after all) in the desired coordinate system.

Two additional functions you may find useful when working with
image coordinates are ImageRectIntersectsFrame(), and
ImagePointIsInFrame.These functions determine whether a
Rect or Point in image coordinates appears in the view’s frame.

If the image size of a view is greater than 16K pixels, you must keep
in mind the difference between image coordinates and local
coordinates. As long as the image size is less than 16K, the image
and local coordinates are identical for a given view. If your view’s

VertSBarAction() Toolbox callback function for action
while tracking click in vertical bar

HorizSBarAction() Toolbox callback function for action
while tracking click in horizontal bar

Function Purpose

From To Global To Port To Local To Image

Global n/a GlobalToPort
Point()

n/a n/a

Port PortToGlobal
Point()

n/a PortToLocal
Point()

n/a

Local n/a LocalToPort
Point()

n/a LocalToImage
Point()

Image n/a n/a ImageToLocal
Point()

n/a
The PowerPlant Book PPB–175

Views
Managing Coordinate Transformations
image is larger than 16K pixels, you must convert from image to
local coordinates so that QuickDraw can handle the drawing.

For example, suppose that you want to draw a 10 by 10 square at the
bottom right corner of the image. This is how you would do it if you
know that the image fits entirely in QuickDraw space.

Listing 7.3 Drawing in QuickDraw space
void MyView::DrawSelf()
{
 Rect square;

 square.top = mImageSize.height - 10;
 square.left = mImageSize.width - 10;
 square.bottom = mImageSize.height;
 square.right = mImageSize.width;

 ::FrameRect(&square);
}

To handle an image larger than 16K pixels, the member function
might look like this.

Listing 7.4 Drawing in 32-bit space
void MyView::DrawSelf()
{
 SDimension32 imageSize;
 SPoint32 imPos;
 Point localPos;
 Rect square = {0, 0, 10, 10};

 GetImageSize(imageSize);
 imPos.v = imageSize.height - 10;
 imPos.h = imageSize.width - 10;

 // if this is visible in frame
 if (ImageRectIntersectsFrame(imPos.h, imPos.v,
 imPos.h + 10, imPos.v + 10)) {
 // convert to local coordinates
 ImageToLocalPoint(imPos, localPos);
 ::OffsetRect (&square, localPos.h, localPos.v);
 ::FrameRect(&square);
PPB–176 The PowerPlant Book

Views
Some Specific Views
 }
}

Some Specific Views
Like the LPane class, LView has several direct and indirect
descendants. In this section we list some of the features of each that
make them unique. We will discuss the following classes:

• LGrafPortView—for use with non-PowerPlant code

• LOffscreenView—to draw off screen

• LTextEditView—display and manage editable text using
TextEdit

• LTable—display and manage tabular data

• LPicture—display a PICT resource

There are other classes that derive from LView, discussed elsewhere
in this manual. See also:

• Chapter 11, “Windows” for a discussion of LWindow.

• Chapter 12, “Dialogs” for a discussion of LDialogBox.

• Chapter 14, “Printing” for a discussion of LPrintout and
LPlaceholder.

• “Managing Scrolling” for information on LScroller and
LActiveScroller.

LGrafPortView

An LGrafPortView object is a top-level PowerPlant view (it’s
superview should be nil) that can be hosted inside a non-
PowerPlant window. This allows you to use PowerPlant panes in
other application frameworks or in externals such as HyperCard
XMCDs.

An LGrafPortView object acts as the interface between PowerPlant
Panes and “foreign” code that knows nothing about PowerPlant.
You are responsible for calling proper LGrafPortView functions at
certain times.

See also The PowerPlant Reference for more on the LGrafPortView
class.
The PowerPlant Book PPB–177

Views
Some Specific Views
LOffscreenView

An LOffscreenView is a view whose image draws off screen in a
temporary GWorld and is then copied to the screen. Using an
LOffscreenView can result in smoother screen updating.

This is a fairly simple extension of the standard LView class. When
you draw, the LOffscreenView object creates a stack-based
StOffscreenGWorld object. The view then draws its contents into
the offscreen world. When the drawing operation ends, the
StOffscreenGWorld goes out of scope. Its destructor uses
CopyBits() to blit the image to the screen before destroying itself.

The typical use for LOffscreenView is as a superview for several
subpanes, where you want all the panes to appear to draw
simultaneously. When you draw the subpanes, they all draw in the
offscreen view. When all panes are finished drawing, the complete
image is blitted to the screen. Even though this is in fact no faster
(and actually a trifle slower) than drawing the individual panes
directly on screen, the net effect appears faster to the user because
all the panes appear simultaneously. This technique is also useful if
the panes overlap and might cause flicker while drawing.

LTextEditView

LTextEditView is a wrapper class for the TextEdit functionality of
the Macintosh Toolbox. LTextEditView provides significant, text-
related functionality using a multiple styles.

LTextEditView also inherits from LCommander so that it can
respond to keystrokes, and LPeriodical to maintain cursor flashing.

Figure 7.11 illustrates additional information you provide in
Constructor for an LTextEditView object.
PPB–178 The PowerPlant Book

Views
Some Specific Views
Figure 7.11 LTextEditView-specific data in Constructor

You can specify a TEXT resource to use as the initial text. Like all
text-related PowerPlant objects, you can set the font, style, size,
color, and justification of the contents of the LTextEditView object
using a text traits resource.

LTable

The LTable class displays and manages tabular data—rows and
columns of rectangular cells in a two-dimensional grid. This is a
fairly simple class that provides significant functionality.

TIP The PowerPlant Advanced Topics manual has a chapter devoted to
the display of tabular data with LTableView. If you work with tabular
data, you’ll find that chapter very useful.

Figure 7.12 illustrates the kind of characteristics you can specify in
the LTable class. Like other classes, you can create an LTable easily
in Constructor, or on the fly using constructor functions.
The PowerPlant Book PPB–179

Views
Some Specific Views
Figure 7.12 LTable-specific data in Constructor

Most of these characteristics are self-evident. The Cell Data Size
characteristic controls how much memory is allotted for holding the
tabular data, in bytes. If your data has a maximum size, you specify
the size required to hold the data for a cell. PowerPlant creates an
object of LArray with the number of elements equal to the number
of cells in your table. You must initialize the array contents yourself.

If your data is not a known size, you can specify zero as the cell data
size. You are then completely responsible for attaching data to
individual cells in whatever way is appropriate for your
application.

Table 7.7 lists common LTable functions.

Table 7.7 Some LTable functions

The default functions of the LTable class simply draw the cell’s row
and column number in the cell. Clicking in a cell causes it to be

Function Purpose

DrawCell() draw the contents of a cell

ClickCell(
)

respond to a click in the cell
PPB–180 The PowerPlant Book

Views
Summary
highlighted. However, by deriving your own class from LTable and
overriding the DrawCell() and ClickCell() functions you can
modify the LTable class to support the display of any kind of data
and respond to clicks in whatever way is appropriate.

This makes LTable much more flexible than the Toolbox List
Manager, or PowerPlant’s LListBox class that uses the List Manager.
At the time of this writing the LTable class does not support
multiple-cell selections. You would have to add this functionality in
a derived class if it is important to your application. You can also
explore the LTableView class.

LPicture

The LPicture class displays a PICT resource. This is a simple
extension of the LView class. The only additional feature is that the
LPicture class keeps the resource ID of a PICT resource. It provides
accessors to get and set the number. The LPicture class overrides
DrawSelf() to display the picture.

This class derives from LView rather than directly from LPane
because a picture’s dimensions may be larger than the available
frame. Therefore, the LPicture class requires the image feature of the
LView class. The image bounds of an LPicture object typically
match the bounds of the attached picture.

Summary
You’ve reached another major milestone in your understanding of
the fundamental PowerPlant building blocks. You have learned all
about views.

Views are the fundamental PowerPlant object for maintaining the
visual hierarchy. There are many kinds of views, including LView,
LWindow, LScroller, LTextEditView, LTable, LPicture, and so forth.

Views have a variety of characteristics. In addition to everything a
pane has, views have a subpane list, and an image. Views also
manage scrolling and coordinate systems.

You typically create a view with Constructor. You can build views
on the fly in code. For views other than LWindow, you use both the
The PowerPlant Book PPB–181

Views
Code Exercise
SPaneInfo and SViewInfo structures as a basis, and pass any
other necessary information to the appropriate constructor function.
You can get, set, or otherwise manipulate every characteristic of a
view at runtime should you so desire.

Like panes, this is a tremendous amount of information to absorb at
one time. However, you now have a really solid understanding of
LView and some of its descendants. That will make understanding
windows and dialogs that much easier when we discuss them later.

Let’s put all this view-related knowledge to work and see how to
create and use views in code.

Code Exercise
In this exercise you build an application titled, appropriately
enough, “Views.” This exercise is structured very much like the
exercise in Chapter 6 on panes. A PPob with most of the necessary
objects has been provided for you. You will create a custom view
that manages and draws in an image 650 pixels wide by 2,000,000
pixels long—about 2,300 feet (700m)!

The Interface

The final application looks like Figure 7.13. Take a look at the
picture.

There are eight views in this window. There are four scrollers: two
LActiveScroller objects, and two LScroller objects. Each scroller
contains one view: an LPicture, an LTextEditView, an LTable, and a
custom view, CBigView. You will write the code for CBigView.

There are six panes. Five of them are simple captions that we won’t
discuss any further. The pane in the lower left corner of the window
is a custom CViewInfoPane. It reports cursor coordinates when the
cursor is in the CBigView.

Examine the PPob resource with Constructor as you read the
description of the views and panes.
PPB–182 The PowerPlant Book

Views
The Interface
Figure 7.13 The Views window

The LActiveScroller for the picture is bound to the top left of the
window. Its scrolling view has an ID of 2. The LPicture view has an
ID of 2. It is bound on all sides to its superview (the
LActiveScroller). It is visible, but not enabled, so it will not receive
clicks. The LPicture uses a PICT resource with ID 1000. This PICT
has been provided for you in the application resources. The scroll
unit for the LPicture is 5 pixels horizontally and vertically. A click in
a scroll arrow scrolls the picture by 5 pixels in the correct direction.

The LScroller in the top right corner of the window is bound to the
top, left, and right of the window. Its scrolling view has an ID of 4.
The LTextEditView object has an ID of 4. It is bound on all sides to
its superview, the LScroller. It is visible and enabled, so it will
receive commands, keystrokes, or clicks (LTextEditView is a
commander and a pane, so it receives all three). The initial text is in
The PowerPlant Book PPB–183

Views
The Interface
a TEXT resource with ID 1000, provided for you in the application
resources. It uses the text traits resource with ID 130.

The LScroller in the center left of the window is bound to the top left
of the window. Its scrolling view and the LTable view has an ID of
6. It is bound on all sides to its superview, the LScroller. It is visible
and enabled, so it will receive clicks. It has 5 columns and 20 rows.
Notice that the scroll unit matches the size of a cell. One click in a
scroll arrow will scroll the table one cell left, right, up, or down.

All of these are standard PowerPlant views.

The interface also includes a custom pane, CViewInfoPane. You
built a custom pane in the previous exercise. We give you the pane
in this exercise. It is bound to the top, left, and bottom of the
window. Note the class ID is InfP. This pane is visible, but not
enabled so it does not respond to clicks.

There are two views missing from the PPob, an LActiveScroller and
the CBigView.

1. Create an active scroller.

If you have not already opened the PPob project file, double-click
the Views.ppob file in the IDE project window. Constructor
launches and the Constructor project window appears. Double click
the LWindow view to see its contents. Also, make sure the Catalog
window is open.

Drag an LActiveScroller object from the Catalog window and drop
it on the Views window. Double-click the object to open the
property inspector window so you can set its characteristics as
shown in Figure 7.14.
PPB–184 The PowerPlant Book

Views
The Interface
Figure 7.14 Setting LActiveScroller properties

Set the location and size. The view is bound to all four sides of the
window. It is enabled and visible. The Pane ID is 7, the Scrolling
View ID is 8.

Close the LActiveScroller property inspector window.

2. Create a custom view.

CBigView is based on a plain LView object. Drag an LView object
from the Catalog window and drop it inside the LActiveScroller you
just created in the Views window. Double-click the CBigView object
The PowerPlant Book PPB–185

Views
The Interface
to open the property inspector window so you can set its
characteristics as shown in Figure 7.15.

Figure 7.15 Setting CBigView properties

Set the location and size. The view is bound on all four sides to its
superview. The view is visible but not enabled. The Pane ID is 8.
The Class ID is BigV. Set the image size and scroll unit. The vertical
scroll unit is 20 pixels. This is an important value to guarantee that
the solution code works correctly, so don’t change it. Turn Reconcile
Overhang on.
PPB–186 The PowerPlant Book

Views
Implementing a Custom View
3. Examine the view hierarchy.

If you dropped the CBigView inside the LActiveScroller, you
should be all set. However, the hierarchy is critical so let’s make
sure. Open the Constructor hierarchy window. Make sure the new
LView pane (representing the CBigView object) is hierarchically
under the LActiveScroller. If it is not, reposition it so that it is. The
end result should look like Figure 7.16.

Figure 7.16 The view hierarchy

Save your changes, close all the Constructor windows, and return to
the CodeWarrior IDE. It’s time to write some code.

Implementing a Custom View

All the views except for CBigView are standard PowerPlant objects.
You don’t have to write any code to make them work properly. The
application-level code that creates the window has been provided
for you. You’ll work with applications in Chapter 9, and windows
in Chapter 11.

In the remaining steps you write the code to implement the custom
view.

4. Declare the class ID.

Class declaration CBigView.h

Most of the header has been provided for you. PowerPlant relies on
each pane class (and a view is a kind of pane) having a unique class
The PowerPlant Book PPB–187

Views
Implementing a Custom View
ID. In Step 2 you specified “BigV” as the class ID for the CBigView
class.

Each view class has a class_ID enumerated constant. Declare that
constant to have the value BigV.

class CBigView : public LView {
public:
 enum { class_ID = 'BigV' };

Examine the header briefly. The only function CBigView overrides
is DrawSelf(). You write this function in the next few steps. All
the code for the class creator function, the constructors and
destructor has been provided for you. You wrote similar functions
in the Panes exercise.

Save your changes and close the header file.

The CBigView::DrawSelf() function is fairly complex. You
write this function in the next three steps. Follow the code carefully.
What you’re going to do in the next three steps is:

• Figure out what part of the image is visible.

• List the vertical image coordinate every 20 pixels.

• Draw a grey box halfway down the image.

The significant work you do with respect to PowerPlant is
coordinate conversion. You must change back and forth from local
to image coordinates and back again to get things to draw properly.

5. Get the coordinates for the exposed image.

DrawSelf() CBigView.cp

The existing code at the start of this routine preserves the text state
of the port, then sets it to Geneva 9 point.

TIP The StTextState class preserves and restores existing text settings.
You can read about this class in “UDrawingState.”

After that you have three tasks to accomplish:

a. Get the view frame in local coordinates.

Define a Rect variable and call CalcLocalFrameRect().
PPB–188 The PowerPlant Book

Views
Implementing a Custom View
b. Convert the frame to image coordinates.

Define two SPoint32 variables. Use these in calls to
LocalToImagePoint(). Convert the top left of the frame and
the bottom right of the frame from local to image coordinates.

c. Get the size of the image.

Define an SDimension32 variable. Use the GetImageSize()
accessor.

The necessary code for all these tasks is listed here.
 TextSize(9);

 // Calculate the frame rect in local coord.
 Rect theFrame;
 CalcLocalFrameRect(theFrame);

 // Convert the frame to image coordinates.
 SPoint32 theTopPos;
 SPoint32 theBotPos;
 LocalToImagePoint(topLeft(theFrame), theTopPos);
 LocalToImagePoint(botRight(theFrame), theBotPos);

 // Get the image size.
 SDimension32 theImageSize;
 GetImageSize(theImageSize);

Existing code then manipulates the value of the bottom image
coordinate to allow for the height of the text you’re going to draw,
and to make sure it stays within the image. This code is given to you
because it has nothing to do with PowerPlant.

Save your work before proceeding.

6. Draw the vertical image coordinate string.

DrawSelf() CBigView.cp

In this step you write a loop. For every 20th pixel, you convert the
vertical image coordinate into a string, and draw the string in the
view. You plot a point in the view image, then convert it to local
coordinates before drawing at that point.
The PowerPlant Book PPB–189

Views
Implementing a Custom View
a. Indent the horizontal drawing position.

Define an SPoint32 variable. We’ll call it theImagePos for
reference. This point will hold the image coordinate at which
you wish to draw.

Set the horizontal component of theImagePos to 4. You want
the text to draw just a little in from the left edge of the view, for
aesthetics.

b. From the top of the visible image, step every 20 pixels to the
bottom of the visible image.

In Step 5 you created local variables to hold the top left
coordinate of the visible part of the image, and the bottom right
coordinate. Use the top and bottom values as the beginning and
ending points of a for loop.

Set theImagePos.v to the top value. Then step by 20 pixels.
Loop as long as theImagePos.v is less than the bottom plus 12
pixels. Add 12 pixels to the test to ensure that any partial lines of
text appear along the bottom of the view.

c. Convert the image coordinate to local coordinates.

The variable named theImagePos now has both the horizontal
and vertical component set properly, in image coordinates.
Define a Point variable and call ImageToLocalPoint() to
convert theImagePos to local coordinates.

d. Create a string of the vertical image coordinate.

Define a local Str15 variable. Call the Toolbox routine
NumToString(). Use theImagePos.v as the number.

e. Draw the string.

Call the Toolbox routine MoveTo() to move to the local
coordinate. Call the Toolbox routine DrawString() to draw
the string.

The solution code is listed here for reference. Existing code (in italic)
is provided so you can locate where to place this code.

if (theBotPos.v > theImageSize.height) {
 theBotPos.v = theImageSize.height;
}

// Set the horizontal image coordinate
SPoint32 theImagePos;
PPB–190 The PowerPlant Book

Views
Implementing a Custom View
theImagePos.h = 4;

// Step every 20 pixels.
for (theImagePos.v = theTopPos.v;
 theImagePos.v < theBotPos.v+12;
 theImagePos.v += 20) {

 // Convert image into local coordinates.
 Point theLocalPos;
 ImageToLocalPoint(theImagePos, theLocalPos);

 // Create the string.
 Str15 theString;
 ::NumToString(theImagePos.v, theString);

 // Draw the vertical coordinate string.
 ::MoveTo(theLocalPos.h, theLocalPos.v);
 ::DrawString(theString);
}

Existing code then prepares for the next step, in which you draw a
box in the image. Save your work.

7. Draw a box in the image.

DrawSelf() CBigView.cp

In this step you draw directly into a view with a 32-bit image. The
steps you take are similar to those in the previous step.

Existing code sets up a box that is 30 pixels square. To draw this box
in the view you must:

a. Define an image coordinate at which to draw.

You can use theImagePos variable again from Step 6. In Step 5
you got the size of the image. Set theImagePos.h to 100. Set
theImagePos.v to one-half the image height.

b. Determine if any part of the box is visible.

Call ImageRectIntersectsFrame(). This call takes four 32-
bit values representing the left, top, right, and bottom
coordinates. Pass the correct values based on theImagePos. If
the call returns true, part of the box is visible and it should be
drawn.
The PowerPlant Book PPB–191

Views
Implementing a Custom View
c. Convert the coordinate to local coordinates.

Define a Point variable and call ImageToLocalPoint() to
convert theImagePos to local coordinates.

d. Draw the box.

The box is at (0,0). It should appear at the local position you
calculated in substep c above. Call OffsetRect() to reposition
the rectangle. Then call FillRect(). The solution code uses
UQDGlobals::GetQDGlobals() to access the gray pattern.

The solution code is listed here for reference. Existing code (in italic)
is provided so you can locate where to place this code.

const SInt16 kBoxSize = 30;
Rect theBox = {0,0,kBoxSize,kBoxSize};

// Where the top left of the box will be.
theImagePos.h = 100;
theImagePos.v = theImageSize.height / 2;

// Draw the box if some of it is in the frame.
if (ImageRectIntersectsFrame(theImagePos.h, theImagePos.v,
 theImagePos.h + kBoxSize, theImagePos.v + kBoxSize)) {

// Convert the image point to a local point.
 Point theLocalPos;
 ImageToLocalPoint(theImagePos, theLocalPos);

// Now we obtain the standard Gray pattern from QuickDraw
Pattern thePattern.
UQDGlobals::GetGrayPat (&thePattern);

// Now we can use QuickDraw to draw it.
 ::OffsetRect (&theBox, theLocalPos.h, theLocalPos.v);

::FillRect(&theBox, &thePattern);
}

Save your work and close the file.

8. Register the new class.

CViewApp() CViewApp.cp

You must register any custom PPob class. The application
constructor already registers one custom class, the CViewInfoPane.
PPB–192 The PowerPlant Book

Views
Implementing a Custom View
We give you that class because it isn’t directly related to views, and
it does a few things you haven’t learned about yet (like installing
itself as a periodical task).

However, you must register the CBigView class you created. Enter
the new code after the existing call to RegisterClass_(). The
required header files are added for you.

//Register custom classes
RegisterClass_(CViewInfoPane);
RegisterClass_(CDemoTable);
RegisterClass_(CBigView);

9. Build and run the application.

Make the project and run it. When you do, a window should appear
containing all the views. See Figure 7.13. Play with the window and
watch what happens.

Scroll each of the views, and watch what happens. Drag the thumb
in the LScroller and the LActiveScroller views, and observe the
difference in behavior. Notice how easy it is to implement scrolling.
None of the code you wrote had anything to do with scrolling in
either type of scroller. It is a gift from PowerPlant.

Observe the LTable view. The numbers you see are the default
behavior of the LTable class. In a real application you would replace
that behavior to draw your own data of whatever type. The default
LTable is not a commander, so it does not receive keystrokes.
Typing an arrow key does not modify the selection. LTable also
does not support multiple selection. New table classes are planned
for PowerPlant that will implement some of these features.

The LTextEditView field is fully functional. LTextEditView
supports all of the more advanced features you like to see in a text
field, such as automatic scrolling.

Best of all, take a good look at CBigView. After all, you wrote the
code for this one. Scroll the view. Observe the vertical coordinate
lines as you do. Keep on going, with two million pixels you can go a
long way. Use the thumb and drag to somewhere near the middle.
The grey box is at the halfway point. When you created the view in
Constructor, you set the image to be two million pixels high. Scroll
The PowerPlant Book PPB–193

Views
Implementing a Custom View
until you reach the million-pixel coordinate to find the grey box.
Not bad!

To observe the effect of “Reconcile Overhang,” scroll the big view
all the way down and to the right. Now resize the window larger.
Observe what happens to the view in CBigView. The two-million
pixel mark remains at the bottom of the scrolling view.

As you move the cursor in CBigView, observe the contents of
CViewInfoPane. As long as the cursor is within CBigView, it
displays the coordinate of the cursor in all four coordinate systems:
global, port, local, and image. Observe the global and port
coordinates. Move the window and look again, to see how they vary
relative to each other. With CBigView scrolled fully up and to the
left, observe that local and image coordinates are the same. Scroll
down until they no longer match. When does that happen? Locate
the grey box you drew, and put the cursor at the very top left corner
of the box. What are the image coordinates?

When you are through observing, quit the application.

If you’d like to explore further, feel free to do so. Create new and
different views. Change the values of the existing views in
Constructor. Draw new items in the CBigView at various locations
and practice coordinate conversions. Create your own views, with
scrolling views inside. Experiment with LActiveScroller views and
plain LScroller views.

You may want to explore CViewInfoPane as it uses a periodical to
work its magic. We’ll discuss periodicals in “Periodicals.” If you
examine the DrawSelf() function for this pane, all it does is frame
the pane. Where does all that data come from? The SpendTime()
function draws it every time there is an idle event. It uses a utility
class that is not officially part of PowerPlant, UDrawTypes. If you
go exploring in here, check out ShowViewPoints() for some
classic PowerPlant coordinate conversion. You should have a good
time.

Congratulations! You have implemented several different kinds of
standard PowerPlant views, as well as a completely new custom
view with an image two million pixels high. You’re making great
progress.
PPB–194 The PowerPlant Book

Views
Implementing a Custom View
There’s only one more fundamental visual building block in
PowerPlant, the control. And that’s what we talk about next.
The PowerPlant Book PPB–195

Views
Implementing a Custom View
PPB–196 The PowerPlant Book

8
Controls and Messaging

This is the third and last chapter in the Basic Building Blocks section
of the manual. In the previous two chapters we discussed panes and
views. In this chapter we talk about the third and final group of
pane classes, LControl and its descendants.

The principal topics in this chapter are:

• What Is a Control—including the different kinds of controls in
PowerPlant.

• Control Characteristics—a detailed look at the things that make
a control a control, including broadcasting messages.

• Working With Controls—how to make and use controls, and
how to send and receive messages.

• Specific Control Classes—details on all the control classes.

After we complete this discussion, you’ll create and manipulate real
controls in this chapter’s coding exercise.

What Is a Control
From the point of view of the Mac OS, a control is a visual interface
device with which the user controls the machine. Radio buttons,
check boxes, popup menus, and so forth, are all controls.

From the PowerPlant point of view, a control is an object of any
class that inherits from the LControl class. In the control classes,
PowerPlant provides all of the standard controls you find in the
Mac OS, and a few others as well.

Figure 8.1 shows the class hierarchy for the PowerPlant control
classes.
The PowerPlant Book PPB–197

Controls and Messaging
What Is a Control
Figure 8.1 Control class hierarchy

Notice that the LControl class inherits from LBroadcaster. This is the
most significant difference between a control and any other kind of
pane. All classes that descend from LControl are broadcasters—they
can send messages.

TIP Remember, for detailed information on any PowerPlant class,
including a list of its ancestors, its member functions, and data
members, you should refer to the PowerPlant Reference.

PowerPlant provides several extremely useful buttons: a plain
button, a button that uses color icons, a text button, and a toggle
button. We’ll explain each of these particular button classes in
“Specific Control Classes.”

PowerPlant provides four classes that implement standard control
items in the Mac OS: the regular push button, a check box, a popup
PPB–198 The PowerPlant Book

Controls and Messaging
Control Characteristics
menu, and a radio button. All of these classes descend from
LStdControl, which encapsulates standard, Mac OS control item
behavior.

Finally, Figure 8.1 includes a related class that does not descend
from LControl, the LRadioGroup class. LRadioGroup manages a
group of mutually exclusive buttons, such as radio buttons, where
one and only one button must be on at any given moment.

You may have noticed that LScroller and scroll bars are nowhere to
be found in the LControl hierarchy. What gives?

Keep in mind that the LScroller class is not a control class. LScroller
is a descendant of LView, and represents a scrolling view area. The
LScroller class may contain two control objects—the two scroll bars.
However, LScroller is not itself a control. The
LScroller::MakeScrollBars() function creates these
standard controls on the fly.

Although not obvious, scroll bars are included in the LControl
hierarchy. Scroll bars are LStdControl objects. The LStdControl class
(from which other standard Mac OS controls inherit), completely
describes the behavior of a scroll bar.

Now that you know what the various kinds of controls are, let’s talk
about what makes these particular panes so useful.

See also “Managing Scrolling” for more on LScroller.

Control Characteristics
Remember that all controls are also panes. Therefore, everything we
said in Chapter 6, “Panes” applies to controls as well. They have an
ID number, a frame, frame binding, contents, state, and mouse
information. All of the data members and member functions
discussed in that chapter apply equally to controls. Controls also
use the value and descriptor characteristics of the LPane class.

In this section we discuss the additional features of controls that
make them different from panes, and how controls use the value
and descriptor.

The topics covered are:
The PowerPlant Book PPB–199

Controls and Messaging
Control Values
• Control Values—a control’s values, what they are and what they
mean.

• Control Descriptor—how some controls use the descriptor
characteristic of a pane.

• The Hot Spot—what it is, and how PowerPlant uses it.

• Broadcasting and Listening—how a control sends messages.

Control Values

A control uses the value characteristic of its pane nature to
represent its current condition. For example, a radio button’s value
may be zero if it is off, or one if it is on. A scroll bar control has a
range of possible values. Because the value may be a number in a
range of values, each control also has a minimum and maximum
value.

There is one more value of significance, the message. Because each
control is a broadcaster, it has the ability to broadcast a message.
LControl provides storage for the message to be broadcast (typically
when the control is clicked). The message value is stored in a data
member named mValueMessage. We’ll talk about messaging in
detail in “Broadcasting and Listening.”

Table 8.1 lists the value-related data members and their purpose.

Table 8.1 Control values

NOTE Do not confuse the mValue and the mValueMessage fields.
Although similarly named, they are used for very different purposes.
The mValue field is the current value of the control. The
mValueMessage field is a number that is broadcast at appropriate

Type Data Member Purpose

SInt32 mValue current value for control

SInt32 mMinValue minimum control value

SInt32 mMaxValue maximum control value

Message
T

mValueMessag
e

message to be sent
PPB–200 The PowerPlant Book

Controls and Messaging
Control Descriptor
moments, typically when a control is clicked. We will call this the
message.

See also “Value and descriptor.”

Control Descriptor

Some controls have titles, in which case the title is stored as that
control’s descriptor. LControl itself does not provide direct support
for descriptors. That is left to the individual control classes that need
to use the descriptor.

The PowerPlant classes that have text titles are LTextButton, and
LStdControl (and its descendants). LTextButton provides a data
member to store the title, named mText. The LStdControl classes
store the title in the Mac OS control record.

See also “Value and descriptor.”

The Hot Spot

A control’s hot spot is the place where action happens when the
user clicks. For many controls, the hot spot is the entire frame of the
control. The various kinds of buttons are good examples of this type
of control. No matter where in the button you click, you alter the
button’s state.

Other controls may have different parts that respond differently,
and thus have a variety of hot spots. A scroll bar is a perfect
example of a control with multiple hot spots. A scroll bar has two
small arrows for scrolling line-by-line in opposite directions, a bar
for scrolling page-by-page in opposite directions, and a movable
thumb for setting the scroll position to some arbitrary location. A
click in any of these five locations results in different behavior.

The good news is that, for all the PowerPlant classes, you don’t have
to worry about the hot spot. PowerPlant takes care of all the
housekeeping details. However, the LControl class does provide a
series of routines for managing the hot spot. We’ll discuss those in
“Managing the hot spot.”
The PowerPlant Book PPB–201

Controls and Messaging
Broadcasting and Listening
Broadcasting and Listening

As we have already mentioned, the principal distinguishing
characteristic of a control is that it is a broadcaster. What does that
mean? On the code level, it means that LControl inherits from
LBroadcaster. LBroadcaster is one of two messaging classes in
PowerPlant. The other is its converse companion, LListener.
LBroadcaster is a mix-in class used to add messaging capabilities to
an object. LListener is a mix-in class used to allow objects to listen
for messages from any arbitrary broadcaster.

Being a broadcaster, a control has the ability to broadcast a message.
Each broadcaster (in this case each control) has a list of listeners, and
the ability to modify the list on demand. When it broadcasts a
message, the control sends the message to every one of its listeners.

In PowerPlant, a message has two components. One is a 32-bit
integer of type MessageT. The other is a pointer to some data. For
example, in a typical message from a control, the control broadcasts
its message (the mValueMessage field), and a pointer to its current
value (the mValue field). In this way any object listening to the
message knows the current value of the control, and the nature of
the message. Therefore the listener can respond appropriately.

In the regular PowerPlant classes, a control typically sends a
message when it is clicked, or when its value changes. In your own
control classes derived from the LControl hierarchy, you may send
a message at any appropriate moment. We’ll talk about how to send
messages in “Broadcasting.”

NOTE Although mValueMessage is typed as a MessageT data type, it is
very common to have a message sent that is typed as a
CommandT—a command that you want to be obeyed when the
message arrives at its destination. You’ll encounter commands in
Chapter 10.

In summary, the features that differentiate a control from other
types of panes are:

• The use of additional values.

• The use of the descriptor.
PPB–202 The PowerPlant Book

Controls and Messaging
Working With Controls
• The hot spot.

• The ability to broadcast a message.

Now that you have a solid grasp of what makes a control a control,
let’s talk about how to use controls in PowerPlant.

Working With Controls
LControl is a fairly straightforward class in PowerPlant. Because a
control is also a pane, you have already mastered most of the
difficult concepts. In this section we talk about:

• Creating a Control—using Constructor, and constructor
functions for control classes.

• Drawing a Control—drawing and updating controls.

• Managing Control Characteristics—managing the features of a
control such as the message or the hot spot.

Creating a Control

You can create a control using Constructor, or on the fly in your
code. We talk about each method. Then we discuss what you do
when you derive your own class from LControl or its descendants.

Using Constructor

Creating a control object in Constructor is simple. While in
Constructor, you drag a control object from the Catalog window
into a containing view. Then you set the characteristics for that
object, as shown in Figure 8.2.
The PowerPlant Book PPB–203

Controls and Messaging
Creating a Control
Figure 8.2 Creating a control in Constructor

Note that a control has all the same information as a pane, including
location, size, pane ID, class ID, binding, and state information.
Remember, when you derive your own classes you must change the
class ID to your own unique value and register the class with
PowerPlant before creating any objects of that class.

Figure 8.2 is the Property Inspector window for an LControl object.
You would typically use one of the specific controls such as LButton
or LStdRadioButton. Each control object has its own properties.
We’ll discuss the individual controls in “Specific Control Classes.”
PPB–204 The PowerPlant Book

Controls and Messaging
Creating a Control
Remember, the general process for creating any control object with
Constructor is: drag the item into the view, then set its
characteristics.

See also “Register PowerPlant Classes.”

Creating a control on the fly

The typical approach used when creating a control object on the fly
is to define an SPaneInfo structure to describe the pane-related
features. You then call the appropriate constructor with the
SPaneInfo and additional parameters specific to the type of
control. The LScroller::MakeScrollBars() function is a good
example of creating a control object on the fly.

Each control class has specific constructors of course. Refer to the
PowerPlant Reference for details on the various constructors and the
parameters you must provide to successfully create a control object
on the fly.

After you have created a control and installed it in a view, you
should call FinishCreate(). This function ensures that the
pane’s state (visible/invisible, active/inactive, enabled/disabled)
matches its superview. It also calls FinishCreateSelf(). The
FinishCreateSelf() function gives you the opportunity to
provide “finishing touches” when creating a pane or view, because
there may be times when you can’t fully initialize a pane in its
constructor.

If you are creating control objects on the fly, it is your responsibility
to maintain the correct visual hierarchy. You must install your
control in a view. If the control you are creating is or derives from
LStdControl, there is one additional requirement. The current port
must be the window into which you are installing the view. To
ensure that it is, you can use code similar to that in Listing 8.1.

Listing 8.1 Establishing the port for an LStdControl
// install myControl into myView
myView->EstablishPort();
myControl->PutInside(myView);

See also “Creating a pane on the fly” for more on the SPaneInfo
structure.
The PowerPlant Book PPB–205

Controls and Messaging
Creating a Control
Deriving your own controls

When you derive a class from LControl or one of its descendants,
you typically define a destructor and several constructors: a default
constructor, a constructor to build the control from an SPaneInfo
structure and other parameters, a constructor to build the control
from a stream, and a copy constructor. For more on stream
constructors, see “Stream constructor.”

PowerPlant provides most of the controls you’ll ever need in an
application for the Mac OS. If you use custom controls, you’ll have
to derive classes to describe their behavior properly.

However, the most typical reason you would derive your own
control class is because you want a control to listen to a message
from some other control. For example, you may have a check box
that, when turned on by the user, causes other controls to become
enabled.

There are a couple of strategies you can use to accomplish this goal.
You may have the view that contains the check box listen to a
message, and then enable the necessary controls. A more direct
approach (and one that doesn’t require the view to know about its
contents) is to make the dependent controls listeners to the check
box. When the check box broadcasts the appropriate message, the
dependent controls can enable themselves.

In order to make a control a listener, you must derive a class from
some PowerPlant class in the LControl hierarchy, and mix in the
LListener base class. We’ll talk about how to use a listener in “Being
a Good Listener.”

When you derive a new control class, you may override whatever
functions are necessary. The functions you are likely to override
include:

Table 8.2 Commonly overridden control functions

Function Purpose

ClickSelf() respond to a mouse click

DrawSelf() draw the pane contents

PointIsInFrame() determine if a click is in a hot spot
PPB–206 The PowerPlant Book

Controls and Messaging
Drawing a Control
The HotSpotAction() and HotSpotResult() functions are
empty in LControl, but defined in subclasses of LControl. You may
also need to override the value and descriptor accessors if your
control class uses those features in non-standard ways.

See also “Creating a control on the fly” for more on the
SPaneInfo structure.

Drawing a Control

Controls are just another form of pane, so drawing works the same
way as it does for panes. In most cases, the default behavior
provided in PowerPlant will suffice for your needs. Draw()
performs housekeeping details and calls the control’s DrawSelf()
function.

You may override the DrawSelf() function if necessary to do
drawing specific for your own control classes. For example, the
LCicnButton class uses the Mac Toolbox call PlotCIcon() to draw
itself.

Managing Control Characteristics

In this section we talk about the control-related functions you use to
manage values, the descriptor, and the hot spot.

Managing control values

Control objects have accessor functions to manipulate the contents
of the various values in a control. Table 8.3 lists the functions.

TrackHotSpot() track the mouse when clicked in a
hot spot

HotSpotAction() act while the mouse remains
down in the hot spot

HotSpotResult() act when the mouse button is
released in the hot spot

Function Purpose
The PowerPlant Book PPB–207

Controls and Messaging
Managing Control Characteristics
Table 8.3 Control value management functions

Managing the control descriptor

For those control classes that use the descriptor feature, you have
the same accessors available as for any pane. Predictably, they are
GetDescriptor() and SetDescriptor().

Managing the hot spot

This may be the trickiest part of managing a control. Happily, if you
stick with the standard PowerPlant classes, you can forget all about
it. If, however, you want to create custom controls, you should be
aware of the control functions that relate to hot spots. Table 8.4 lists
the functions.

Table 8.4 Hot spot management functions

Function Purpose

GetValue() return the current value

SetValue() set the current value

IncrementValue() change the current value by
the amount specified (could
be negative)

GetMinValue() return the minimum value

SetMinValue() set the minimum value

GetMaxValue() return the maximum value

SetMaxValue() set the maximum value

GetValueMessage(
)

return the message

SetValueMessage(
)

set the message

Function Purpose

FindHotSpot() determine the number of the hot spot clicked

PointInHotSpot() determine if a point is in a given hot spot

TrackHotSpot() perform mouse tracking in a hot spot
PPB–208 The PowerPlant Book

Controls and Messaging
Broadcasting
Examine the PowerPlant classes to see how they implement these
functions. For example, the PointInHotSpot() routine typically
calls PointIsInFrame() to do the real work, so consider that
routine as well when implementing custom control behavior.

Broadcasting

In this section and the next section we discuss the PowerPlant
messaging system of broadcasters and listeners. In this section we
accomplish two goals. We talk about broadcasting in general, and
how control objects broadcast.

LBroadcaster

LBroadcaster is a simple class. It has only a few functions, and they
are easily understood. Table 8.5 lists all the member functions
except constructors and the destructor.

Table 8.5 Some LBroadcaster member functions

That’s all there is to LBroadcaster. However, hidden inside this
simplicity is great power. The basic operations are simple. You can

HotSpotAction() act while mouse is down in a hot spot

HotSpotResult() act after mouse is released in a hot spot

ClickSelf() what to do in response to a click

SimulateHotSpotClick() make the control behave as if a hot spot was clicked,
typically for key equivalents

Function Purpose

Function Purpose

AddListener() add a new listener

RemoveListener() remove a listener

StartBroadcasting() enable broadcasting

StopBroadcasting() disable broadcasting

IsBroadcasting() return current broadcasting state

BroadcastMessage() send a message to each listener
The PowerPlant Book PPB–209

Controls and Messaging
Broadcasting
add or remove listeners, start or stop broadcasting, and broadcast a
message.

Of course, any broadcast implies that someone is listening at the
other end. You must explicitly connect listeners to broadcasters.

Linking broadcasters to listeners

Whenever you have an individual listener that you want to connect
to a broadcaster, you simply call the broadcaster’s AddListener()
function.

This can be a trifle tedious when you have a single listener that
listens to several control items. For example, a typical dialog box
(LDialogBox inherits from LListener) may contain many control
items to which it listens.

PowerPlant has a mechanism you can use to connect a listener to a
set of controls, UReanimator::LinkListenerToControls().

You pass three parameters to this function. The first is a pointer to
the listener object you want to attach to the controls. The second is a
pointer to the view object that contains all the controls. (All controls
must be in a single visual hierarchy). Finally, you pass the resource
ID number of a special kind of PowerPlant resource, the RidL
resource.

RidL stands for Resource ID List. A RidL resource is a list of one or
more LControl or LControl inherited classes pane IDs.

Constructor creates a RidL resource automatically for every
window that contains controls. The ID number of the RidL matches
the ID number of the corresponding PPob resource created for the
window. The RidL resource lists every control object in the window
with a non-zero pane ID.

WARNING! If you use Constructor to edit a window or view that has no controls,
Constructor deletes any RidL with the matching ID. If you edit a
window with controls, Constructor replaces any existing RidL with
the default list of all controls in the window.
PPB–210 The PowerPlant Book

Controls and Messaging
Broadcasting
You cannot see or edit the RidL in Constructor. If you wish to make
a custom RidL resource, or edit an existing resource, you must use
ResEdit or Resorcerer. You can use custom RidL resources to link a
listener to an arbitrary set of controls, as long as all controls are in a
single view hierarchy.

So, you have two methods of linking a listener to a set of control
objects. You can use AddListener() for each control. Or you can
use LinkListenerToControls() to link a listener to multiple
controls in a single view hierarchy.

What about the converse situation, where you want to add a series
of listeners to a single control? There is no batch method for
accomplishing this task. You call AddListener() separately for
each listener. However, a control with multiple listeners is an
uncommon situation. Most broadcasters have very few listeners.

See also “RidL Resource” for more on the RidL resource.

Broadcasting a message

You can turn a broadcaster on or off using the LBroadcaster
functions StartBroadcasting() and StopBroadcasting().
You inquire about the state with IsBroadcasting(). If
broadcasting is off, calling BroadcastMessage() has no effect.

Assuming that broadcasting is on, when you want the broadcaster
to send a message you call BroadcastMessage(). You should
never need to override this function. BroadcastMessage() walks
through the broadcaster’s list of listeners, and calls each listener’s
ListenToMessage() function. The broadcaster sends two
parameters: a 32-bit number of type MessageT, and a void pointer.

Typically the first parameter is a value defined either by you or
PowerPlant that describes the nature of the message, or the nature
of the broadcaster. For example, PowerPlant defines the value
msg_ControlClicked and sends that message when certain
controls are clicked. You can send constants of type CommandT as
well as MessageT, so you can broadcast commands directly to
listeners.

The second parameter is the void pointer. It may be nil, or point to
data or an object. You are free to pass whatever associated
The PowerPlant Book PPB–211

Controls and Messaging
Being a Good Listener
information is necessary for the listener to appropriately respond to
your message.

See also the topic PP_Messages.h in the PowerPlant Reference
for a list of defined commands and messages.

How controls broadcast a message

Controls have a separate broadcasting function that goes by the
name LControl::BroadcastValueMessage(). Although
related to the messaging system, this is not inherited from
LBroadcaster. This is a function unique to controls.

BroadcastValueMessage() is a wrapper function for
LBroadcaster::BroadcastMessage(). The typical control
sends two values to its listeners. The first is the control’s
mValueMessage data member (the message), which contains a
value you define. The second parameter is the current value of the
control—the mValue data member. The
BroadcastValueMessage() simply calls
BroadcastMessage() with these parameters.

However, there is nothing in this arrangement that prevents a
control from calling BroadcastMessage() directly. Several
PowerPlant control classes do just that. For example, the
LStdRadioButton::SetValue() function calls
BroadcastMessage() to pass the msg_ControlClicked and a
pointer to the radio button.

Clearly, then, the PowerPlant messaging system is extremely
powerful. You can modify the listener list at any time, send any
message you want, and send the listener a pointer to any data.
However, for all this to work someone must listen for and respond
to the messages.

Being a Good Listener

Although PowerPlant’s control classes do not inherit from
LListener, this is a good place to discuss listeners in general. For one
thing, listening is the other half of broadcasting. You can’t have one
without the other.
PPB–212 The PowerPlant Book

Controls and Messaging
Being a Good Listener
Secondly, it is a fairly common practice to derive your own control
classes and have them inherit from LListener. Such a control is both
a broadcaster and a listener.

LListener

The LListener class, like LBroadcaster, is a mix-in class. Use it to add
listening capabilities to an object. Again like LBroadcaster, LListener
is a very simple class. Table 8.6 lists the important functions of a
listener.

Table 8.6 Some LListener member functions

LListener is an abstract class. You cannot create an LListener
instance. You must inherit from it and override the
ListenToMessage() function.

Linking listeners to broadcasters

All broadcaster-listener links should be made through the
broadcaster, not the listener. Use
LBroadcaster::AddListener() or
UReanimator::LinkListenerToControls(), as discussed in
“Linking broadcasters to listeners.”

You may have noticed that Table 8.6 does not list any functions that
manage the link between a listener and a given broadcaster. Such
functions do exist, but they are private member functions that you
should never call directly.

Listening to a message

The ListenToMessage() function is the important part of any
listener, and the only function you are likely to override. This
function is typically called by broadcasters, but you can call

Function Purpose

StartListening() start listening to broadcasters

StopListening() stop listening to broadcasters

IsListening() returns listening state

ListenToMessage() respond to a message
The PowerPlant Book PPB–213

Controls and Messaging
Specific Control Classes
ListenToMessage() directly at any time if you want a listener to
respond to some message. This will ignore the listener’s on/off state
however.

The typical ListenToMessage() function identifies the nature of
a message and then responds accordingly. If the listener may
receive a variety of messages, you typically see a switch statement
or some other flow-control mechanism that branches to the code
designed to respond to each message.
LRadioGroup::ListenToMessage() is a good example. Listing
8.2 shows how that function controls the flow based on the received
message.

Listing 8.2 Excerpt from LRadioGroup::ListenToMessage()
switch (inMessage) {

 case msg_BroadcasterDied:
 …
 break;

 case msg_ControlClicked:
 …
 break;
}

When you declare a class that inherits from LListener, you must
define the ListenToMessage() function. You decide what
messages the listener should respond to, and write the code to
handle the message. If you don’t want to handle a message, you can
just ignore it. There is nothing in PowerPlant that says you must
respond to every message received.

Specific Control Classes
Let’s close our discussion of control objects with a quick look at the
various control classes and at the LRadioGroup class. The specific
classes we discuss are:

• LButton

• LCicnButton

• LTextButton
PPB–214 The PowerPlant Book

Controls and Messaging
Specific Control Classes
• LToggleButton

• LStdControl

• LStdButton

• LStdCheckBox

• LStdPopupMenu

• LStdRadioButton

• LRadioGroup

Note that the LStdControl classes use the Mac OS Control Manager
to accomplish much of their work. The other control classes do not.

LButton

LButton is a button that uses a graphical element as the visual
representation of the button. The graphic is stored as a resource. The
resource type may be one of these three options:

• ICN#—icon family

• ICON—black and white icon

• PICT—a picture

When you create the object, you provide two resource ID numbers.
One is for the graphical element in its “normal” or non-pushed
state. The other is for the graphical element you want to use when
the user clicks or “pushes” the button.

If you use the ICN# resource as the basis for your graphical button,
the Mac OS automatically picks the icon family member that best
matches the display settings of the monitor on which it appears.

Although typical buttons are fairly small, and both ICON and ICN#
resources describe images with specific dimensions, you can use a
large PICT as a button.

Figure 8.3 displays the LButton-specific options you encounter in
Constructor.
The PowerPlant Book PPB–215

Controls and Messaging
Specific Control Classes
Figure 8.3 LButton properties in Constructor

You also set the usual pane and control characteristics such as the
message, minimum, maximum, and initial values, and so forth.

When the user releases the mouse within the button, the button
sends a message to its listeners. The value message depends on your
application.

LCicnButton

This class is effectively identical to LButton, with one exception. It
uses the Mac OS ‘cicn’ resource format as the graphical element. As
with the LButton class, you provide resource ID numbers for the
button in both normal and pushed state.

LToggleButton

The LToggleButton class is similar to LButton. It represents a
graphical button using ICON, ICN#, or PICT graphics. Rather than
being limited to “on” and “off” graphics, you may specify five
separate resource ID numbers. Figure 8.4 illustrates the options.
PPB–216 The PowerPlant Book

Controls and Messaging
Specific Control Classes
Figure 8.4 LToggleButton properties in Constructor

In addition to the regular on and off graphics, you have graphics for
a click on a button that is already on, a click on a button that is
already off, and a transition graphic that displays when the button
is switching states.

You can use an LToggleButton to create some simple but intriguing
animations that display when the user clicks a button. For example,
you could create a drop-down flag button, or a door that opens and
closes.

LTextButton

LTextButton describes a button with textual rather than graphical
content. There is no standard Mac OS control item that matches
LTextButton’s behavior. However, you’ve seen similar controls in
action. Figure 8.5 shows how the Finder uses a similar type of
control as column titles in its list views.
The PowerPlant Book PPB–217

Controls and Messaging
Specific Control Classes
Figure 8.5 Text buttons in action

In Figure 8.5, the column titles are in fact text buttons that control
sort order for the items in the window. The current sort order is by
name—the “on” button appears in underline style. The user is
clicking on the Size button and is about to change the sort order.

Figure 8.6 shows the specific LTextButton characteristics you set
using Constructor.

Figure 8.6 LTextButton properties in Constructor
PPB–218 The PowerPlant Book

Controls and Messaging
Specific Control Classes
Like all PowerPlant text-related objects, you specify the style of text
in a text traits resource.

Clicking an LTextButton toggles the button’s state between on and
off, like a radio button. The different state is represented visually by
a change in the text style. The button style may become underline,
bold, italic, outline, shadow, condensed, extended, or any
combination of those style options.

Like other buttons, when the user clicks on an LTextButton the
button sends a message to its listeners. In a typical scenario, you
want some action to occur immediately when the user clicks a text
button—for example, resorting the contents of a window. In that
case, you should specify a value message that uniquely identifies
the button to any listener. That way you’ll know what button was
clicked.

A series of LTextButton objects typically represents a set of
mutually exclusive options. If that’s how you use text buttons, then
you should use the LRadioGroup class to ensure that one and only
one button in the group of buttons is on.

See also “LRadioGroup.”

LStdControl

This class encapsulates the standard behavior of a Mac OS control
item. The specific design of this class supports scroll bar controls
and controls that use custom control definitions (CDEFs). This class
also forms the basis for the standard button, check box, popup
menu, and radio button classes.

NOTE The LStdControl.cp file defines the functions for all the standard
controls—radio buttons, check boxes, etc.

Figure 8.7 illustrates the characteristics you set for a standard
control using Constructor.
The PowerPlant Book PPB–219

Controls and Messaging
Specific Control Classes
Figure 8.7 LStdControl properties in Constructor

If you create a custom control with its own control definition
function (CDEF), you specify the CDEF in the Control Kind field.

LStdButton

This class is PowerPlant’s implementation of standard Mac OS push
button behavior. You specify the text to display, a text traits
resource ID, and the message to send when clicked.

Figure 8.8 LStdButton properties in Constructor
PPB–220 The PowerPlant Book

Controls and Messaging
Specific Control Classes
You do not need to specify a minimum or maximum value, because
buttons have no real value. They simply highlight and send a
message when clicked.

LStdButton does not draw the default-button outline. That detail is
typically handled transparently for you by PowerPlant. View
classes that have a default button—such as LDialogBox—let you
specify a default button. PowerPlant uses the LDefaultOutline class
to manage the process.

See also “LDefaultOutline.”

LStdCheckBox

This class is PowerPlant’s implementation of a standard check box.
It is a very simple class. The only function of LStdControl that it
overrides is HotSpotResult(). If the user clicks this control, the
control’s value toggles between zero and one. Figure 8.9 displays
the characteristics of an LStdCheckBox.

Figure 8.9 LStdCheckBox properties in Constructor

LStdPopupMenu

This class is PowerPlant’s implementation of the standard Mac OS
popup menu. Once again, the PowerPlant wrapper hides virtually
The PowerPlant Book PPB–221

Controls and Messaging
Specific Control Classes
every detail of the Mac OS from your view, freeing you to
concentrate on real coding problems.

Figure 8.10 shows you the many characteristics specific to a popup
menu that you can set using Constructor.

Figure 8.10 LStdPopupMenu properties in Constructor

Like many controls, you specify a title. The text traits resource ID
applies to the entire menu—the items in the menu as well as the
title. To specify unique style features for the title, use the check
boxes in the Title Style group.

The title width is subtracted from the full width of the frame. If the
Fixed Width option is on, menu items display in the remaining
space. If it is off, the width of the menu is adjusted to allow the
longest item to fit (regardless of the frame you set).

Title Placement controls the justification of the title text within the
title space. The menu title is always to the left of the menu items.
PPB–222 The PowerPlant Book

Controls and Messaging
Specific Control Classes
Within its allotted space the title may be flush left, centered, or flush
right.

You specify the initial menu item that appears when the popup is
displayed.

The Value Message typically identifies the popup menu itself. You
might use the pane ID as the message, for example. When the user
chooses an item in the menu, the menu broadcasts a message
consisting of the value message (whatever you set), and the popup
menu’s current value. The current value is the item currently
displayed, so you know what item the user chose.

You specify the resource ID of a MENU resource to set the contents
of the menu. If you want the menu to be a list of resources, you click
the Use Resource Menu check box and specify the resource type in
the Resource List Type field. You might specify ‘snd ’ for a menu of
available sound resources, FONT for a font menu, and so forth.
PowerPlant builds the menu contents for you automatically.

WARNING! If you modify the number of items in a popup menu at runtime, the
LStdPopupMenu object does not automatically adjust its max
value to represent the new number of items. You must do that
manually.

If you use the same menu in more than one place simultaneously
and change the menu, the change affects all LStdPopupMenu
objects that share the same MENU resource. Remember to
update all objects as necessary.

LStdRadioButton

This class is PowerPlant’s implementation of the standard Mac OS
radio button. Like the LStdCheckBox class, this is a very simple
extension of the LStdControl class.

A click on a radio button sets its value to one. The button then
broadcasts a message that it has been clicked. The broadcast
message also includes a pointer to the clicked button.
The PowerPlant Book PPB–223

Controls and Messaging
Specific Control Classes
Figure 8.11 LStdRadioButton properties in Constructor

You specify a title, text traits resource ID, the value message, and an
initial value.

The default behavior for LStdRadioButton does not use the value
message. If you subclass from LStdRadioButton and use the value
message, make sure you set its value appropriately.

In its default behavior, LStdRadioButton calls
BroadcastMessage() directly with two parameters,
msg_ControlClicked and a pointer to the radio button object. A
listener can use the pointer to find out anything it needs to know
about the clicked button.

If you want a listener to respond to the button immediately, you can
use the LStdRadioButton pointer you receive in the message to get
the pane ID or any other information you need, and then act
accordingly.

You typically use radio buttons to describe a set of mutually
exclusive options. Typically you set one button to have a value of
On. If all the buttons are off in a group, PowerPlant will turn on the
first button it encounters. If two or more buttons in a group are on,
PowerPlant will turn off all but the last on button.
PPB–224 The PowerPlant Book

Controls and Messaging
Specific Control Classes
The LStdRadioButton class itself has no feature for grouping radio
buttons, or for turning off other radio buttons in a group when a
new button is turned on. That detail is handled by LRadioGroup.

TIP You can use the LRadioGroup class to manage groups of
LTextButtons as well as LStdRadioButtons. A group of either kind of
button represents a mutually exclusive set of options.

LRadioGroup

To create an LRadioGroup in Constructor, you first select a group of
radio buttons. Then you choose Make Radio Group from
Constructor’s Arrange menu.

No visible item appears in the layout window, but you can see the
radio group in the hierarchy window, as shown at the bottom of
Figure 8.12.

Figure 8.12 Radio group in the hierarchy window

Membership in the radio group is based on the pane ID number of
each radio button.
The PowerPlant Book PPB–225

Controls and Messaging
Summary
NOTE The position of the radio group within the hierarchy is not important.
It can come before or after the buttons in the group. However, if you
rearrange the position of a radio button in the object hierarchy, the
radio group will lose track of the button.

LRadioGroup works with LStdRadioButton and LTextButton. To
use another kind of button with LRadioGroup (LToggleButton for
example), override the button’s SetValue() function so that the
button broadcasts the msg_ControlClicked message. Use
LStdRadioButton::SetValue() as an example. If the button
does not broadcast this message, it will not be mutually exclusive.

Summary
Once again, you have just consumed a tremendous amount of
information about PowerPlant. In this chapter you learned all about
control objects and the PowerPlant messaging system.

Controls give the user choices for controlling the behavior of your
application. PowerPlant supports about 10 different kinds of
controls, including standard Mac OS controls and custom controls.

A control is a special kind of pane that is also a broadcaster. A
control uses several additional values to keep track of its status, as
well as the descriptor feature of the pane to manage the control title.
Controls have “hot spots” and respond when the user clicks the hot
spot. In most cases, a control has a single hot spot whose
dimensions are identical to the control frame.

You learned how to create and display a control, how to manage a
control’s various characteristics, and how to respond to a click in a
control.

In response to a click, a control broadcasts a message. You learned
about the features of both LBroadcaster and LListener—what they
do, how they work, and how to link one with the other. You also
learned how controls manage broadcasting.

Finally, you learned about each specific control class. You saw
examples of typical uses, and studied the kinds of features each
class adds to the base control classes in PowerPlant.
PPB–226 The PowerPlant Book

Controls and Messaging
Code Exercise
Now let’s put that knowledge to work and create real controls in
PowerPlant.

Code Exercise
In this exercise you build an application titled “Controls.” A PPob
containing most of the controls is provided for you. You complete
the interface, and then write the code necessary to make the controls
work. This code exercise has three sections in which you implement

• The Interface

• CColorControl

• The Controls Application

The Interface

The final application looks like Figure 8.13, below.

Figure 8.13 The Controls window

When you click on a control, it sends a message to its listeners. This
window displays the message. Several of the controls perform
The PowerPlant Book PPB–227

Controls and Messaging
The Interface
actual functions as well. For example, the button next to the sound
popup menu plays the selected sound. The CColorControl in the
bottom left corner changes colors.

There are thirteen controls in this window. Open the
Controls.ppob file and examine the control characteristics with
Constructor as you read the following descriptions.

None of the controls are bound to the superview—the window. This
window does not resize, so binding is not an issue.

The LStdButton is a standard PowerPlant object. It has a value
message of 1001. It uses no text traits resource, which means it uses
the System font.

The LStdCheckBox is a standard PowerPlant object. It has a value
message of “able”—a text message. It uses text traits resource 130.

The three radio buttons are custom controls. They are standard
radio buttons that are also listeners. They listen to the check box so
they can enable or disable themselves as necessary. They have value
messages of 1003, 1004, and 1005 respectively. Notice that the class
ID is RadB. You have already built a custom pane and view, so you
know the importance of the class ID.

Open the Constructor hierarchy window, and look for an
LRadioGroup object. In fact, you’ll find two. One LRadioGroup is
for objects 3, 4, and 5—these three radio buttons. The other is for
objects 11, 12, and 13. These are the LTextButton objects. We’ll talk
about them in just a bit. The LRadioGroup button makes sure that
one and only one control of its set of controls is on.

The LCicnButton is a regular PowerPlant object. It has a value
message of 1006. It uses two cicn resources, ID number 1000 for its
normal state and ID number 1001 for pushed state. These icons are
provided for you in the application resources.

The LToggleButton is another regular PowerPlant object. It has a
value message of 1007. It uses a series of five PICTs for the button
image, numbered 1000-1004. These PICTs are provided for you in
the application resources.
PPB–228 The PowerPlant Book

Controls and Messaging
The Interface
The LButton and LStdPopupMenu objects are regular PowerPlant
controls. The LButton uses an icon family with resource ID 1000,
provided for you in the application resources. It has a value
message of 1008. The LStdPopupMenu uses MENU ID 1000, and
text traits resource 130. It has a value message of 1009.

The three LTextButton objects are regular PowerPlant controls. The
value messages are 1011-1013 respectively. Each uses text traits
resource 130. There is an LRadioGroup object to control these
buttons.

The CColorControl is a custom control derived from LControl. It
also stores additional data, so it is a “custom type” in Constructor.
You’ll build this object in a little bit. It does not exist in the PPob in
the start code.

Finally, there are 7 LGroupBox objects that we discuss no further,
and two captions. One caption says “Message.” The other caption is
blank. You’ll write code to display the message received by the
listener in this blank caption.

To complete the interface, you

• Modify the LStdPopupMenu

• Create the CColorControl custom type

1. Complete the sound popup menu

If you have not already opened the PPob project file, double-click
the Controls.ppob file in the IDE project window. Constructor
launches and the Constructor project window appears. Double-click
the LWindow view to see its contents, and then double-click the
menu item control. The Property Window for the LStdPopupMenu
object appears. Most of the data has been set for you.
The PowerPlant Book PPB–229

Controls and Messaging
The Interface
Figure 8.14 LStdPopupMenu popup properties

This menu contains a list of sound resources. Check the Resource List
Type box, and enter the name of the type of resource you want to
appear in the menu. In this case, it is “snd ”—with a trailing space.
This is the name of the resource type for sounds.

With that information set, PowerPlant will build the menu for you.
You must still provide a MENU resource, but the MENU resource
should be empty.

Close the Property Inspector window and save your changes.

2. Build the CColorControl object.

The CColorControl object is a custom pane type. It is a control, but it
requires additional data. If you want to be able to set that data in
Constructor in the Property Inspector window, you must create a
CTYP resource for this custom pane.

You must create the CTYP resource, specify class information,
specify the additional data items that appear in the Property
Inspector window for this custom pane, add the object to the
window, and set the object’s characteristics.
PPB–230 The PowerPlant Book

Controls and Messaging
The Interface
a. Create a custom type.

While in the Constructor project window, select the Custom
Pane Types heading, then choose New Resource (command-K)
from the Edit menu. Constructor builds a new, untitled custom
pane type resource (CTYP), as shown in Figure 8.15.

Figure 8.15 Creating a custom type

With the new resource selected as shown, set the resource name
to CColorControl. The ID should remain 128.

b. Edit the class information.

Double click the CColorControl resource in the project window.
The CTYP editor window shown in Figure 8.16 appears.
The PowerPlant Book PPB–231

Controls and Messaging
The Interface
Figure 8.16 The custom type view

Now, double-click the Class to set the new class’s ancestor and
other data. When you do, the window shown in Figure 8.17
appears.

Figure 8.17 The Class editor window

Set the data to match the illustration. Set the name, class ID,
parent class ID, default height and width.

Close the window after you have made the changes.
PPB–232 The PowerPlant Book

Controls and Messaging
The Interface
c. Add data to the custom type.

This control stores a color. To allow yourself to set a color in this
custom class’s Property Inspector window, you add the
necessary data item to the CTYP resource.

With the CTYP editor window active, choose New RGB Color
Item from the Custom Type menu. Then double-click the new
item to set its properties.

Figure 8.18 Setting a new RGB Color properties
‘

Set the title to Color. The title is the label that will appear next to
this item in the Property Inspector window for the custom pane.
You can also pick a default color if you wish.

When you have set the data, close the CTYP editor window.

d. Add the object to the window.

Double-click the PPob resource to open the layout editor. Make
sure you also have the Catalog Window open as well, and
showing the control classes. The CColorControl pane type
should appear in the Catalog window.

Drag a CColorControl object into the layout.

e. Set the object characteristics.

Double-click the new CColorControl object in the layout
window. The Property Inspector window should appear, as
shown in Figure 8.19.
The PowerPlant Book PPB–233

Controls and Messaging
The Interface
Figure 8.19 CColorControl Property Inspector

There is an item for the new data type you entered, the RGB
Color. Set the characteristics of the pane to match the values in
the illustration. Pay particular attention to the class ID and value
message. You can set an initial color by clicking the color box.

Congratulations! You have just created a custom Constructor type.
When you create a CTYP resource, you are really creating a
template that Constructor can use for any number of objects of that
particular class. You can copy and paste CTYP resources from
PPB–234 The PowerPlant Book

Controls and Messaging
CColorControl
project to project. So you can use your custom Constructor types in
any project.

You must still write the code to implement this custom object as
well as the other controls. That’s what you’ll do in the next steps.

CColorControl

In this section you implement the functions for CColorControl. The
header for the CColorControl class is complete. It sets the class ID
and declares the various functions. In the following steps you
implement these functions:

• CColorControl(LStream*)

• SetColor()

• DrawSelf()

• FindHotSpot()

• PointInHotSpot()

• HotSpotAction()

• HotSpotResult()

The remaining constructors and destructor have been provided for
you. There is a class creator function as well. It simply calls the
stream constructor.

This is a long exercise, so don’t forget to save your work often.

3. Implement the stream constructor

CColorControl(LStream*) CColorControl.cp

When you created the custom type, you added some extra data—an
RGBColor. You must read that data out of the stream and initialize
the related data member. The header for this class names the data
member as mColor. We discuss streams in “What Is a Stream.”

The existing code calls the LControl stream constructor.
CColorControl::CColorControl(LStream *inStream)
 : LControl(inStream)
{
 // Initialize the color from the stream.
 inStream->ReadData(&mColor, sizeof(RGBColor));
}

The PowerPlant Book PPB–235

Controls and Messaging
CColorControl
4. Write the SetColor() accessor.

SetColor() CColorControl.cp

This function receives the color as an input parameter. It should do
two things. It should set the mColor data member, and update the
control. You should refresh the control whenever the color changes
to ensure that it reflects the current state of the object.

By the way, the GetColor() accessor is provided for you.
CColorControl::SetColor(const RGBColor &inColor)
{
 mColor = inColor;

 // Refresh control to reflect color change.
 Refresh();
}

5. Draw the control.

DrawSelf() CColorControl.cp

Every pane has a DrawSelf() function. Controls are no exception.
This control draws a black frame, leaves a one-pixel white space,
and then fills the rest of the control with the control’s color. Of
course, you should preserve the color state and set it to known
values before drawing.

CColorControl::DrawSelf()
{
 // Save and normalize the color/pen states.
 StColorPenState savePenState;
 StColorPenState::Normalize();

 // Calculate the frame rect.
 Rect theFrame;
 CalcLocalFrameRect(theFrame);

 // Frame the control.
 ::FrameRect(&theFrame);

 // Draw a white area inner frame.
 RGBColor theWhiteColor = {0xffff,0xffff,0xffff};
 ::RGBForeColor(&theWhiteColor);
 ::InsetRect(&theFrame, 1, 1);
 ::FrameRect(&theFrame);
PPB–236 The PowerPlant Book

Controls and Messaging
CColorControl

 // Fill in rest of control with the color.
 ::RGBForeColor(&mColor);
 ::InsetRect(&theFrame, 1, 1);
 ::PaintRect(&theFrame);
}

6. Identify the hot spot.

FindHotSpot() CColorControl.cp

PowerPlant uses this function to determine which hot spot, if any,
contains the specified point. The CColorControl object has only one
hot spot, the colored area of the control. If the point is inside the hot
spot, return the value 1. Otherwise, return the value zero. The
colored area is inset two pixels from the frame of the control. The
function receives the point in question.

CColorControl::FindHotSpot(Point inPoint)
{
 SInt16 theHotSpot = 0;

 // Calculate the frame rect.
 Rect theFrame;
 CalcLocalFrameRect(theFrame);

 // Inset to get the colored interior region.
 ::InsetRect(&theFrame, 2, 2);

 // Check if the point is in our hot spot.
 if (::PtInRect(inPoint, &theFrame))
 theHotSpot = 1;

 return theHotSpot;
}

7. Determine if a point is in the hot spot.

PointInHotSpot() CColorControl.cp

PowerPlant uses this function to determine if a point is inside a
particular hot spot. The function receives the point in question, and
the number of the hot spot.

The CColorControl object has one hot spot, the colored area of the
control. The colored area is inset two pixels from the frame of the
The PowerPlant Book PPB–237

Controls and Messaging
CColorControl
control. You should return true if the hot spot is number 1, and the
point is inside the control’s hot spot.

CColorControl::PointInHotSpot(Point inPoint,
 SInt16 inHotSpot)
{
 Boolean theResult = false;

 // Calculate the frame rect.
 Rect theFrame;
 CalcLocalFrameRect(theFrame);

 // Inset to get the colored interior region.
 ::InsetRect(&theFrame, 2, 2);

 // Check if the point is in our hot spot.
 if (inHotSpot == 1 && ::PtInRect(inPoint, &theFrame))
 theResult = true;

 return theResult;
}

8. Act while the button is down in the hot spot.

HotSpotAction() CColorControl.cp

PowerPlant calls this routine repeatedly while the mouse button is
down inside a hot spot. The CColorControl object draws a highlight
while the button is in the control, and no highlight while the button
is outside of the control. A more complex control could perform a
more complex action, such as scrolling a view.

This function receives three parameters: the hot spot, and two
Boolean values. If these values are the same, there has been no
change. If they are different, then the mouse has moved either into
or out of the hot spot and you should act accordingly.

Remember, CColorControl only has one hot spot. If you get any hot
spot value besides 1, you should do nothing.

Because you are drawing in the control, you should call
FocusDraw() before drawing to ensure that the drawing
environment is set up properly.

CColorControl::HotSpotAction(SInt16 inHotSpot,
 Boolean inCurrInside,
 Boolean inPrevInside)
PPB–238 The PowerPlant Book

Controls and Messaging
CColorControl
{
 if (inHotSpot == 1
 && inCurrInside != inPrevInside
 && FocusDraw()) {

 // Calculate the frame rect.
 Rect theFrame;
 CalcLocalFrameRect(theFrame);

 // Inset it to account for the frame.
 ::InsetRect(&theFrame, 1, 1);

 // If we're inside, draw the hilight black,
 RGBColor theColor;
 if (inCurrInside) {
 theColor.red = theColor.green = theColor.blue = 0x0000;
 } else { // erase it with white.
 theColor.red = theColor.green = theColor.blue = 0xffff;
 }
 ::RGBForeColor(&theColor);

 // Draw the hilight.
 ::FrameRect(&theFrame);
 }
}

9. Act when the button is released in the hot spot.

HotSpotResult() CColorControl.cp

PowerPlant calls this routine when the mouse button is released
inside a hot spot. The function receives a single parameter, the
number of the hot spot involved.

If the hot spot is number 1, the CColorControl object should
unhighlight the control. You should then display the standard color
selection dialog. Set the new color and broadcast a message to all
listeners that the color has changed.

CColorControl::HotSpotResult(SInt16 inHotSpot)
{
 // Only act if we're in the hot spot.
 if (inHotSpot == 1) {
 // Undo hilighting.
 HotSpotAction(inHotSpot, false, true);
The PowerPlant Book PPB–239

Controls and Messaging
The Controls Application

 // Choose a new color.
 Point thePoint = {-1,-1};
 RGBColor theNewColor;
 if (::GetColor(thePoint, "\pChoose a color:",
 &mColor, &theNewColor)) {

 // Set the new color.
 SetColor(theNewColor);

 // Broadcast the message.
 BroadcastValueMessage();

 }
}

Save your work and close the file.

The BroadcastValueMessage() call is perhaps the single most
important line of code you wrote in this section. This is the call that
tells all the listeners that something happened.

In the remaining steps you hook listeners to controls to make
everything work.

The Controls Application

In the design of this application, there are three levels of objects
with varying degrees of responsibilities. There is the application, the
window, and the controls. You could make either the window or the
application listen to messages.

In this case we use the application as the principal listener.
CControlsApp inherits from both LApplication and LListener.

Listing 8.3 CControlsApp class declaration
class CControlsApp : public LApplication, public LListener {
public:
 CControlsApp();
 virtual ~CControlsApp();

 virtual void ListenToMessage(MessageT inMessage,
 void *ioParam);
PPB–240 The PowerPlant Book

Controls and Messaging
The Controls Application
protected:
 LWindow* MakeControlsWindow();

private:
 LWindow* mWindow;
};

We discuss application objects in detail in the next chapter. Don’t be
alarmed about getting ahead of ourselves. Your work is really with
this particular application’s “listener” nature.

This application object overrides ListenToMessage() inherited
from LListener, has a new function MakeControlsWindow(), and
a new data member that points to the only window.

In the following steps you will:

• Register custom classes

• Link the application to its controls.

• Link the radio buttons to the check box.

• Make the application respond to the controls.

• Make the radio buttons respond to the check box.

10. Add include file for class registration

Top of File CControlsApp.cp

To register any PowerPlant or custom class, you need to include the
header file for that class in your main source file.

// include header for LToggleButton
#include <LToggleButton.h>

// Custom Classes to be registered
#include "CColorControl.h"
#include "CRadioButton.h"

11. Register custom class.

CControlsApp() CControlsApp.cp

This application uses two custom classes, CColorControl and
CRadioButton. In addition, this application uses LToggleButton.
LToggleButton and the two custom classes must all be registered
individually.
The PowerPlant Book PPB–241

Controls and Messaging
The Controls Application
RegisterClass_(LRadioGroup);

// Register additional PowerPlant classes.
RegisterClass_(LToggleButton);

// Register custom classes.
RegisterClass_(CColorControl);
RegisterClass_(CRadioButton);

mWindow = MakeControlsWindow();

The existing code also calls MakeControlsWindow() to build the
window. This is where you begin the real work of adding
functionality to the application.

12. Link the application to all controls.

MakeControlsWindow() CControlsApp.cp

The existing code calls the LWindow class creator function. After
that, you link the application to all controls in the window.

Remember, Constructor creates a RidL resource listing all the
controls in a window. The file ControlsConstants.h declares
rRidL_ControlsWindow to match that resource ID number.

theWindow = LWindow::CreateWindow(rPPob_ControlsWindow, this);

// Link the application (the listener) with the
// controls in the window (the broadcasters).
UReanimator::LinkListenerToControls(this, theWindow,
 rRidL_ControlsWindow);

13. Link the radio buttons to the check box.

MakeControlsWindow() CControlsApp.cp

In the design of the Controls application, the check box enables or
disables the radio buttons. To make that happen, the start code
CRadioButton class inherits from both LStdRadioButton and
LListener. To complete the links, you must make the CRadioButton
objects listen to the check box object.

To do this, get the check box object using FindPaneByID(). Then
find each radio button object in turn using FindPaneByID(). Tell
the check box to add that object as a listener. The constants listed in
the source code are declared in ControlsConstants.h.
PPB–242 The PowerPlant Book

Controls and Messaging
The Controls Application
 UReanimator::LinkListenerToControls(this, theWindow,
 rRidL_ControlsWindow);

 // Get the check box.
 LStdCheckBox *theCheckBox;
 theCheckBox = dynamic_cast<LStdCheckBox *>
 (theWindow->FindPaneByID(kStdCheckbox));

 // Get radios make them listen to check box.
 CRadioButton *theRadio;
 theRadio = dynamic_cast<CRadioButton *>
 (theWindow->FindPaneByID(kStdRadio1));
 theCheckBox->AddListener(theRadio);

 theRadio = dynamic_cast<CRadioButton *>
 (theWindow->FindPaneByID(kStdRadio2));
 theCheckBox->AddListener(theRadio);

 theRadio = dynamic_cast<CRadioButton *>
 (theWindow->FindPaneByID(kStdRadio3));
 theCheckBox->AddListener(theRadio);

theWindow->Show();

WARNING! There is no error control at all here. This code assumes that each of
the calls to FindPaneByID() returns a valid pointer and the
dynamic_cast succeeds. This is not wise. In robust code you
would check the validity of the returned pointer. We’ll discuss
PowerPlant’s debugging features in the next chapter.

The existing code then shows the window.

14. Make the application respond to controls.

ListenToMessage() CControlsApp.cp

As you know, each listener has a single ListenToMessage()
function in which it responds to messages. The CControlsApp
object is no exception. The application object should respond in two
ways.

First, for every message received, display the message in the
message caption. To accomplish this task, get the message caption
by telling the window to FindPaneByID(). The constant for the
The PowerPlant Book PPB–243

Controls and Messaging
The Controls Application
pane ID is kMessagePane. After you have the pointer to the
caption, set the caption’s value, and refresh the caption so the
window redraws. For an LCaption the value is the descriptor.

Second, if the message comes from either the sound button or the
sound popup menu, play a sound. To accomplish this task, identify
the appropriate message. If that message is received, get a pointer to
the popup menu object. Read the value of the popup menu, and
play the corresponding sound.

The solution code does some of the work for you. It converts the
message into a string. The code for playing the sound already exists
as well. You do the work in between. Make sure you use the same
local variable names as the solution code where necessary.

#pragma unused(ioParam)

// set message in message pane
LCaption* theCaption = dynamic_cast<LCaption*>
 (mWindow-> FindPaneByID(kMessagePane));
ThrowIfNil_(theCaption);
theCaption->SetValue(inMessage);
theCaption->Refresh();

switch (inMessage) {
// identify sound messages
 case msg_PlaySoundButton:
 case msg_SoundPopup:
 {
 // Get the popup menu.
 LStdPopupMenu *thePopup;
 thePopup = dynamic_cast<LStdPopupMenu *>
 (mWindow->FindPaneByID(kStdPopupMenu));

 // Get the name of the sound to play.
 Str255 theSoundName;
 ::GetMenuItemText(thePopup->GetMacMenuH(),
 thePopup->GetValue(), theSoundName);

The existing code then gets and plays the sound resource.

Save your work and close the file.
PPB–244 The PowerPlant Book

Controls and Messaging
The Controls Application
15. Make the radio buttons respond to the check box.

ListenToMessage() CRadioButton.cp

The radio buttons listen to any message from the check box. In fact,
the check box sends one message. The ControlConstants.h file
declares msg_EnableDisable to match the “able” message
specified in Constructor.

The radio button receives this message whether the check box is
turning on or off. When the radio button receives this message,
check the state of the radio button. If it is enabled, disable it. If it is
disabled, enable it.

switch (inMessage) { // identify and respond to message
 case msg_EnableDisable:
 if (IsEnabled()) {
 Disable();
 } else {
 Enable();
 }
 break;

Save your work and close the file.

Great news! You have completely implemented a custom control,
linked an application to a set of controls, and linked some controls
to another control. Let’s watch how it all works.

16. Build and run the application.

Make the project and run it. When you do, a window should appear
containing all the views. See Figure 8.13. Play with the controls in
the window and watch what happens.

Click on each control. Watch the message that’s displayed near the
bottom of the window. Feel free to check in Constructor to see how
the messages match the value message. If you’re careful, you’re
going to notice an interesting fact.

The message received when you click on a radio button or a text
button is not the value message! The default behavior for these
controls broadcasts the msg_ControlClicked value, which is 203.
The PowerPlant_Messages.h file declares this constant.

Click the check box and observe the message. The number is the
numerical representation of the “able” message. Notice how the
radio buttons respond to the check box. This is your code at work.
The PowerPlant Book PPB–245

Controls and Messaging
Intermission
Choose a sound from the sound popup menu. The sound should
play. The application hears the message and responds. Click in the
sound button. The sound should play again.

Click the LToggleButton. Observe how the picture in the button
changes. PowerPlant steps through the series of graphics provided
for the button. Observe similar behavior when you click the
LCicnButton. Here you have two states, pushed and not pushed.

Finally, don’t forget the CColorControl. After all the work you did
writing the code for that class, you might as well get some
enjoyment out of it. Play with the control. Click and hold the mouse
button down while moving the mouse in and out of the control.
Highlighting should turn off and on appropriately. Click the
control, and the standard color picker dialog should appear. Pick a
color, and the button should change to reflect your choice.

Notice that the application receives the message from the
CColorControl object. Stop and think about what you’ve got here.
You now have a ready-made PowerPlant class that you can drop
into any PowerPlant project any time you need a control to select a
color. Because it broadcasts a message, any dependent object that
listens to the message can change its color in response. Cool! This
could be really useful.

If you would like to experiment further, here’s a suggestion. Notice
that if you use the sound popup menu and choose the current sound
(that is, you make no change in the menu), the sound does not play.
That’s because the default behavior for the menu does not send a
message unless the popup menu changes. If you wanted to use this
in a real application, you might want to modify that behavior so that
a sound plays when the user chooses the current item in the menu.
You’ll have to subclass LStdPopupMenu to make this happen. If
you’re feeling adventurous, don’t let that stop you. Go for it, and
have a good time.

Intermission
Well done! You have done some serious PowerPlant programming.
You have not only learned all about controls, you have also finished
the Basic Building Blocks section of the manual. It’s time to take a
breather and look at where you’ve been, where you are, and where
you’re going to go in the rest of the manual.
PPB–246 The PowerPlant Book

Controls and Messaging
Intermission
In the first section of the manual you learned the fundamentals of
application framework design. You got a broad panorama of
framework architecture. You learned about design patterns, and
how PowerPlant implements those patterns in a carefully-crafted
Macintosh application framework. You also learned that an
application framework is first and foremost a mechanism for
managing the visual interface in an application.

In the Basic Building Blocks section that you have just finished, you
learned all about the fundamental building blocks you use to build
a visual interface in PowerPlant. You have mastered panes, views,
and controls. You know how they relate to each other, how to create
them, how they are typically used, and what they’re good for.

That’s a lot of knowledge! Take a look at Figure 8.20 to get the big
picture. We haven’t talked about all of these classes in detail, but we
have discussed most of them.

In the process we have spent a fair amount of time deep in the
details of code. Every now and then you got a glimpse of the higher
principles being implemented, like the messaging system. And that
has helped you keep the big picture in mind.

In the next section of the manual we’re going to talk about how a
PowerPlant application really works. We’ll start with the command
hierarchy. Then we’re going to return to the visual hierarchy again.
Only this time, rather than talking about the fundamental building
blocks, we’re going to put those blocks together in windows and
dialogs.

Then we’ll discuss other application tasks, like file I/O and printing.
Along the way you’re going to see and learn a lot more about
PowerPlant.
The PowerPlant Book PPB–247

Controls and Messaging
Intermission
Figure 8.20 The LPane hierarchy
PPB–248 The PowerPlant Book

9
Applications and Events

In this chapter we begin the process of building an application in
PowerPlant. In the Basic Building Blocks chapters we used a class-
centered perspective to learn about the pane classes. We talked all
about LPane, LView, LControl, and their descendants.

From now on we’re going to use a task-based perspective. We won’t
be able to avoid talking about classes, but for the most part you’re
going to see these discussions centered around how to use a class to
accomplish a particular programming task.

In this chapter we discuss:

• The Application Object—the class hierarchy, the individual
classes, and deriving your own application class.

• Initializing an Application—initializing your own application,
including memory management and debugging in PowerPlant.

• Event Handling and Dispatch—how it works, and why you
won’t need to change it very often.

As usual, you will close out the chapter with a code exercise.

The Application Object
The application class is the basic foundation of a PowerPlant
application. In this section we discuss the fundamental information
you need to know to understand and use an application object,
including:

• Application Class Hierarchy

• Application State

• Deriving an Application
The PowerPlant Book PPB–249

Applications and Events
Application Class Hierarchy
Application Class Hierarchy

Figure 9.1 illustrates the class hierarchy. There are only two
application classes in PowerPlant, LApplication and
LDocApplication.

Figure 9.1 Application class hierarchy

The LDocApplication class is effectively identical to LApplication,
except that it provides member functions to support documents and
printing. We will discuss documents in Chapter 13, “File I/O” and
printing in Chapter 14, “Printing” later in this manual.

LApplication is the basis of our discussion in this chapter. We are
going to concentrate on setting up an application, and on the event
handling features of an application.

Notice that LApplication inherits from several mix-in classes. Each
of these is the source for part of the nature of an application:

LEventDispatcher—an application receives, identifies, and
dispatches events. (See “Event Handling and Dispatch.”)

• LModelObject—an application receives and handles Apple
events, and is scriptable. (See “PowerPlant and Apple Events.”)

• LCommander—an application handles commands from the user
(or other parts of the application). (See Chapter 10,
“Commanders and Menus.”)

• LAttachable—an application may have attachments.
Attachments add behavior to an application. (See Chapter 15,
“Periodicals and Attachments.”)
PPB–250 The PowerPlant Book

Applicat ions and Events
Application State
In addition to the behavior it inherits or overrides from its various
base classes, an application has a few functions that it implements
for itself. Table 9.1 lists each function and its purpose.

Table 9.1 LApplication functions

Application State

An application’s state reflects what it is doing. Listing 9.1 contains
the three possible states the application may be in.

Listing 9.1 EProgramState enumeration
enum EProgramState {
 programState_StartingUp,
 programState_ProcessingEvents,
 programState_Quitting
};

PowerPlant uses these values internally, and typically you won’t be
concerned with or modify an application’s state.

Function Purpose

GetState() return what the application is doing

SetSleepTime() set amount of time to surrender to
background processes

Run() process events until quitting

ProcessNextEvent(
)

retrieve and dispatch events

ShowAboutBox() display the application’s About box

Initialize() perform setup work such as create/
modify menus

StartUp() respond to an Open Application Apple
event

SendAEQuit() send a Quit Application Apple event to
self

DoQuit() attempt to quit the application
The PowerPlant Book PPB–251

Applications and Events
Deriving an Application
If you want to quit the application, you can do so by setting the
application’s mState data member to programState_Quitting.
At the risk of repeating ourselves, PowerPlant’s default behavior
takes care of this for you. You shouldn’t have to do this on your
own. In fact, doing so may bypass features like checking to save
changed documents before allowing the application to quit.

Deriving an Application

Typically you derive your own application class from either
LApplication or LDocApplication. Most of an application’s
standard behavior, as implemented by PowerPlant default member
functions, will suit you just fine.

You will certainly override some LApplication member functions,
including:

• ShowAboutBox()—because you’re going to want a killer
About Box.

• StartUp()—to respond to an open application Apple event in
your own way—for example, to display a splash screen.

• Initialize()—last chance to initialize Application before
processing events.

In addition, you’ll want to override some member functions
inherited from LCommander including

• ObeyCommand()

• FindCommandStatus()

We’ll talk about these last three functions in the next chapter. In the
rest of this chapter we’ll talk about setting up an application and
LApplication’s event handling features.

Initializing an Application
Every C++ program needs a main() function. A PowerPlant
application is no exception. PowerPlant itself does not have a
main(), but the CHyperApp.cp file does. When you use
PowerPlant stationery to create a new project, this file is
automatically included in the project. Listing 9.2 contains the code
PPB–252 The PowerPlant Book

Applicat ions and Events
Initializing an Application
for this main() function. We’ll use it as an example throughout this
chapter.

When you create a new project from stationery, you should open
the CDocumentApp.cpp file and save it with a new name in your
project’s folder. This will automatically update the CodeWarrior
project file at the same time. You can then make necessary changes
to the file.

Alternatively, you can create your own version of main() that suits
your own needs.

Listing 9.2 A sample main()
void main(void)
{
 // Set Debugging options
 SetDebugThrow_(debugAction_Alert);
 SetDebugSignal_(debugAction_Alert);

 // Initialize Memory Manager - Parameter is
 // number of Master Pointer blocks to allocate
 InitializeHeap(3);

 // Initialize standard Toolbox managers
 UQDGlobals::InitializeToolbox(&qd);

 // Install a GrowZone function to catch
 // low memory situations.
 new LGrowZone(20000);

 // replace this with your App type
 CHyperApp theApp;
 theApp.Run();
}

Initializing and launching an application requires that these tasks be
performed as necessary:

• Set Debugging Options

• Initialize the Heap

• Initialize the Toolbox

• Setup Memory Management
The PowerPlant Book PPB–253

Applications and Events
Set Debugging Options
• Check the Environment

• Register PowerPlant Classes

• Run the Application

Let’s look at each of these tasks. We’re going to take the opportunity
to explore some utilitarian features of PowerPlant in great detail,
particularly debugging and memory management.

Set Debugging Options

PowerPlant has powerful debugging macros that you can use when
developing software. You can read about these features in two files:
UDebugging.h and UException.h. You should also consult the
PowerPlant Reference.

You can use PowerPlant’s debugging features without using any
other part of PowerPlant. Simply include the header files and
corresponding source files in your project.

The PowerPlant debugging-macro strategy is straightforward. You
may “throw” an error or raise a signal. The “throw” occurs if you
use the Throw_ macro. This is similar the C++ keyword throw, and
in fact, eventually performs a C++ throw. Throw_ performs an
extra notification of the error condition through a dialog or low-
level debugger. We will use the macro name Throw_ to avoid
confusion. In addition to Throw_ there are four signal macros that
we’ll refer to generically as Signal_.

WARNING! PowerPlant debugging support requires the presence of a debugger
like MacsBug (or other low-level debugger such as TMON or Jasik)
or the CodeWarrior IDE. If you do not have such a debugger
present, you will crash.

An error indicates something is wrong. A Signal_ indicates
something unusual has happened or just an informative message. If
you ignore an error, something bad happens. If you ignore a
Signal_, nothing bad happens.

In general, you should Throw_ when an error occurs. An error may
be defined as a situation which, if not handled, can cause significant
problems (like crashing the computer.) You should raise a Signal_
PPB–254 The PowerPlant Book

Applicat ions and Events
Set Debugging Options
for a condition which does not threaten the integrity of the
application or the stability of the computer, but which is unusual.

For example, you might want to Throw_ an error if you encounter
a nil handle. You might want to raise a Signal_ if you try to unlock
an already unlocked handle.

To activate these macro capabilities, you #define two terms:
Debug_Throw and Debug_Signal. The effects of defining or not
defining these terms are listed in Table 9.2.

Table 9.2 Effect of debugging options

In either case—Throw_ or one of the four Signal_ macros—
PowerPlant defines four possible actions to take, as shown in
Listing 9.3.

Listing 9.3 Debug action enumeration
typedef enum {
 debugAction_Nothing =0,
 debugAction_Alert = 1,
 debugAction_LowLevelDebugger = 2,
 debugAction_SourceDebugger = 3
} EDebugAction;

The alert action displays a dialog containing the exception code, as
well as the source code file name and line number that generated
the Throw_ or Signal_. The low-level debugger action displays a
string—in MacsBug for example—identifying the routine and offset
into the routine, and the exception code. The source-level debugger
stops with the current statement arrow pointing to the line
containing the Throw_ or Signal_.

Term Macro action

Debug_Throw defined Throw_ Throw_ invoked

Debug_Throw not defined Throw_ throw C++ exception

Debug_Signal defined a signal macro invoked

Debug_Signal not defined a signal nothing
The PowerPlant Book PPB–255

Applications and Events
Set Debugging Options
WARNING! If you use the low-level debug action and don’t have a low-level
debugger installed, you will crash when you Throw_ or Signal_. If
you use the source-level debug action and don’t have a source-level
debugger running, you may crash, or you may break into a low-level
debugger if one is available. We recommend you have a low-level
debugger like MacsBug installed at all times.

TIP It is best, for compatability purposes, not to use the source-level
debug action. This avoids Mixed Mode Manager switches when
debugging on PowerPC Mac OS computers and keeps your
debugging information in tact.

PowerPlant maintains two global variables, gDebugThrow and
gDebugSignal that specify which of the four possible actions to
take on either a Throw_ or a Signal_. By default, gDebugThrow
and gDebugSignal are set to debugAction_Nothing. You can
set their values at any point in the program if you want to use
different options in different sections of code. Usually, you set their
values at the beginning of your main program.

For example, this code from main()...
SetDebugThrow_(debugAction_Alert);
SetDebugSignal_(debugAction_Alert);

...uses macros to set the global variable to a debug action.

Having defined Debug_Throw and Debug_Signal and having set
the values for gDebugThrow and gDebugSignal, you can use the
macros defined in UDebugging.h. Table 9.3 lists their usage.

Table 9.3 PowerPlant debugging macros

Macro Usage

Throw_() perform debug action for a Throw_

SignalPStr_() raise a signal, pass a Pascal string

SignalCStr_() raise a signal, pass a C string

SignalIf_() raise a signal if condition is true
PPB–256 The PowerPlant Book

Applicat ions and Events
Set Debugging Options
Using these macros is pretty straightforward, with one exception.
Remember that if Debug_Signal is not defined, then any signal
macro does nothing. This includes the popular Assert_ macro.
When your code is compiled, every occurence of a signal macro
generates no code.

As a result, you should be very careful that the test inside the signal
macro have no side effects. A test with side effects can lead to very
subtle bugs creeping into your code when you turn debugging off.
Take a look at this sample code.

Listing 9.4 A bad Assert_ test
void main(void)
{
 int number = 5;
 Assert_(--number < 10);
 cout << "number = " << number << '\n';
}

The test in the Assert_ macro has the side effect of decrementing
the value in number. When Debug_Signal is defined, the macro
test executes, and number has a value of 4. When Debug_Signal is
not defined, the macro generates no code, and number has a value
of 5. The code does not run the same when debugging is off.

UException.h defines several more macros that are especially
useful for Mac OS programming. The macros for throwing
exceptions defined in UException.h all eventually invoke the
underlying Throw_ macro.

SignalIfNot_(
)

raise a signal if condition is false

Assert_() same as SignalIfNot_()

Macro Usage
The PowerPlant Book PPB–257

Applications and Events
Set Debugging Options
Table 9.4 More PowerPlant debugging macros

You will find these macros used throughout the PowerPlant source
code. You can use them in your own code as well. When you want
to turn off all the debugging code, simply comment out your
definition of Debug_Throw and/or Debug_Signal. If you turn off
Debug_Throw, all of your Throw_ macro calls will automatically
call the standard C++ throw().

TIP PowerPlant has several stack-based classes for memory
management. The advantage of stack-based objects is that the
destructor is automatically called, even when there is an exception
thrown. See “Stack-based memory classes.”

A Throw_ occurs inside a Try_ block. The Try_ macro is the
PowerPlant equivalent of the C++ try keyword. They are identical.

Macro Usage

ThrowIfOSErr_() test for OSErr, Throw_ if non-zero
result

ThrowOSErr_() Throw_ an error (use when you
already know there’s an error)

ThrowIfNil_() Throw_ if the parameter is nil

ThrowIfNULL_() Throw_ if the parameter is nil

ThrowIfResError_(
)

calls ResError(), Throw_ if non-zero
result

ThrowIfMemError_(
)

calls MemError(), Throw_ if non-zero
result

ThrowIfResFail_() check a Resource Manager handle; if
nil, Throw_ an error

ThrowIfMemFail_() check a Memory Manager pointer or
handle; if nil, Throw_ an error

ThrowIf_() Throw_ if condition is true

ThrowIfNot_() Throw_ if condition is false

FailOSErr_() same as ThrowIfOSErr_()

FailNIL_() same as ThrowIfNil_()
PPB–258 The PowerPlant Book

Applicat ions and Events
Initialize the Heap
Of course you must have something to handle a Throw_. The
PowerPlant macro is Catch_(). It maps directly to the C++ catch
mechanism but will only catch a throw of type ExceptionCode.
For example:

Catch_(iErr)

and
catch (Exceptioncode iErr)

are equivalent. If you need a “catch all,” use the C++ catch().

If you do not have a catch() handler of some type, your program
will terminate. The LApplication::Run() function has a
universal catch handler, so a PowerPlant application isn’t likely to
terminate. However, that handler simply displays a message.

TIP Grab a good C++ book and look over the C++ exception handling
mechanisms such as new_handler, unexpected(),
terminate, etc. Remember, even though you are using the
PowerPlant framework, you are still using in the C++ Language. All
of the benefits and features of the C++ language are available to
you...feel free to explore and use them!

None of the PowerPlant debugging features prevents you from
using the standard C++ try, throw(), catch() exception
handling mechanism. The PowerPlant macros map to this
mechanism. However, the PowePlant macros offer an additional
layer of information and debugging capability.

TIP Although not related to PowerPlant, CodeWarrior also includes
DebugNew—a utility for debugging memory allocation. Examine the
file DebugNew.cp for additional debugging features regarding the
new operator.

Initialize the Heap

The second task you must perform when launching an application
is to initialize the application’s heap. The sample main() function
calls InitializeHeap(). This function is defined in
UMemoryMgr.cp. It is not a member of any class.
The PowerPlant Book PPB–259

Applications and Events
Initialize the Toolbox
Call this function at the beginning of your program (before
initializing the Toolbox) to expand the heap zone to its maximum
size and allocate a specified number of master pointer blocks. If you
want to perform unusual tasks, such as modifying the size of the
stack, you can replace InitializeHeap() or call your own
function in addition, as appropriate.

Initialize the Toolbox

After initializing the application’s memory space, you must set up
the Mac OS Toolbox for your application’s use. PowerPlant
provides the UQDGlobals class to handle this for you. Our sample
main() function calls
UQDGlobals::InitializeToolbox(&qd).

This function initializes all the common Toolbox managers, as
shown in Listing 9.5.

Listing 9.5 UQDGlobals::InitializeToolbox() snippet
::InitGraf((Ptr) &sQDGlobals->thePort);
::InitFonts();
::InitWindows();
::InitMenus();
::TEInit();
::InitDialogs(nil);

If you have additional managers to initialize, you must do so at this
phase of the startup process. You may override the UQDGlobals
class, but a more typical solution would be to simply put the
necessary code either in your own function or directly in main().

TIP If your application uses QuickTime, initialize the QuickTime
Manager with UQuickTime::Initialize().

Setup Memory Management

A good application framework provides significant assistance for
managing memory. PowerPlant certainly qualifies.
PPB–260 The PowerPlant Book

Applicat ions and Events
Setup Memory Management
PowerPlant establishes an emergency memory reserve and uses a
GrowZone() function to release it. PowerPlant also provides a
series of memory-related classes for helping you with typical
memory-related housekeeping.

The LGrowZone class

LGrowZone encapsulates the PowerPlant memory management
strategy. It has two parts: a memory reserve, and a strategy for
asking other objects to release memory. Figure 9.2 illustrates the
inheritance hierarchy for LGrowZone.

Figure 9.2 LGrowZone hierarchy

Notice that LGrowZone is one of PowerPlant’s free-standing
classes. You can use LGrowZone by including nothing more than it,
LPeriodical, LBroadcaster, and LListener in your projects.

In your application you create a single instance of LGrowZone.
When you call the LGrowZone constructor, you specify the size of
the memory reserve, as our main() function does with this code:

 new LGrowZone(20000);

Notice that LGrowZone inherits from LBroadcaster. When faced
with a memory shortage, LGrowZone does two things. It asks all
listeners to release memory, and it releases the memory reserve.

Objects that are able to free memory when needed should be
listeners. You attach them to the LGrowZone object so that the
listeners are notified when memory is low, using code like this:

 LGrowZone::GetGrowZone()->AddListener(myObject);

When memory runs short, the object receives a
ListenToMessage() call with a msg_GrowZone message and a
pointer to the number of bytes still needed. The object can then
respond accordingly. The object tells LGrowZone the number of
The PowerPlant Book PPB–261

Applications and Events
Setup Memory Management
bytes freed. If it cannot release any memory, it must supply a zero
so LGrowZone knows that memory was not released.

LGrowZone also inherits from LPeriodical. We discuss LPeriodical
in greater detail in Chapter 15, “Periodicals and Attachments.” In a
nutshell, a periodical object is called from the main event loop either
on every pass through the loop, or when null events are received.

In this case, LGrowZone’s constructor sets up the object so that its
SpendTime() function is called each time through the main event
loop. In that function, if the reserve has been used up, LGrowZone
tries to re-establish the reserve. If it cannot, it warns the user.

Consult the PowerPlant Reference for more details on LGrowZone.

Stack-based memory classes

PowerPlant gives you a set of simple classes to help you allocate
and deallocate memory safely. These classes are all declared in
UMemoryMgr.h.

In these utility classes, the constructor performs some action and the
destructor undoes the action. The advantage of stack-based objects
is that the destructor is automatically called, even when there is an
exception thrown.

Table 9.5 Effect of stack-based memory classes

Class Constructor Destructor

StHandleLocker locks a given handle restores the handle’s
locked/unlocked
state

StHandleBlock allocates a relocatable
block

deallocates the block

StClearHandle
Block

allocates a relocatable
block full of zeros

deallocates the block

StTempHandle allocates a relocatable
block in temporary
memory

deallocates the block

StPointerBlock allocates a non-
relocatable block

deallocates the block
PPB–262 The PowerPlant Book

Applicat ions and Events
Check the Environment
Note that the StHandleLocker class does not move the handle high
in the heap.

The StHandleBlock class may use temporary memory if the
application’s heap is full. StClearHandleBlock does not.

There are two other block-related functions you may wish to use,
BlocksAreEqual() and BlockCompare(). See the PowerPlant
Reference for details.

Finally, UMemoryMgr.h also declares the StValueChanger template
class. The constructor saves the original value and changes to the
specified new value. The destructor restores the original value. This
is a useful class for preserving and restoring state information.

Other possible memory strategies

PowerPlant does not use a memory pre-flighting strategy where
memory requests are tested against available memory before an
attempt is made to allocate the memory.

If you would like to implement memory pre-flighting, or use a
memory management strategy with a finer resolution than simply
releasing the memory reserve in one fell swoop, you may certainly
do so. You may derive your own memory management class from
LGrowZone, or create your own.

Check the Environment

Although not obvious, our sample main() function does a simple
assessment of the operating environment. Your application may
need to do more. Our main() creates an instance of the application
object.

StClearPointer
Block

allocates a clear non-
relocatable block

deallocates the block

StResource gets the handle for the
specified resource

releases the resource
handle

StHandleState gets the handle state restores the handle
state

Class Constructor Destructor
The PowerPlant Book PPB–263

Applications and Events
Check the Environment
 CHyperApp theApp;

In the process, its constructor and the default LApplication
constructor are called. In the LApplication::LApplication()
constructor, PowerPlant looks for the version of QuickDraw in the
environment (among other tasks). See Listing 9.6.

Listing 9.6 Lapplication::LApplication() snippet
 // Check for Color QuickDraw
 SInt32 qdVersion = gestaltOriginalQD;
 ::Gestalt(gestaltQuickdrawVersion, &qdVersion);
 UEnvironment::SetFeature(env_SupportsColor,
 (qdVersion > gestaltOriginalQD));

PowerPlant uses the UEnvironment class to track several features,
as shown in Listing 9.7.

Listing 9.7 PowerPlant environment tracking
enum {
 env_SupportsColor = 0x00000001,
 env_HasDragManager = 0x00000002,
 env_HasThreadsManager = 0x00000004,
 env_HasThreadManager = 0x00000004,
 env_HasAOCE = 0x00000008, // obsolete
 env_HasStdMail = 0x00000010, // obsolete
 env_HasStdCatalog = 0x00000020, // obsolete
 env_HasDigiSign = 0x00000040, // obsolete
 env_HasQuickTime = 0x00000100,
 env_HasAppearance = 0x00001000,
 env_HasAppearanceCompat = 0x00002000,
 env_HasAaron = 0x00004000,
 env_HasAppearance101 = 0x00008000 // AM 1.0.1 installed?
};

You can inquire if a feature is available by calling
UEnvironment::HasFeature(), a static member function.

The application constructor is a good place for application-level
initialization and environment testing. For example, The
LApplication() constructor builds the menu bar. In your own
constructor you may wish to do additional testing for other features
of the environment, modify the application’s sleep time, and so
PPB–264 The PowerPlant Book

Applicat ions and Events
Register PowerPlant Classes
forth. You could also perform these tasks in a separate initialization
function immediately after creating an application object if you
wish.

See also the PowerPlant Reference for more information on
UEnvironment.

Register PowerPlant Classes

Your application object’s constructor typically performs one more
critical function—it registers the necessary PowerPlant classes.
PowerPlant relies heavily on stream-based creator functions in its
visual (UI) classes. The PPob resource encapsulates the information
necessary to build you UI elements from scratch using this stream-
based creator function technique.

When creating a PPob-based object, PowerPlant must know which
creator function to call for which class. It does this by maintaining a
table that associates a unique class ID with that class’s stream-based
constructor. You must have an entry in this table for the class creator
function before instantiating a PPob-based object.

To register an individual class, you use the RegisterClass_()
macro. You provide your class name, the macro does the work of
creating a creator function and adding it to the class table. Your
class must have a unique class ID in the class definition.

WARNING! If you do not register each and every class that you directly utilize in
your PPob resource(s), your application will not work properly. If you
have the Signal_ debugging features turned on, you should get a
“Unregistered ClassID” signal raised in UReanimator.cp when
you try to instantiate a class without first registering that class.

Failing to register a class is perhaps the single, most common cause
of problems encountered by new PowerPlant programmers.

Here’s an example call to RegisterClass_() that registers the
LButton class.

RegisterClass_(LButton);

It is not necessary to register PowerPlant classes that are not
explicitly used in your PPob resource(s).
The PowerPlant Book PPB–265

Applications and Events
Run the Application
For example, if you have a class called CMyPane that inherits from
LPane.You use CMyPane in your PPob but never use LPane
(directly). You do of course need to register CMyPane, but you do
not need to register LPane as you never directly utilize LPane in
your PPob. In this case, you still need to include LPane.cp in your
project since CMyPane inherits from it.

WARNING! Previously, to register an individual class, you had to call
URegistrar::RegisterClass() and provide the class ID and
the creator function. This method is obsolete and should not be
used. The obsolete method is currently supported for compatibility
with existing classes, but will not be supported in the future. You
should update your code accordingly.

Finally, don’t forget that you must register any PPob-based class that you
derive.

Run the Application

After you create your application object, perform any additional
initialization, and register each and every PPob-based class you use,
it’s time to start the main event loop running. Our sample main()
function does the following to accomplish this task:

 theApp.Run();

Just call the application object’s Run() function, and you’re on your
way. The Run() function makes the menu bar and calls the
LApplication::Initialize() function to perform additional
setup such as modify the menus in the application. We’ll discuss
this task in the next chapter.

Event Handling and Dispatch
The application’s Run() function calls ProcessNextEvent()
repeatedly. ProcessNextEvent() does the real work. It:

• Adjusts the cursor.

• Gets the next event.

• Sends the event to any attachments for pre-processing.
PPB–266 The PowerPlant Book

Applicat ions and Events
PowerPlant and Apple Events
• Dispatches the event if it needs further processing.

• Distributes idle time if the event is a null event.

• Calls periodical items in the queue that receive time on every
pass through the event loop.

• Updates menus if necessary.

Because LApplication inherits from LEventDispatcher, it can
dispatch events. It calls the inherited DispatchEvent() function.
This function parses the event and calls the appropriate handler.

Each handler performs whatever additional parsing (if any) is
necessary. The handler might identify the most recently clicked
pane, or retrieve the current target object in the command hierarchy.
You can study the LEventDispatcher code to see the details.

The handler dispatches the event to the appropriate object. A click
goes to a pane. A command or keystroke goes to a commander. The
pane or commander is responsible for handling the event.

If a commander does not handle a command itself, it passes the
command back up the command chain until someone does handle
it. The ultimate supercommander is your application object. It is
responsible for any command not handled by objects below it in the
command hierarchy. We’ll discuss this process in more detail in
Chapter 10, “Commanders and Menus.”

Before we do, notice that this section on events and dispatching
does not include any instructions for typical ways in which you
override or derive classes to modify the default event-dispatch
behavior of PowerPlant. While you are certainly free to do so, it is
unlikely that you will ever need to modify event handling and
dispatch. This behavior is a gift from PowerPlant. Enjoy it.

However, there is one tricky detail that occasionally trips up new
PowerPlant programmers—Apple events.

PowerPlant and Apple Events

PowerPlant relies on Apple events for some of its basic
functionality. The process of launching an application is a good
example. When you launch an application from the Finder, after the
The PowerPlant Book PPB–267

Applications and Events
PowerPlant and Apple Events
application launches it receives one of three Apple events from the
Finder—open application, open documents, or print documents.

Assuming that you aren’t opening or printing documents, the
application receives the open application Apple event. In response
to that event, the application calls the application’s StartUp()
function.

In this function you can perform some setup work for the
application. For example, you might want to have a default window
open on launch if the user isn’t opening documents. There are any
number of tasks you might perform in the StartUp() function.

However, for this to work your application must be aware of Apple
events. To ensure that it is, go to the PPC Processor target settings
panel and examine the SIZE flags. Make sure the
“isHighLevelEventAware” flag is checked(Figure 9.3). If it is not,
your application will not receive Apple events, and StartUp()
won’t be called.

You must also have the proper ‘aedt’ resources in your application.
If you use PowerPlant project stationery, the file PP
AppleEvents.rsrc is contains these resources and is included for
you.
PPB–268 The PowerPlant Book

Applicat ions and Events
Summary
Figure 9.3 isHighLevelEventAware flag in target preferences

Summary
In this chapter you learned how to initialize a PowerPlant
application, and about the PowerPlant utilities designed to help you
in that task.

PowerPlant has a powerful set of macro-based debugging features
for throwing exceptions or raising signals. These features are
implemented in an independent section of PowerPlant so that you
can use the debugging features without using the rest of
PowerPlant.

PowerPlant uses an emergency reserve memory management
strategy in association with a well-designed LGrowZone object. The
LGrowZone object broadcasts a need for memory. Objects you
create that can release memory can listen to the LGrowZone object
The PowerPlant Book PPB–269

Applications and Events
Code Exercise
and respond to the plea for memory donations. You also learned
about the many stack-based utility classes that can assist you in
robust memory management.

You learned how to register PowerPlant pane classes, and about the
importance of registering your own classes as well. Finally, you
read about the event dispatch mechanism in PowerPlant.

Let’s see how it all works in some real code.

Code Exercise
The application you work on in this exercise is named “Events.”
Because event dispatch is completely implemented in PowerPlant,
this chapter emphasizes debugging and memory management. We
also look at how the project sets up the development environment.
These details are important when you want to turn debugging on,
register new PowerPlant classes, and so forth.

As usual, we’ll look at the application interface first, and then write
code to implement the application.

The Interface

The Events application is a memory eater. Figure 9.4 shows you
what the application looks like.

Figure 9.4 The Events application
PPB–270 The PowerPlant Book

Applicat ions and Events
Setting Up an Application
Examine the various panes in Constructor. In this code exercise the
PPob resource is complete. You won’t add or modify any panes.

There are three LGroupBox objects, of which we take no further
note.

There are four LCaption objects. Two of them are simple labels. Two
of them report information about the application’s use of memory.
The “Blocks” caption reports the number of blocks you have
created. The “Size” caption reports how much memory the
application has eaten.

The “Free Memory” caption is a custom caption pane. It reports
available memory. You’ll register this class when you write the
application. The code for the class is provided for you.

There are three buttons. The Test Signal button sends a signal. The
Test Throw button throws an exception. The New 10Kb Block
button creates a memory block, if memory is available. The
application keeps track of the allocated blocks.

The Release When Asked button controls the application’s behavior
when it runs out of memory. At that time, the LGrowZone object
will ask its listeners for memory. The application listens for the
message and responds.

Like the code you wrote in Chapter 8, the application listens to the
controls in its window and responds appropriately. You’ll write
some of that code in this exercise.

Setting Up an Application

In this section you set up the development environment, set up
debugging, and implement the Events application.

1. Examine project prefix.

C/C++ settings dialog Events.mcp

Click the Target Settings button on the Events.mcp project
window (Figure 9.5). Then choose the C/C++ Language panel, as
shown in Figure 9.6.
The PowerPlant Book PPB–271

Applications and Events
Setting Up an Application
Figure 9.5 Target Settings button

TIP The toolbar on the IDE Project Window and the global toolbar are
completely customizable. See the IDE User Guide for more
information on how to customize CodeWarrior.

Target Settings button
PPB–272 The PowerPlant Book

Applicat ions and Events
Setting Up an Application
Figure 9.6 Events language settings

Notice that the prefix file is EventsPrefix.h. In the PowerPlant
stationery, the prefix file is PP_DebugHeadersPPC++ or
PP_DebugHeadersCarbon++. The PP_DebugHeaders.cp file
used to build those precompiled headers contains the following
code:

// Define all debugging symbols
#define Debug_Throw
#define Debug_Signal

// include the header files for the standard PowerPlant classes
#include <PP_ClassHeaders.cp>

One way to turn on debugging is to use PP_DebugHeaders for the
correct build target (PPC or Carbon). To turn debugging off, change
the project prefix to PP_MacHeadersPPC++ or
PP_MacHeadersCarbon++.

You’ll accomplish the same goal in EventsPrefix.h in just a bit.
The PowerPlant Book PPB–273

Applications and Events
Setting Up an Application
2. Set up the environment

no function EventsPrefix.h

You accomplish one primary in this step. You turn on debugging.
The existing code includes the correct version of PP_MacHeaders
depending on the build target.

#include <PP_MacHeaders.h>

// Define debugging symbols.
#define Debug_Throw
#define Debug_Signal

// Include the PowerPlant prefix file.
#include <PP_Prefix.h>

The PP_Prefix.h file defines some additional terms for the
universal headers, and includes additional PowerPlant header files.

Save your work and close the file.

3. Examine the application class

class declaration CEventsApp.h

This particular application class inherits from LApplication and
LListener. This allows the application to listen to the controls in the
window. It also allows the application to listen to the LGrowZone
object. Listing 9.8 contains the complete class declaration.

Listing 9.8 CEventsApp class declaration
class CEventsApp : public LApplication, public LListener {
public:
 CEventsApp();
 virtual ~CEventsApp();

 virtual void ListenToMessage(MessageT inMessage,
 void *ioParam);

protected:
 LWindow* MakeEventsWindow();

private:
 LWindow* mWindow;
PPB–274 The PowerPlant Book

Applicat ions and Events
Setting Up an Application
 LArray mBlockList;
};

This class overrides the ListenToMessage() function inherited
from LListener. It declares a new function, MakeEventsWindow()
to create the window. It has two new data members, mWindow and
mBlockList. The former points to the application’s only window.
The latter is a list of allocated blocks of memory.

When you are through examining the declaration, close the file.

4. Build the application object

CEventsApp() CEventsApp.cp

The project’s main() function is provided for you in this file. It
initializes the heap, initializes the Toolbox, creates the LGrowZone
object, and creates an application object. Of course, the application
constructor is called at that moment.

In this step you write the application constructor. There are five
tasks you must accomplish. They are:

a. Set the action to occur on Throw_ and Signal_.

Use the SetDebugThrow_ and SetDebugSignal_ macros. Set
the response to debugAction_Alert so an alert is displayed in
response to either a throw or signal.

b. Register required core PowerPlant classes.

Register LWindow, LCaption, LStdButton, LStdCheckBox, and
LGroupBox.

c. Register any custom classes.

The only custom class is the CFreeMemoryCaption class.

d. Make a window.

Call the application’s MakeEventsWindow() function. It
returns the LWindow*. You can store it in mWindow. And, now
that you have debugging features available, use a macro to check
the LWindow pointer and ensure it isn’t nil.
The PowerPlant Book PPB–275

Applications and Events
Setting Up an Application
e. Link the application to the LGrowZone object.

Get the LGrowZone object and call its AddListener()
function. You want to link the application object to the
LGrowZone object.

The solution code is listed here for reference. This function is
empty in the start code. You write the whole thing here.

// Setup the throw and signal actions.
SetDebugThrow_(debugAction_Alert);
SetDebugSignal_(debugAction_Alert);

// Register required core PowerPlant classes.
RegisterClass_(LWindow);
RegisterClass_(LCaption);
RegisterClass_(LStdButton);
RegisterClass_(LStdCheckBox);
RegisterClass_(LGroupBox);

// Register custom classes.
RegisterClass_(CFreeMemoryCaption);

// Create the single application window.
mWindow = MakeEventsWindow();
ThrowIfNil_(mWindow);

// Listen to messages from the grow zone.
LGrowZone::GetGrowZone()->AddListener(this);

5. Make the Events window.

MakeEventsWindow() CEventsApp.cp

The PPob that describes this window has been provided for you. In
this step you accomplish two tasks.

a. Create the window.

Call LWindow::CreateWindow(), the class creator function.
The resource ID constant is rPPob_EventsWindow. The
window’s supercommander is the application object.

This call returns a pointer to an LWindow object. Use a macro to
ensure that the pointer is not nil. You can use Assert_.
PPB–276 The PowerPlant Book

Applicat ions and Events
Setting Up an Application
b. Link the application to the controls in the window.

Call UReanimator::LinkListenerToControls(). The ID
constant for the RidL resource is rRidL_EventsWindow.

The solution code for both tasks is listed here.
// Create the window.
LWindow* theWindow;
theWindow = LWindow::CreateWindow(rPPob_EventsWindow, this);
ThrowIfNil_(theWindow);

// Link the application (the listener) with the
// controls in the window (the broadcasters).
UReanimator::LinkListenerToControls(this, theWindow,
 rRidL_EventsWindow);

theWindow->Show();

The existing code shows the window and returns the LWindow
pointer to the caller—the application constructor in this case.

6. Respond to messages.

ListenToMessage() CEventsApp.cp

The application listens to the controls in the window. It also listens
to the LGrowZone object. The application’s ListenToMessage()
function may receive four messages:

• msg_GrowZone

• msg_NewBlock

• msg_TestSignal

• msg_TestThrow

In this step you write some of the code to respond to the
msg_GrowZone message, and all the code for testing the signal and
throw mechanisms. The code for creating a memory block is
provided for you.

a. Release memory if appropriate.

When you receive a msg_GrowZone message, send yourself a
signal. Although you wouldn’t do this in a real application, this
is instructional here. When the LGrowZone object asks for
memory, you’ll hear about it.
The PowerPlant Book PPB–277

Applications and Events
Setting Up an Application
case msg_GrowZone:
{
 // We're asking for memory, let user know
 SignalPStr_("\pLGrowZone asking for memory");

 SInt32 theBytesFreed = 0;

WARNING! Raising a signal here may cause a crash! This call causes
PowerPlant to display a dialog. That dialog must be loaded into
memory. Under just the wrong low-memory conditions, (and you’ll
be creating a low memory condition) there isn’t enough room and a
crash will result. You can omit this line of code without affecting the
application. You just won’t receive a notice when LGrowZone sends
this message.

You should examine the remaining code in this case, it is very
instructive. The code first determines the state of the check box.
If memory release is allowed, the application walks through the
list of memory blocks and releases them.

The code creates an iterator, starts with the first handle in the
list, and operates on each handle. If the block is not a protected
block, it removes the handle from the list and disposes of the
handle. Notice that the iterator can modify the list while
iterating! This causes no problems in PowerPlant. (See
“Arrays.”)

When complete, the application updates the two captions that
reflect the number of blocks and the amount of memory in those
blocks. Notice that the code uses an LStr255 object. This is a
descendant of LString. Among other features, the LString class
provides a series of operator overloads for working with strings.
The code here takes advantage of the LString features to
automatically convert a 32-bit number into a string, and uses the
+= operator to append strings. (See “LString.”)

b. Send a signal.

When the application receives msg_TestSignal, send a signal.
case msg_TestSignal:
{
 // Raise a test signal.
 SignalPStr_("\pSignal test");
PPB–278 The PowerPlant Book

Applicat ions and Events
Setting Up an Application
}
break;

c. Throw an exception.

When the application receives msg_TestThrow, throw an
exception. You can use PowerPlant macros for the entire
process. Create a try block. In the block, use Throw_ to throw
an error. Use the value -1. In the catch block, you don’t have to
do anything. This is just a test.

case msg_TestThrow:
{
 try {
 // Throw an error.
 Throw_(-1);
 } catch(LException& inErr) {
 // Catch it here.
 }
}
break;

That’s it. Save your work and close the file.

The code to handle msg_NewBlock has been provided for you.
Study it as another example of list management and string
manipulation in PowerPlant.

7. Build and run the application.

Make the project and run it. When you do, a window should appear
containing all the views. See Figure 9.4.

Notice the amount of free memory, the number of allocated blocks,
and the space required for those blocks. The Release When Asked
check box should be on.

Click the New 10Kb Block button. Watch how the free memory,
size, and number of blocks all change. Click the button repeatedly
until you run out of memory. When you do, a signal dialog should
appear telling you that LGrowZone is asking for memory.
The PowerPlant Book PPB–279

Applications and Events
Setting Up an Application
NOTE This is where you might crash. If the signal dialog does not appear
and you crash, return to Step 6a and remove the code that calls
SignalPString().

If the signal dialog appears, click OK. Then observe the amount of
free memory, number of blocks, and size.

Now, turn off the Release When Asked check box. The application
will no longer release memory when asked. Create new blocks until
you run out of memory. Once again, you should see the signal
dialog telling you that LGrowZone is asking for memory. Click OK.
This time, memory is not released. You have run out of memory and
you’ll see a warning dialog, as shown in Figure 9.7.

Figure 9.7 The low-memory alert

This is the standard PowerPlant low-memory alert. It isn’t 100%
appropriate in this circumstance, because there are no documents to
close. In your own application, you can modify this alert to display
a more accurate message.

TIP The memory warning should never cause a crash, even in low
memory conditions. These warning dialogs are preloaded and
locked, so they are always available.

Don’t forget to test the two Debug Messages buttons to observe the
signal and throw dialogs.

If you want to explore, turn off signaling and see what happens
when you run out of memory. Turn off all debugging and see what
happens when you throw an exception. Use different PowerPlant
macros to test values, send signals and throw exceptions. Use the
PPB–280 The PowerPlant Book

Applicat ions and Events
Setting Up an Application
standard C++ try, throw, and catch keywords rather than
PowerPlant macros, and see if there’s any difference.

Finally, if you look at the free-memory caption closely you may
notice it flash every second or so. The code for this custom caption
was provided for you. Feel free to explore that code. This caption
inherits from LPeriodical and installs itself in a special queue. Every
time there is an idle event, this caption’s SpendTime() function is
called. We’ll discuss how this works in “Periodicals.” If you explore
this process, think about how you might eliminate or reduce the
flashing. There is one straightforward solution. You could store the
previous value, and only update the caption when the value
changes. Implement that solution, or your own solution, and
observe the difference.

Once again, congratulations are in order. This chapter deals
primarily with low-level coding details like memory management
and debugging.While this isn’t the most glamorous part of
PowerPlant, these are critical skills in the real world of software
development. Best of all, you have now explored how to use them
most effectively in PowerPlant, and practiced those skills.

In the next chapter you start working on menus. After that, you’ll
implement windows and dialogs. Then you’ll work with
documents, files, and printing. Finally, you’ll study periodicals and
attachments. The exciting stuff is coming!
The PowerPlant Book PPB–281

Applications and Events
Setting Up an Application
PPB–282 The PowerPlant Book

10
Commanders and Menus

Now that you have an application set up and ready to run, the next
step is to make it responsive. As the user makes menu choices, your
application should respond appropriately. That responsiveness
comes from the LCommander class.

This chapter has two main sections:

• Introduction to Commands—all about LCommander and its
features.

• Making and Managing Menus—setting up menus and
responding to menu choices in a PowerPlant application.

There are several important classes in PowerPlant that inherit from
LCommander. Let’s start there.

Introduction to Commands
In most of our class hierarchy diagrams, we use LCommander as a
mix-in class. This is appropriate, because classes in several different
inheritance chains also inherit from LCommander.

Figure 10.1 shows what the class hierarchy looks like with
LCommander as the principal base class. This diagram puts
LCommander at the center of attention and illustrates all the classes
that are also commanders.

Like the distinction between the LView class hierarchy and the
application’s visual hierarchy, there is a distinction between the
LCommander class hierarchy (which simply illustrates inheritance)
and the command hierarchy within a running application. We will
call the flow of commands within an application the “command
chain.”
The PowerPlant Book PPB–283

Commanders and Menus
Introduction to Commands
Figure 10.1 LCommander hierarchy

Remember that the subclasses in this diagram belong to various
class hierarchies in PowerPlant, and many inherit from other classes
besides LCommander, such as LPane or LView.

The LCommander class has functions devoted to:

• Command Chain—maintaining the command hierarchy.

• Target Handling—what commander receives a command.

• Duty Handling—which command chain is on duty.

• Command and Keystroke Handling—responding to menu
commands and keystrokes.

Every commander—each object that derives directly or indirectly
from LCommander—has these features.
PPB–284 The PowerPlant Book

Commanders and Menus
Command Chain
Command Chain

In an application, the application object is the topmost commander.
The LApplication constructor sets the application object as the top
commander. The application object has no supercommander.

Every other commander has one supercommander. The
LCommander class stores a pointer to an LCommander object—the
supercommander—in the mSuperCommander data member. You
use member functions to access this data.

Every commander may have an arbitrary number of
subcommanders. The mSubCommanders data member is an LArray
object. Table 10.1 contains the LCommander functions for command
chain maintenance.

Table 10.1 Command chain maintenance functions

GetTopCommander() is a static member function, so you can use
LCommander::GetTopCommander() at any time to get a pointer
to the application object.

Function Purpose

GetTopCommander() return pointer to top commander

SetSuperCommander() set the supercommander (replaces
existing supercommander)

AddSubCommander() add a subcommander to list

RemoveSubCommander() remove a subcommander from list

AllowSubRemoval() return whether to allow removal of
subcommanders

AttemptQuit() ask all subcommanders whether it
is OK to quit

AttemptQuitSelf() return whether it is OK to quit

GetDefaultCommander(
)

return pointer to default
commander

SetDefaultCommander(
)

set default commander
The PowerPlant Book PPB–285

Commanders and Menus
Target Handling
The concept of the default commander deserves special attention.
The default commander will be the supercommander for a
commander created with a class creator function. PowerPlant uses
the default commander when creating objects of various pane
classes that are also derived from LCommander. These classes are
LEditField, LListBox, LTextEditView, LWindow, LDialogBox, and
LGrafPortView. Before creating one of these objects on the fly with a
class creator function, you should ensure that the default
commander is set appropriately.

In a subclass you may wish to override AttemptQuitSelf(). This
function should handle any duties the commander must perform
before quitting. LDocument is the only PowerPlant commander
class that overrides this function. It does so to ensure that the user
has an opportunity to save a changed document before quitting.
We’ll discuss saving documents in Chapter 13, “File I/O.”

With that exception, the default functions for command chain
maintenance are usually sufficient for most commanders. However,
you may have noticed that there is no command dispatch
mechanism. That’s what the concept of the target object is all about.

Target Handling

At any moment there is one and only one target object. The target
object is stored in a static LCommander data member—sTarget.
Because it is a static class variable, there is only one instance of
sTarget. When the application receives a command, it dispatches
the command directly to the target commander, bypassing the
command chain completely. Table 10.2 lists the target handling
functions.

Table 10.2 Some LCommander target handling functions

Function Purpose

GetTarget() return pointer to current target

SwitchTarget() change target

AllowTargetSwitch(
)

return whether to allow change in
target
PPB–286 The PowerPlant Book

Commanders and Menus
Duty Handling
GetTarget() and SwitchTarget() are both static member
functions. You can call them from outside the class by using the
class specifier—LCommander::GetTarget(), and
LCommander:: SwitchTarget().

You use SwitchTarget() to make a new object the target object.
For example, the LEditField pane is also a commander. When it
receives a click, it calls SwitchTarget(this) to make itself the
target.

In some cases, you may not want to allow the target object to
relinquish its position unless some conditions are satisfied. For
example, you may want to verify a text entry before you allow the
user to switch to another field. If AllowTargetSwitch() returns
true, a switch is allowed. Otherwise, the target object cannot change.

If you want to take some action when a commander becomes the
target object or stops being the target object, override the member
functions BeTarget() and DontBeTarget(). For example, you
may want to highlight the target object, enable other objects, or
perform setup duties when an object becomes a target. Another
example is LListBox and its use of LFocusBox.

Duty Handling

An application may have multiple branches in the command
hierarchy. Only one branch is active or “on duty” at any given
moment, and that’s the branch that ends at the target. When the
target object changes, the new target’s chain of command (from the
target object back up to the application) returns to duty. The
previous target object’s chain goes off duty. Figure 10.2 illustrates
the duty concept.

IsTarget() return if the specified commander is
the target

BeTarget() called when commander becomes the
target

DontBeTarget() called when commander stops being
target

Function Purpose
The PowerPlant Book PPB–287

Commanders and Menus
Duty Handling
Figure 10.2 The duty property of commanders

The target is not necessarily the lowest item in the command
hierarchy. When a commander becomes the target object, its
subcommanders (if any) are not automatically put on duty. Duty
flows upward from the target object to the topmost commander. For
example, if Window1 in Figure 10.2 were the target object, then all
the commanders lower than it in the command hierarchy would be
off duty.

If there are multiple command chains, the user can switch chains. In
fact, if the application moves to the background all chains go off
duty and the target object is set to nil. A background application
cannot receive menu commands or keystrokes, so there can be no
target object.

What happens when the application becomes active again? For
example, look at Figure 10.2. Imagine the application has been
suspended. When it resumes, LEditField2 should be restored as the
target object.

To make that possible, PowerPlant allows each commander to have
one of three states: on duty, off duty, or latent. If a commander is
latent, it means that if the chain as a whole were on duty, the
particular commander would also be on duty. Figure 10.3 shows the
same command hierarchy as in Figure 10.2, but with the application
suspended. As a result, certain commanders are now latent rather
than on duty.
PPB–288 The PowerPlant Book

Commanders and Menus
Duty Handling
Figure 10.3 The duty property while suspended

When an application resumes or a chain within the application is
activated (for example, by switching windows), PowerPlant
searches through the command hierarchy for latent
subcommanders and puts them back on duty. The deepest latent
subcommander becomes the target object.

Now that you have the duty concept in hand, let’s look at the
functions each commander has for managing its duty status.

Table 10.3 LCommander duty handling functions

When you create a window, and you want one of its commander
panes to be the “default” pane that becomes active when that

Function Purpose

IsOnDuty() return duty state

GetLatentSub() return the latent subcommander

SetLatentSub() specify the latent subcommander

PutChainOnDuty() put command chain on duty

PutOnDuty() called when this commander is going
on duty

TakeChainOffDuty(
)

take command chain off duty

TakeOffDuty() called when this commander is going
off duty
The PowerPlant Book PPB–289

Commanders and Menus
Command and Keystroke Handling
window becomes active, use SetLatentSub(). A commander
may have no more than one latent subcommander.

If you want something to happen when a commander goes on or off
duty, override the PutOnDuty() and TakeOffDuty() functions.
For example, you might want to outline a frame when on duty, and
hide a frame when off duty.

TIP Being on duty is not the same as being the target object. The target
object is always on duty. An on-duty commander is not always the
target object. If you want something to happen when a commander
becomes the target object, override BeTarget() and
DontBeTarget().

Command and Keystroke Handling

Fundamental to any commander’s behavior is its ability to handle
commands and keystrokes. A command is a menu selection or
command-key equivalent. A keystroke occurs when the user types a
key. Whenever one of these two events occurs, control passes to the
target commander.

Each commander has three principal functions to handle the
command or keystroke, as listed in Table 10.4.

Table 10.4 Some LCommander command and key handling functions

You override these three functions regularly in PowerPlant
applications. In fact, it is your definition of these functions that is
responsible for much of the unique behavior of your own
application.

Function Purpose

ObeyCommand() respond to a menu command

FindCommandStatus(
)

enable, disable, or mark a menu item

HandleKeyPress() respond to a key event
PPB–290 The PowerPlant Book

Commanders and Menus
Making and Managing Menus
You set up your own menus, your own menu commands, and
define how your application or its component parts respond to each
command. When the user chooses a menu item, the target
commander’s ObeyCommand() function receives an identifying
command number that corresponds to a menu item. You respond
accordingly.

You override the FindCommandStatus() function to enable,
disable, and/or mark menu items as appropriate for your target
object.

When the user types a key, the target commander’s
HandleKeyPress() function receives the event and responds
accordingly.

Because the flow of duty is upward in the command hierarchy, the
target object gets first crack at responding to commands and
keystrokes, and at setting up the menus appropriately. If the target
object changes, the new target object can do things differently. We
discuss how all this works in the next section on menus.

Making and Managing Menus
To make your application work, you will need menus. In this
section we discuss:

• Menu Strategy—how PowerPlant implements menus.

• Menu-Related Resources—the application resources you need
for creating and using menus.

• Command Numbers—how the command numbering system
works in PowerPlant.

• Adding Menus—how to add a menu to a PowerPlant
application.

• Responding to Menu Commands—how to identify and respond
to the user’s menu choices.

• When To Update Menus—how to mark and modify menu items
as necessary.

• Working With LMenuBar and LMenu—specific functions you
may need.

Let’s start with an overview of PowerPlant’s menu strategy.
The PowerPlant Book PPB–291

Commanders and Menus
Menu Strategy
Menu Strategy

In traditional Macintosh programming, when the user chooses a
menu item you dispatch control based on the menu ID and the item
number for that particular item and menu. The Macintosh Toolbox
routine MenuSelect() returns a number that contains both pieces
of information.

As a result, traditional Macintosh menu dispatch code is heavily
dependent upon item position. If you change the position of a
command in a menu, or you move a command from one menu to
another, you must rewrite the routine that dispatches menu choices.

To eliminate this problem, PowerPlant associates each menu item
with a unique command number. A PowerPlant application
maintains a “map” that says, for example, “The fifth item of the Edit
menu has a command number of 14.” The map contains a command
number for every item of every menu in the application. (Actually,
there’s an exception to this that we’ll discuss in just a bit.)

The “map” is really a series of Mcmd resources, one for each MENU
resource in the application.

When the user chooses a menu item, PowerPlant looks up the
associated command number in the Mcmd resource, then sends the
command number to the target commander’s ObeyCommand()
function. Because you know what each command number
represents, you know the identity of the menu item the user chose.

If you decide to reorganize your application’s menus, you do not
have to modify your menu parsing and dispatch code. The
command number remains unchanged. You must, however, modify
your Mcmd resources so the “map” remains consistent with the
location of menu items. If you use Constructor to build and modify
your MENU resources, it takes care of this for you.

NOTE What’s really happening here is that the designers of PowerPlant
know that developers change their menus. So PowerPlant moves
responsibility for tracking position changes out of code and into a
resource. You must still modify something if you reorganize a menu.
PPB–292 The PowerPlant Book

Commanders and Menus
Menu-Related Resources
With PowerPlant you modify the Mcmd resource rather than your
source code.

Menu-Related Resources

PowerPlant uses three resource types to manage menus:

• MBAR

• MENU

• Mcmd

You can use Constructor to create all three resources.

The MBAR and MENU resources are standard Mac OS resources for
defining the contents of the menu bar, and an individual menu
respectively. PowerPlant uses them in exactly the same way that
any Macintosh program would.

The Mcmd resource is the “map” that tells PowerPlant what
command number to associate with each menu item. There is one
Mcmd resource for each MENU resource. The resource ID number
for the Mcmd resource must be the same as the associated MENU
resource. If you use Constructor, it takes care of the Mcmd
numbering for you. Figure 10.4 illustrates the relationships between
the MBAR, MENU, and Mcmd resources.

Figure 10.4 Example of Menu-related resources
The PowerPlant Book PPB–293

Commanders and Menus
Command Numbers
If you use PowerPlant stationery to build a new project, the file <PP
Starter.ppob> contains the MENU and Mcmd resources
necessary to support the standard Apple, File, and Edit menus. The
file <PP Starter.rsrc> contains the MBAR resource. You can
use these as a starting point for further development.

See also “Installing Resource Templates” for information on
installing Mcmd resource templates.

Command Numbers

Each menu command to which you respond must have a unique
number. PowerPlant reserves command numbers –999 to 999 for its
own use.

For example, command number 0 (zero) is reserved for a command
that does nothing. The standard menu commands for the Apple,
File, Edit, and font-related menu items are defined in
PP_Messages.h. Several of the enumerated constants are listed in
Figure 10.4.

When you create an Mcmd resource, you assign a command
number to each menu item. You are free to use any unique number
as long as it isn’t in the reserved range. However, using a systematic
approach of some sort when assigning command numbers can help
you avoid errors and maintain consistency.

In an Mcmd resource, assign zero as the command number for a
separator bar in the associated menu. When using other
PowerPlant-defined values, refer to PP_Messages.h for the value
to use.

Negative command numbers

Under typical circumstances, you should use positive numbers for
your menu commands. PowerPlant has facilities for enabling,
disabling, marking, and changing the text for menu items. You
cannot use regular PowerPlant techniques to do any of these things
if the command has a negative number.

Some negative command numbers have special meaning in
PowerPlant, including synthetic commands. We will revisit
PPB–294 The PowerPlant Book

Commanders and Menus
Command Numbers
negative command numbers when we discuss dialogs in Chapter
12.

Synthetic command numbers

So far we have overlooked one significant problem with the
PowerPlant menu strategy. What do you do for menus whose
contents are defined at runtime, such as the Apple menu or the Font
menu? You cannot know what items will be in these menus, so you
cannot put entries in an Mcmd resource for them.

In a PowerPlant application, you build such a menu at runtime in
the traditional way. We will use the standard Apple menu and a
hypothetical Font menu as examples in this discussion.

The MBAR resource for the application has the resource ID numbers
of all the MENU resources. The MENU resource for the Apple menu
has the menu title (the Apple symbol) and the first About item. The
MENU resource for a Font menu would have the menu title and no
items.

The PowerPlant LMenuBar constructor builds the Apple menu
using traditional techniques, as shown in Listing 10.1

Listing 10.1 Building the Apple menu
MenuHandle macAppleMenuH = ::GetMenuHandle(MENU_Apple);
if (macAppleMenuH != nil) {
 ::AppendResMenu(macAppleMenuH, 'DRVR');
}

The Apple menu has an Mcmd resource that contains an entry for
the About item, because that is a standard item in the Apple menu.
You cannot have an Mcmd entry for other items in the Apple menu.
Similarly, you cannot have entries in an Mcmd resource for items in
a font menu.

When the user chooses a menu item that does not have an
associated entry in an Mcmd resource, PowerPlant generates a
synthetic command number for that item.

A synthetic command number is a 32-bit number. The high 16 bits
contain the menu ID, the low 16 bits contain the menu item. This is
just like the return value from the traditional MenuSelect()
The PowerPlant Book PPB–295

Commanders and Menus
Command Numbers
Toolbox function, with one exception. The synthetic command
number is negative.

After creating the synthetic command number, PowerPlant passes
that command number to you, just like it would for a regular
command number retrieved from an Mcmd resource.

Using synthetic command numbers

When you receive a menu command, you don’t know if it is from an
Mcmd resource. It might be a synthetic command. You call
LCommander::IsSyntheticCommand() to determine if the
menu command is synthetic or not. If the command is a synthetic
command, the function returns true and supplies the menu ID and
item number for the chosen menu item.

You can then process the command properly, because you have the
required information: menu ID and menu item.

For example, Listing 10.2 shows how
LApplication::ObeyCommand() responds to synthetic
commands from the Apple menu.

Listing 10.2 Handling synthetic command numbers
Boolean
LApplication::ObeyCommand(CommandT inCommand, void *ioParam)
{
 ResIDT menuID;
 SInt16 menuItem;

 // check for synthetic command
 if(IsSyntheticCommand(inCommand, menuID, menuItem))
 {
 if (menuID == MENU_Apple)
 {
 Str255 appleItem;
 ::GetItem(GetMHandle(MENU_Apple), menuItem, appleItem);
 ::OpenDeskAcc(appleItem);
 } else {
 cmdHandled = LCommander::ObeyCommand(inCommand, ioParam)
 }
 } else { // non-synthetic commands
 switch (inCommand) {
PPB–296 The PowerPlant Book

Commanders and Menus
Adding Menus

 case cmd_About:
 ShowAboutBox();
 break;
 ...

Note that the About Box has a non-synthetic command number. If
the command number is not synthetic, then you simply test for the
command number directly—typically in a switch statement. There
is no need to use the menu ID or menu item number for a regular
command. In fact, that data is not readily available.

Now that you understand the strategy and details behind
PowerPlant menu management, let’s talk about how you
accomplish real menu-related tasks.

Adding Menus

Adding a menu to your application is simple.

1. Create a MENU resource.

2. Create an Mcmd resource with the same ID number as the
associated MENU resource. Enter command numbers for
each item in the menu.

3. Modify the MBAR resource by adding the ID number of the
new MENU resource to the MBAR resource.

If you use Constructor, this process is even simpler. You simply
create a menu bar resource, add the necessary menus, and specify
the menu items and command numbers. Constructor creates and
manages the resources automatically. If you move menu items
around, Constructor keeps the Mcmd resource updated. See the
Constructor manual for details of menu editing in Constructor.

WARNING! If you don’t use Constructor and you modify the position of menu
commands in the MENU resources, you must modify the associated
Mcmd resources as well. Failure to do so will cause unpredictable
results.

Menus are created as part of the default LApplication::Run()
function, which creates the menu bar (and all menus on the menu
The PowerPlant Book PPB–297

Commanders and Menus
Responding to Menu Commands
bar as specified in the application resources). However, there are
times when you must specify a menu at runtime, and cannot do so
in advance. For example, you have to set the contents of the Font
menu at runtime because you cannot know in advance what fonts
are available on any particular machine.

Use the Initialize() method of your application class to
accomplish this work. The default function in the LApplication class
is empty. Override this function in your own LApplication class to
do any additional menu setup work that’s required for your
application. The default LApplication::Run() function calls
Initialize() as part of the application setup process, so your
function will be called before you have to start handling events. The
code exercise for this chapter demonstrates the technique. You’ll see
it used in some other exercises as well.

Responding to Menu Commands

Under most circumstances, the default PowerPlant behavior is all
you need for menu dispatch. PowerPlant identifies the menu choice,
retrieves the associated menu command, and passes the command
to the target commander. It is the target object’s responsibility to
handle the command or not.

The calling chain for this dispatch is as follows. When a click occurs
in the menu, LEventDispatcher::ClickMenuBar() (in the
application object) gets the command number. It then calls the
target commander’s ProcessCommand() function. The
ProcessCommand() function passes the command on to
attachments, and then calls the target commander’s
ObeyCommand() function.

ObeyCommand() is where command identification and response
occurs. It is also the only function in this entire dispatch series that
you are likely to override.

A typical ObeyCommand() function will test for synthetic
commands, if they are used in your application and are of
significance to the particular commander. For example, a text-
related object would be very interested in a synthetic command
from a Font menu. It calls IsSyntheticCommand() to determine
if the command is synthetic, and to get the menu ID and item
PPB–298 The PowerPlant Book

Commanders and Menus
Responding to Menu Commands
number. After you identify menu and item, you respond
appropriately. Our hypothetical text commander might change the
font it uses when displaying its contents, for example.

The typical ObeyCommand() function has a switch statement with
a case for each command of interest to the object. In response to the
command, you do whatever is appropriate for your application.

Finally, the typical ObeyCommand() function calls its inherited
ObeyCommand() function for any commands it does not handle.
Otherwise you won’t get the benefit of command testing and
response in the base class.

Although we discuss windows in the next chapter, they make a
great example here. LWindow is a commander. If you derive your
own window class from LWindow, your class’s ObeyCommand()
function should call LWindow::ObeyCommand() for any
command it does not handle directly. This way you get to take
advantage of LWindow’s code.

LWindow, in turn, inherits directly from LCommander. If
LWindow::ObeyCommand() does not handle the command, it calls
LCommander::ObeyCommand(). This call gets the
supercommander and calls the supercommander’s
ProcessCommand() function. This gives the supercommander the
opportunity to act or pass on the command.

This approach means that a commander is not required to handle
every possible command. Each commander handles the commands
for which it is responsible. If it cannot handle the command, it
passes responsibility back up the command chain to a higher
commander. This is the code-level implementation of the bottom-up
command chain hierarchy we talked about in the chapters on
application framework design and PowerPlant design.

If the user issues a quit command, for example, it is likely that the
command would filter up through the command chain all the way
back to the application. Remember, the application is itself a
commander, so it has an ObeyCommand() function. Because
quitting is really an application-level chore, in
LApplication::ObeyCommand() you’ll find this code:
The PowerPlant Book PPB–299

Commanders and Menus
When To Update Menus
case cmd_Quit:
 SendAEQuit();
 break;

No other object needs to know how to handle a quit command, the
application object takes care of it.

When To Update Menus

As a Macintosh programmer you know that you must update the
appearance of menu items as well as respond to menu choices.
Before we discuss how to update menu items, let’s talk about when
PowerPlant updates menu items, and how to control when a menu
updates.

There are two common strategies for updating menus: update
before displaying a menu, and update whenever an event occurs
that might change the state of a menu. You can think of these
approaches as “update before display” and “update as needed.”

Update before display

In the first strategy, you update menus only when the user clicks in
the menu bar or types a command key. Before displaying the menu,
you update it so the menu’s contents reflect the current state of the
program. The state of a menu while it is not displayed is really
unimportant. The only time it is important that the menu’s contents
accurately reflect the state of the program is when you actually look
at the menu.

The difficulty with this strategy is that one part of a menu is always
visible—the menu title in the menu bar. If all of a menu’s items are
disabled, the menu title should also be dimmed. Assume that as the
user works with a program, such a situation arises—that is, the state
of the program is such that all of a menu’s items would be disabled.
The menu title does not reflect that situation, because the menu
hasn’t been updated. The user clicks in the menu bar, and menus
update. The user suddenly finds that a menu that appeared enabled
turns out to be disabled! This is bad human interface design.

One solution would be to have a secondary mechanism for
updating the menu bar whenever an event occurs that changes a
menu’s title. To do that reliably, you have to track every event that
PPB–300 The PowerPlant Book

Commanders and Menus
When To Update Menus
might cause a change in any menu item’s state. If you do that, you
will find yourself implementing PowerPlant’s menu updating
strategy.

Update as needed

PowerPlant takes the second approach to menu updating.
PowerPlant keeps menu items current at all times. As a result, the
menu bar accurately reflects the state of the application.

PowerPlant maintains a flag that reflects the state of menus. If the
flag is set, menus are considered “dirty” and in need of updating.
After processing each event, if the flag is set PowerPlant updates
menus. Figure 10.5 illustrates the process.

Figure 10.5 PowerPlant menu updating logic

PowerPlant retrieves an event. It clears the menu update flag and
processes the event. It is important to note that the event might be a
click in the menu bar, in which case a menu is displayed without
additional updating. PowerPlant relies on the fact that menus are
always current.

When an event occurs that might change a menu (such as a click in
the window content), PowerPlant sets the menu update flag. After
the event is fully processed, if the update flag is set then PowerPlant
updates menus. It calls the target commander’s
FindCommandStatus() function to do this. We’ll discuss what to
do in this function in just a bit.
The PowerPlant Book PPB–301

Commanders and Menus
Updating Menu Items
The events that cause PowerPlant to update menus are:

• switching the target

• click in the window content

• click in the menu bar

• command key press for a menu item

• activate event

• resume event

• Apple event

• modifying a document

• posting an undo action

Note that a click in the menu bar causes a menu update only after
the menu is displayed, the user makes a choice, and the resulting
command is fully processed.

An occasion may arise when you want to force a menu update as a
result of some other occurrence. For example, you may want to
enable the Save item in the File menu in a text processor only when
there is text in the window. To force a menu update, call
LCommander::SetUpdateCommandStatus(). Pass true as the
only parameter. This call sets the menu update flag. When control
returns to the main event loop, PowerPlant will update the menus.

Updating Menu Items

When it is time to update menu items, PowerPlant goes through
each item in each menu and gets a command number. What
happens depends upon the command number. There are five
possible results:

• The command number is positive.

• The command number is zero.

• The command number is -1.

• The command number is negative.

• The command number is synthetic.
PPB–302 The PowerPlant Book

Commanders and Menus
Updating Menu Items
The command number is positive

We call positive menu commands non-synthetic commands to
distinguish them from synthetic commands. These are the most
common command numbers for menu items.

The target commander’s FindCommandStatus() function will be
called once for each menu item that has a positive, non-zero menu
command. Like the ObeyCommand() function,
FindCommandStatus() receives the command number that
identifies the menu item involved.

In response, your commander determines what the status of that
menu item should be (based on application context), and provides
the necessary information to the caller. FindCommandStatus()
has a series of parameters, as listed in Table 10.5.

Table 10.5 FindCommandStatus() parameters

Each of the output parameters has a default value set before entry
into FindCommandStatus(). By default, a menu item is disabled,
unmarked, and the text remains unchanged.

If you want the item enabled, set outEnabled to true.

If you want a mark to appear before the menu item (like a check
mark, dash, diamond, or blank space to clear a mark), set
outUsesMark to true. If you use a mark, you must also specify the
mark you want to use in outMark.

To clear a mark, set outUsesMark to true and outMark to zero.
Setting outUsesMark to false does not clear an existing mark.

Data Type Name Purpose

CommandT inCommand command number

Boolean& outEnabled provide true if enabled

Boolean& outUsesMark provide true to use a mark

Char16& outMark provide the mark to use

Str255 outName provide the menu item text
The PowerPlant Book PPB–303

Commanders and Menus
Updating Menu Items
If you want to modify the menu item text, set outName to the text
you want to use. If you do not want to modify the item text, do not
modify this parameter.

Each commander’s FindCommandStatus() function handles
those menu items for which the commander is responsible. If the
commander’s FindCommandStatus() function receives a
command it does not recognize, it should pass the request on to its
inherited FindComandStatus() function. This process works just
like the ObeyCommand() design.

Call the FindCommandStatus() function inherited from your
base class to get the benefit of the code in the base class. If the base
commander from which you inherited is LCommander, then call
LCommander::FindCommandStatus(). This passes the request
up to the supercommander.

The command number is zero

If the command number is zero, PowerPlant does nothing. The
number zero indicates a menu item that is always disabled, like a
separator bar item in the menu. There is no need for you to deal
with such an item. It is and always remains disabled.

The command number is -1

The -1 number is a special command number. When PowerPlant
encounters a command number -1 (cmd_UseMenuItem), it
generates a synthetic menu command for this item, and then calls
the target commander’s FindCommandStatus() function, just like
it does for positive menu commands.

The FindCommandStatus() function should deal with this item
in exactly the same way that it handles non-synthetic items.
However, to identify the menu item you must call
IsSyntheticCommand() to get the menu ID and menu item
number. Then you can determine how to update the item based on
application context.

The command number is negative

PowerPlant does not update items with negative command
numbers (except for the -1 command number). Items with a non-
PPB–304 The PowerPlant Book

Commanders and Menus
Updating Menu Items
synthetic, negative command number remain in the same state,
typically enabled. The target commander’s
FindCommandStatus() function is not called for these items.

However, there is a loophole that allows you to modify menu items
with negative command numbers, as you’ll see when we discuss
updating items with synthetic command numbers.

The command number is synthetic

When PowerPlant searches for a menu item’s command number,
there may be none at all. If there is no command number,
PowerPlant generates a synthetic command number.

PowerPlant does not update these items. The target commander’s
FindCommandStatus() function is not called for items with
synthetic command numbers.

Clearly this presents a problem. You may need to update a menu
item that has a synthetic command. For example, you may want to
put a check mark in front of the current font in a Font menu.

PowerPlant provides a mechanism for you to accomplish that task,
and other updates of synthetic menu items.

In addition to calling FindCommandStatus() once for each
positive menu command, PowerPlant also calls the target
commander’s FindCommandStatus() function once for each menu
as a whole. Here’s how it works.

After calling FindCommandStatus() for each eligible menu item,
PowerPlant manufactures a synthetic command for item zero of
each menu—that is, for the menu title. PowerPlant then calls
FindCommandStatus() with this synthetic command number.
This gives the target object an opportunity to do something to the
menu as a whole.

Note that this call is made once for each menu, regardless of
whether the menu has synthetic commands, so that you can operate
on an entire menu. However, this is your only opportunity to
modify synthetic menu items.

For example, assume you have a text-processing application with a
Font menu. Assume also that it is menu update time. Your text
The PowerPlant Book PPB–305

Commanders and Menus
Working With LMenuBar and LMenu
target object’s FindCommandStatus() function is not called for
any item in the Font menu, because they all have synthetic
(negative) command numbers.

However, the text object’s FindCommandStatus() function is
called once for the Font menu as a whole. The command number is
a synthetic command number for item zero of the menu. Your
FindCommandStatus() function calls IsSyntheticCommand().
This call returns true and provides the menu ID for the Font menu,
and zero for the item number.

At this time you can act on the items in the Font menu. For example,
you may enable all of them, disable them, or put a check mark in
front of the item for the current font. You do this using standard
Macintosh Toolbox calls. The details, of course, are dependent upon
your own application.

Working With LMenuBar and LMenu

Finally, you may have noticed that there hasn’t been much talk
about these two classes. That’s because most of their utility is
designed for internal PowerPlant use. You won’t have to use objects
of either class directly very often.

The exception to this rule is when you are dealing with menus like
the typical Font menu. In that case, you need to get the Mac OS
MenuHandle so that you can perform traditional Mac OS menu-
management tasks like putting a check mark in front of the item
representing the current font. You also need to work with the Menu
Manager if you dynamically alter menus at runtime.

An application has one LMenuBar object. You can always get a
pointer to this object by calling the static function
LMenuBar::GetCurrentMenuBar().

You can use LMenuBar to add or remove menus dynamically,
although doing so is not a recommended feature of the human
interface. Use LMenuBar::AddMenu() to add a new menu at
runtime. Use LMenuBar::RemoveMenu() to remove a menu at
runtime. If the menu has submenus, they are added or removed as
well.
PPB–306 The PowerPlant Book

Commanders and Menus
Working With LMenuBar and LMenu
Each menu in a PowerPlant application has an associated LMenu
object. To get a pointer to the menu object of choice, you call the
LMenuBar’s FetchMenu() function. You provide the menu ID.

After you have a pointer to the menu object, getting the Macintosh
Toolbox MenuHandle is simple. Call the menu object’s
GetMacMenuH() function. You now have a Mac OS MenuHandle,
and you can do what you want with the menu.

However, LMenu provides some functions that are more useful in
the PowerPlant context than using the Mac OS Menu Manager
directly. They are listed in Table 10.6.

Table 10.6 Some LMenu functions

Finally, the LMenuBar and LMenu combination is another
independent PowerPlant design element that you can use
independently of the rest of PowerPlant. Simply include the
necessary files in your project, and you’re on your way. The
command dispatch and menu updating mechanisms are an integral
part of PowerPlant, and separate from the menu classes.

Function Purpose

GetMacMenuH() return Mac OS MenuHandle

GetMenuID() return menu ID

InsertCommand(
)

insert an item with the specified text and
command number into the menu

RemoveCommand(
)

remove the item (specified by command
number) from the menu

RemoveItem() remove the specified item from the menu

SetCommand() set the specified item’s command number

ItemIsEnabled(
)

return whether specified item is enabled
The PowerPlant Book PPB–307

Commanders and Menus
Summary
Summary
LCommander objects maintain the chain of command and duty in
an application. The application has one target commander that
receives all commands and keystrokes directly.

The target object can respond to a command, or pass it up the
command chain. The target object also tells PowerPlant the status of
menu items during menu updates.

You build menus using MBAR, MENU, and Mcmd resources.
PowerPlant associates a unique command number with each menu
item, and uses that number when handling commands or menu
updates. PowerPlant handles all menu dispatch. You override the
ObeyCommand(), FindCommandStatus() and
HandleKeyPress() functions in your commanders to implement
your application’s behavior.

As usual, now it’s time to put all this to work in real code.

Code Exercise
This exercise introduces you to commanders, and to menus. You
create a simple application named “Menus.” This application
displays a simple window, as shown below in Figure 10.6. You can
create an arbitrary number of windows.

Figure 10.6 The Menus application

Each window contains a caption. Unlike the standard LCaption
object, however, this caption is dynamic and a commander. It
responds to menu commands to change font, size, and style. You
PPB–308 The PowerPlant Book

Commanders and Menus
The Menu Resources
cannot change the text in this object using the Menus application. It
is a caption, not an editable text item.

Feel free to examine the PPob resource for this window. The
CDynamicCaptionCmdr class is a custom class. The class ID is
DyCC. In addition to the usual caption information, this item stores
the menu resource ID for the font and size menus, and the item
numbers of the first and last size items.

Because this exercise concentrates on menus, in this exercise we
won’t explore the visual interface further. We will explore the menu
resources. And then you write the code to identify and respond to
commands, and to update menus.

The Menu Resources

You can use Constructor to examine the menu-related resources.
They are in the file Menus.ppob. You won’t modify any of these
resources, but you should take a look at them so you understand
what PowerPlant requires for menus.

Examine the MENU resources. In addition to the standard Apple,
File, and Edit menus, there are Font, Size, and Style menus. Notice
the MENU resource ID numbers for these menus. They are 250, 251,
and 252 respectively. These menus are very common in Macintosh
applications, and the PP_Messages.h file defines these constants:

const MessageT cmd_FontMenu = 250;
const MessageT cmd_SizeMenu = 251;
const MessageT cmd_StyleMenu = 252;

The Font menu has no items. The Size and Style menus have the
standard items you typically see in these menus. Close the MENU
resources when you’re through with them.

Examine the MBAR resource. Notice that it contains an entry for
each of the six menus. PowerPlant will build the menu bar
containing each of these menus. The combination of MENU and
MBAR resources is all that’s necessary to make a menu appear in a
PowerPlant application. To make that menu work, however, you
typically use an Mcmd resource.

Constructor maintains the Mcmd resources automatically based on
the command ID you set for each menu item. Figure 10.7 illustrates
The PowerPlant Book PPB–309

Commanders and Menus
The Menu Resources
the relationship between the Size and Style menus and their
respective commands.

Figure 10.7 Menu commands in the Menus app

There is one command for each of the 13 items in the Size menu. The
first 8 items have a command number of -1. This is the
cmd_UseMenuItem value we discussed earlier in this chapter. The
other items in the Size menu and all the items in the Style menu
have positive or zero command numbers. The corresponding
PowerPlant constants for these standard items are defined in
PP_Messages.h.

There are similar standard commands defined in PowerPlant and
used in the Apple, File, and Edit menus. Feel free to examine them
as well.

Notice that there is no Mcmd resource for the Font menu.
PowerPlant generates synthetic commands for these items at
runtime.
PPB–310 The PowerPlant Book

Commanders and Menus
Implementing Menus
Implementing Menus

In this part of the code exercise you write the code to populate the
Font menu, establish a command hierarchy, recognize and respond
to menu commands, and handle menu updating. In the process you
will work with both kinds of commands, synthetic and non-
synthetic. You also see the practical difference between a pure
synthetic command and the cmd_UseMenuItem command.

Before we get started, a little context will help. Let’s look at the
dynamic caption object and how it is implemented. The code for the
dynamic caption object is provided for you.

1. Examine CDynamicCaption.

class declaration CDynamicCaption.h

Take a look at the class declaration for CDynamicCaption. It inherits
from LCaption, and therefore has all the features of a regular
LCaption object. In addition, the CDynamicCaption object has a text
traits record. Most of the public functions of CDynamicCaption are
simple accessors for the text traits record or one of its members such
as font, size, style, and justification.

The FinishCreateSelf() routine simply sets the mTextTraits
member.

The DrawSelf() routine gets the current text traits, sets the port
characteristics to match, and calls
UTextDrawing::DrawWithJustification() to draw the
contents.

Based on this design, when you respond to a selection that affects
the text traits, all you have to do is modify the text traits information
and refresh the pane. If you look at the Set...() functions among
the accessors, you’ll see that they do just that. They set the
appropriate text traits field, and call Refresh(). As a result, the
caption draws itself with the new settings.

Close the file when you are finished.

NOTE A CDynamicCaption object is never instantiated in this application.
CDynamicCaption is used as a base class for
CDynamicCaptionCmdr, discussed in the next step.
The PowerPlant Book PPB–311

Commanders and Menus
Implementing Menus
2. Examine CDynamicCaptionCmdr.

class declaration CDynamicCaptionCmdr.h

Left to itself, the CDynamicCaption object cannot respond to menu
commands, because it is not a commander. In a simple application
like this, you could design the application object to keep track of the
CDynamicCaption object, recognize and respond to each menu
command, set the CDynamicCaption object text traits, and so forth.

However, it is usually wiser to distribute responsibility for
commands to the objects that respond to the commands. In order to
accomplish that design, the object must be a commander.

CDynamicCaptionCmdr solves the problem. It inherits from
CDynamicCaption and LCommander. It is a dynamic caption object
that can respond to commands. The PPob resource for the window
in this application specifies a CDynamicCaptionCmdr object.

The only functions this class overrides are ObeyCommand() and
FindCommandStatus(). You will write those functions later in
this exercise. Before you get that far, you must do some setup work.

Close this header file when you are finished.

3. Register custom classes

CMenusApp() CMenusApp.cp

This application uses two custom pane classes. Although you only
instantiate CDynamicCaptionCmdr, you should register both. The
CDynamicCaptionCmdr object inherits from CDynamicCaption.
PowerPlant will create the CDynamicCaption object as part of the
CDynamicCaptionCmdr object.

The existing code sets up debugging and registers PowerPlant
classes. Register both custom classes.

// Register required PowerPlant core class.
RegisterClass_(LWindow);

// Register custom classes.
RegisterClass_(CDynamicCaption);
RegisterClass_(CDynamicCaptionCmdr);
PPB–312 The PowerPlant Book

Commanders and Menus
Implementing Menus
4. Populate the Font menu.

Initialize() CMenusApp.cp

The content of the Font menu depends upon the runtime
environment. You must fill in the items as the application starts up.
You perform final setup work in the application’s Initialize()
function.

You should get the menu bar object, get the Font menu from it, get
the Mac OS menu handle, and call ::AppendResMenu() to add
resources of type FONT.

// Setup the font menu.
LMenuBar *theMenuBar = LMenuBar::GetCurrentMenuBar();
ThrowIfNil_(theMenuBar);

LMenu *theFontMenu = theMenuBar->FetchMenu(rMENU_Font);
ThrowIfNil_(theFontMenu);

::AppendResMenu(theFontMenu->GetMacMenuH(), 'FONT');

Unlike most of the other applications you have built so far, there is
no code to make a window. This application supports multiple
windows. At launch time, if an open-application Apple event is
received, the Startup() function calls ObeyCommand() to create
a new window. You write ObeyCommand() in the next step.

5. Create a window.

ObeyCommand() CMenusApp.cp

One command the application object recognizes is cmd_New. In
response you should create a new window. The existing code
identifies the message in a case statement. The defined constant for
the PPob resource is rPPob_MenusWindow. Call the LWindow
class creator function.

case cmd_New:
{
 // Create the window.
 LWindow *theWindow;
 theWindow = LWindow::CreateWindow(rPPob_MenusWindow, this);
 Assert_(theWindow != nil);
The PowerPlant Book PPB–313

Commanders and Menus
Implementing Menus
6. Establish the latent command hierarchy.

ObeyCommand() CMenusApp.cp

The command hierarchy for this simple application is (from top to
bottom): application, window, caption. When you call the LWindow
class creator function, you specify the application object as the
commander. When the window activates, you want the caption
object to become the target object. Therefore, you must make it the
latent subcommander of the window. Then show the window.

To accomplish this task, now that you have the window, get a
pointer to the caption object, and make it the latent subcommander
of the window. This code goes right after the code you wrote in the
previous step, as part of the response to new_Cmd.

 Assert_(theWindow != nil);

// Get the caption.
CDynamicCaptionCmdr *theCaption;
theCaption = dynamic_cast <CDynamicCaptionCmdr *>
 (theWindow->FindPaneByID(kDynamicCaptionCmdr));
Assert_(theCaption != nil);

// Make it the latent subcommander of window.
theWindow->SetLatentSub(theCaption);

// Show the window.
theWindow->Show();

The last line that shows the window is redundant if the window’s
visible attribute is set.

Notice that the default case passes unhandled commands on to the
inherited ObeyCommand() function.

7. Update the New item in the file menu.

FindCommandStatus() CMenusApp.cp

The application object is responsible for the New item, both to
respond to the command and update the menu. This is a non-
synthetic menu command. The existing code identifies the case. The
New item should always be enabled. Enable the menu item.

case cmd_New:
{
 // Enable the New command.
PPB–314 The PowerPlant Book

Commanders and Menus
Implementing Menus
 outEnabled = true;
}
break;

Save your work and close the file. You have completely
implemented the application object’s behavior. The responsibility
for other commands rests with the caption. In the following steps
you write the ObeyCommand() and FindCommandStatus()
functions for the caption.

8. Respond to synthetic commands

ObeyCommand() CDynamicCaptionCmdr.cp

The caption may receive synthetic commands from either the Font
menu or the Size menu. To complete this step you perform the
following tasks.

a. Determine if the command is synthetic.

If the command is synthetic continue. Otherwise, you’ll skip to
the code that handles non-synthetic commands. You write that
code in the next step.

b. Determine if it is a Font menu command.

If it is, continue. If it is not, you’ll skip to the code that handles
the Size menu. You write that code in substep d in this step.

c. Process the Font menu command.

Get the Font menu object, read the text of the item, and call
SetFont() to update the text traits record. This completes
handling of a Font menu command.

d. Determine if it is a Size menu command.

There are other synthetic commands besides the Font and Size
menus. If this command is from the Size menu, continue. If it is
not, you skip to the code that handles other synthetic
commands. You write that code in substep f in this step.

e. Process the Size menu command.

Get the Size menu object, read the text of the item, convert it to a
number, and call SetSize() to update the text traits record.
This completes handling of a Size menu command.
The PowerPlant Book PPB–315

Commanders and Menus
Implementing Menus
f. Pass on other synthetic commands.

The caption object is not responsible for any other synthetic
commands. If the command is synthetic, but not a Font or Size
menu command, call the inherited ObeyCommand() function. In
this case, that’s LCommander::ObeyCommand().

The solution code for this long step is listed here for reference.
SInt16 theMenuItem;
// Is it a synthetic command.
if (IsSyntheticCommand(inCommand, theMenuID, theMenuItem)) {
// Is it a Font menu command.
 if (theMenuID == mFontMenuID) {

 // Get the menu object.
 LMenu *theMenu;
 theMenu = LMenuBar::GetCurrentMenuBar()->

FetchMenu(mFontMenuID);
 Assert_(theMenu != nil);

 // Get the menu item text - name of font.
 Str255 theFontName;
 ::GetMenuItemText(theMenu->GetMacMenuH(), theMenuItem,
 theFontName);

 // Set the caption font.
 SetFont(theFontName);

 } else if (theMenuID == mSizeMenuID) {

 // Get the menu object.
 LMenu *theMenu;
 theMenu = LMenuBar::GetCurrentMenuBar()->

FetchMenu(mSizeMenuID);
 Assert_(theMenu != nil);

 // Get the menu item text.
 Str255 theMenuText;
 ::GetMenuItemText(theMenu->GetMacMenuH(), theMenuItem,
 theMenuText);

 // Get the size referred to by menu item.
 SInt32 theSize;
PPB–316 The PowerPlant Book

Commanders and Menus
Implementing Menus
 ::StringToNum(theMenuText, &theSize);

 // Set the caption size.
 SetSize(theSize);

 } else { // Neither Font nor Size menu.

 // Call inherited.
 cmdHandled = LCommander::ObeyCommand(inCommand, ioParam);

}
}

9. Respond to non-synthetic commands.

ObeyCommand() CDynamicCaptionCmdr.cp

The code in the previous step started with an if statement that
called IsSyntheticCommand(). All the code in this step falls
inside the else condition to that original if statement. In other
words, if the command is synthetic, the code in the previous step
handles it. Otherwise, the code in this step handles it.

We have given you most of the code in this step. The existing code
sets up the else condition, switches based on the command
number, and dispatches control to a variety of case statements. In
this step, you complete two cases: cmd_Plain and the default
case.

a. Respond to the Plain menu command.

Call the caption’s SetStyle() function. Set the style to the
Toolbox constant normal.

case cmd_Plain:
{
 // Set the caption style to normal (plain).
 SetStyle(normal);
}
break;

Existing code handles most other cases.

b. Pass on other menu commands.

The caption object is not responsible for other non-synthetic
commands. Call the inherited ObeyCommand() function. In this
case, that’s LCommander::ObeyCommand().
The PowerPlant Book PPB–317

Commanders and Menus
Implementing Menus
default:
{
 // Call inherited.
 cmdHandled = LCommander::ObeyCommand(inCommand, ioParam);
}
break;

You have now completely implemented commands in this
application. Your final task is to update menu items. You
accomplish that in the next two steps.

10. Update synthetic menu items.

FindCommandStatus() CDynamicCaptionCmdr.cp

Remember that the Font menu has no Mcmd resource. The Size
menu does have an Mcmd resource, and assigns the value -1—
cmd_UseMenuItem—to each of the items for setting a particular
point size. PowerPlant behaves differently with respect to menu
updating for items with a -1 command number, as you are about to
see first hand in the code for this step.

Existing code calls IsSyntheticCommand(). Because the Font
menu is populated completely by items with no Mcmd resource,
PowerPlant does not call FindCommandStatus() on an item-by-
item basis. Instead, PowerPlant calls this function once for the Font
menu title, with an item ID of zero. The existing code tests to see if
the Font menu is involved. If it is, you should:

a. Enable the Font menu title.

b. Get the name of the font used by the caption.

Use the CDynamicCaptionCmdr GetFont() function.

c. Get the menu object.

Get the menu bar object, use it to get the Font menu object.
if (theMenuID == mFontMenuID) {

 // Enable the menu title.
 outEnabled = true;

 // Get the name of the font used by caption.
 Str255 theFontName;
 GetFont(theFontName);

PPB–318 The PowerPlant Book

Commanders and Menus
Implementing Menus
 // Get the menu object.
 LMenu *theMenu;
 theMenu = LMenuBar::GetCurrentMenuBar()->

FetchMenu(mFontMenuID);
 Assert_(theMenu != nil);

 // Get the number of items in the menu.

The existing code uses Toolbox functions to count the number of
items in the menu and set the proper mark for each item.

For the Size menu items that have command number -1, PowerPlant
also creates a synthetic menu command. However, the
FindCommandStatus() function is called for each item in turn. As
a result, you can handle them individually.
FindCommandStatus() is called once for the menu title as well.

The existing code identifies a synthetic command involving the size
menu, and switches on the item. You should:

d. Enable the Size menu title.

If the item is the menu title, enable the item.

e. Process each other item.

All other size items are treated identically, so this can be a
default case. You should enable the item. Then get the Size menu
object. Existing code does the rest of the work.

switch (theMenuItem)
{
 case 0: // Menu title

 // Enable the menu title.
 outEnabled = true;
 break;

 default: // Other size items with -1 command
 {
 // enable the individual item
 outEnabled = true;

 // Get the menu object.
 LMenu *theMenu;
 theMenu = static_cast<LMenu*> (LMenuBar::GetCurrentMenuBar()-
>

The PowerPlant Book PPB–319

Commanders and Menus
Implementing Menus
FetchMenu(mSizeMenuID));
 ThrowIfNil_(theMenu);

 // Get the menu item text.

Existing code determines the size for the caption text. It uses
Toolbox calls to match the size represented by the menu item
with the text size. If they match, it sets a check mark. If they do
not, the code sets no mark (thus clearing any previous mark).

Notice that the code for the Size menu does not loop. The Font
menu code executes once only—for item zero, the menu title.
The Size menu code executes repeatedly, once for each item with
the -1 command number, and again for item zero—the menu
title. In either case—Font or Size menu—the actual command
number received by FindCommandStatus() is a synthetic
command.

f. Pass on other menu commands.

You must pass any command you don’t handle to the inherited
FindCommandStatus() function. In this case, that’s
LCommander.

} else { // other synthetic command

 // Call inherited.
 LCommander::FindCommandStatus(inCommand,
 outEnabled, outUsesMark, outMark, outName);
}

You have now completely handled updating menu items for which
PowerPlant generates synthetic menu items. Let’s do the non-
synthetic items.

11. Update non-synthetic menu items.

FindCommandStatus() CDynamicCaptionCmdr.cp

The code in the previous step started with an if statement that
called IsSyntheticCommand(). All the code in this step falls
inside the else condition to that original if statement. In other
words, if the command is synthetic, the code in the previous step
handles it. Otherwise, the code in this step handles it.

We have given you most of the code in this step. The existing code
sets up the else condition, switches based on the command
PPB–320 The PowerPlant Book

Commanders and Menus
Implementing Menus
number, and dispatches control to a variety of case statements. In
this step, you complete two cases: cmd_Plain and the default
case.

a. Update the Plain menu item.

Enable the item. The item uses a mark, so set that flag as well.
Then determine if the caption’s current style is normal. If it is,
use a check mark. If not, use no mark.

case cmd_Plain:
{
 // Enable the item, set the uses mark flag,
 // and get the mark.
 outEnabled = true;
 outUsesMark = true;
 outMark = (GetStyle() == normal) ? checkMark : noMark;
}
break;

Existing code handles most other cases.

b. Pass on other menu commands.

The caption object is not responsible for other non-synthetic
commands. Call the inherited FindCommandStatus()
function. In this case, that’s from LCommander.

default:
{
 // Call inherited.
 LCommander::FindCommandStatus(inCommand, outEnabled,
 outUsesMark, outMark, outName);
}
break;

Of all the cases for which code is provided for you, the one worthy
of note is the case cmd_FontOther. It loops to see if the caption
text size matches any of the size items in the menu. If it does not, it
modifies the text of the Other item to include the actual font size.

You have now completely implemented commands and menu
updating. Save your work and close the file.
The PowerPlant Book PPB–321

Commanders and Menus
Implementing Menus
12. Build and run the application.

This has been a long exercise, but now its time to see the fruits of
your labor. Make the project and run it. When you do, a window
should appear. See Figure 10.6.

Choose items in the Font, Size, and Style menus and watch how the
caption responds. When you look at each menu, notice the check
marks and how the menu updates properly. This is your code hard
at work making sure the menu items are consistent with the state of
the caption. The Other item in the Size menu is not supported, so it
isn’t checked even if the caption uses an “other” size.

Choose the New item in the File menu. A second window should
appear, with another caption. Set its font, size, and style. The
settings for this caption are independent of the caption in the first
window. When you look in the menus, the correct item is checked
for the active window and caption. Very cool.

Now, close both windows. What happens to the Font, Size, and
Style menus?

Because there is no caption object to update these menus, they
remain disabled (the PowerPlant default). In the design of this little
application, that’s appropriate behavior.

Continue exploring the command and menu updating process. If
you would like to expand on this application, here are some
suggestions.

• Enable the debugger and set breakpoints in the
FindCommandStatus() and ObeyCommand() routines so you
can watch the flow.

• Write code to implement the Other item in the Size menu. This
will send you off into the world of dialogs, a topic not yet
covered in this manual.

• Add a color menu to the application, and colorize the text.
Perhaps you can use the color control from the Controls chapter.

• Enable the Font, Size, and Style menus when no window is open.
Save the settings in a global default. When you create a new
window, apply these settings to the window.

• Replace the caption with an editable text object.

Have a good time!
PPB–322 The PowerPlant Book

Commanders and Menus
Implementing Menus
You have reached another milestone on the road to PowerPlant
mastery. This exercise has given you practical experience working
with all kinds of menu commands in PowerPlant.

We aren’t completely through with menus just yet. In the next
chapter you learn all about windows in PowerPlant. In the code
exercise for that chapter, you’ll build a Window menu that lists each
open window. You’ll do a lot more work with menus in that
exercise.
The PowerPlant Book PPB–323

Commanders and Menus
Implementing Menus
PPB–324 The PowerPlant Book

11
Windows

LWindow is a complex class that descends from and adds a great
deal to LView. You will use this class often in your PowerPlant
programming, both directly and as a base class for your own
window classes. It serves as a wrapper class for the Macintosh
Toolbox WindowRecord structure, so you can easily create and use
windows in PowerPlant.

The good news is, you already know 90% of what you need to know
to use windows effectively. Chapter 7, “Views” introduced you to
LView and its descendants, including LWindow. At the time we
skipped any detailed discussion of the single most important kind
of view, the window.

In this chapter we concentrate on those aspects of window objects
that make a window different from other views. In our discussion
we will cover three main topics:

• What is a Window—the window class and its descendant.

• Window Characteristics—the special features of a window that
distinguish it from other views.

• Working With Windows—how to create and use windows in a
PowerPlant application.

Along the way we will also encounter several window-related
utilities in PowerPlant.

What is a Window
On the Macintosh, a window is the visual representation of a very
special data structure that incorporates a GrafPort for drawing and
other data to control drawing characteristics. On a monitor, this
structure shows up as a window.
The PowerPlant Book PPB–325

Windows
What is a Window
In PowerPlant, a window is an object of the LWindow class. This
object is connected to a Mac OS WindowRecord, and appears on
screen as an ordinary Macintosh window.

Figure 11.1 illustrates the inheritance chain for LWindow.

Figure 11.1 LWindow hierarchy

As you can see from the class diagram, LWindow has three direct
ancestors.

First, LWindow inherits from LView, a descendant of LPane. That
gives a window all the features of panes and views. Windows can
receive and respond to mouse clicks within their bounds. They can
contain other panes. Windows can perform all the other magic
associated with panes and views, not the least of which is the ability
to have attachments.

LWindow inherits from LCommander. That means that a window
can receive and handle menu commands and key presses. It can
update and manage menus as any other commander can.

Finally, LWindow inherits from LModelObject. Therefore, a
window can respond to Apple events—it is scriptable.

LWindow has one descendant in PowerPlant, LDialogBox.

If you stop to think about all the important classes from which
LWindow inherits, you see that its behavior encapsulates
everything we talked about in chapters 6, 7, and 9 on panes, views,
and commanders. That’s a lot of power.
PPB–326 The PowerPlant Book

Windows
Window Characteristics
Beyond that, LWindow has significant attributes and behaviors that
are unique to it. In the rest of this chapter we discuss what they are.

See also Chapter 15, “Periodicals and Attachments,” Chapter 12,
“Dialogs,” and the PowerPlant Reference for more on scriptability.

Window Characteristics
Do not lose sight of the fact that, although we mention this only in
passing, everything you have learned about panes, views, and
commanders applies to windows. That means that windows have
an image, manage coordinate conversions, respond to clicks, and all
the rest.

In addition to all those characteristics and behaviors, windows also
have the following additional characteristics.

• Window Attributes—features PowerPlant uses to manage a
window.

• Window Size and Zooming—the minimum, maximum, and
standard dimensions of a window.

• Window Descriptor—how the window uses the descriptor
characteristic of panes.

• Window Kind—how PowerPlant uses the Mac OS
WindowRecord windowKind field.

We discuss additional window-related behaviors in “Working With
Windows.”

Window Attributes

Each window has a set of special attributes that define the kind of
window it is, and how the window behaves. These attributes
determine the layer in which the window appears, the various
controls that appear around the perimeter of the window (like a
close box or zoom box), and some other aspects of window
behavior.

Table 11.1 lists all the window attributes and their meaning. In the
sections following the table we discuss each of these attributes in
some detail.
The PowerPlant Book PPB–327

Windows
Window Attributes
Table 11.1 Window attributes

Window layers

PowerPlant uses three layers to determine how a window behaves
in certain respects. From front to back, the layers are:

• modal

• floating

• regular

Modal windows are always in front, and all other windows are
inactive when a modal window is present. Modal windows must be
dismissed before you can perform other actions in the program. The
modal dialog is a perfect example. We’ll discuss modal windows in
Chapter 12, “Dialogs.”

Attribute Purpose

windAttr_Modal in modal layer

windAttr_Floating in floating layer

windAttr_Regular in regular layer

windAttr_CloseBox has close box

windAttr_TitleBar has title bar

windAttr_Resizable is resizable

windAttr_SizeBox has grow box

windAttr_Zoomable is zoomable and has zoom box

windAttr_ShowNew show immediately when created

windAttr_HideOnSuspend hide window when application
is suspended

windAttr_EraseOnUpdate erase before drawing

windAttr_Enabled is enabled

windAttr_Targetable is targetable

windAttr_GetSelectClic
k

process click that selects window

windAttr_DelaySelect process click, then (perhaps)
select window
PPB–328 The PowerPlant Book

Windows
Window Attributes
Floating windows are always active, except when a modal window
is active. The floating layer is used for tool palettes and other kinds
of accessory windows. These “float” above the regular front
window. You may activate any regular window, and a floating
window remains displayed in front of it. It appears to be active and
frontmost, even though the regular window may be frontmost as far
as the Mac OS is concerned.

As you’ll see in the Working With Windows section, implementing
floating windows is simple. Floating windows are one of the really
nice features of PowerPlant.

Regular windows are beneath all modal and floating windows. The
top regular window is active, except when a modal window is
active. All other regular windows are inactive. Windows in the
regular layer behave like normal Macintosh windows.

Peripheral window parts

The next set of window attributes determine whether the window
has a close box, a title bar, a zoom box, and or a grow box.

The CloseBox attribute determines whether the window has a
close box. Regular and floating windows typically do. Modal
windows typically do not.

The TitleBar attribute determines whether the window has a title
bar. Typically, a non-moveable modal dialog does not have a title
bar. All other windows have a title bar.

The Resizable attribute determines whether the user can
manually resize the window by clicking and dragging in the bottom
right corner of the window. Note that being resizable does not
automatically give the window a size box. You must set the
SizeBox attribute to have a size box appear in the window.

The SizeBox attribute determines whether the window has a size
box. If this attribute is set, the Resizable attribute should also be
set. A resizable window may not have a size box, but all windows
with a size box should be resizable.

The Zoomable attribute determines two things: whether the
windows is zoomable, and if it has a zoom box. All zoomable
The PowerPlant Book PPB–329

Windows
Window Attributes
windows have a zoom box. Modal windows are typically not
zoomable. Regular and floating windows may or may not be
zoomable.

Drawing attributes

Three attributes control various facets of how a window draws.

The ShowNew attribute determines whether a new window is
initially visible or not.

The HideOnSuspend attribute is typically true for floating
windows. When an application is suspended—sent to the
background—the human interface guidelines dictate that all
floating palettes should be hidden. This attribute is typically false
for regular and modal windows. Regular and modal windows
become inactive, but do not hide.

The EraseOnUpdate attribute determines how window drawing
occurs. If this attribute is true, PowerPlant erases the contents of the
window before drawing. This attribute is typically true for
windows.

Clicking attributes

The remaining window attributes control how the window
responds to clicks.

The Enabled attribute determines whether the window is
enabled—that is, can it respond to clicks.

The Targetable attribute determines whether the window is or
can contain a command target object—that is, can it respond to
menu commands and keystrokes. Most windows are targetable.
This feature isn’t really enforced. For example, assume you have a
window with an LTextEditView object. If this attribute is not set for
the window, the LTextEditView object can still become the target
object. However, when the window is deactivated and reactivated,
the LTextEditView will not be restored as the target object.

The GetSelectClick attribute determines what you do with the
click that activates the window. For regular windows, usually the
click activates the window, and does nothing else. For tool palettes
in the floating layer, you typically set this attribute to true. In that
PPB–330 The PowerPlant Book

Windows
Window Attributes
case, the click that activates the window is also treated as a click in
the window contents (for example, a click on a button in the tool
palette). This maintains the illusion that the palette is always active.

If the DelaySelect attribute is true, a click in an inactive window
is first treated as a click in the contents. After the click event is
processed, if the mouse button has been released in the window, the
window is selected. You set this attribute to true to support drag
and drop. In the drag and drop human interface, you should be able
to drag selected information out of a background window without
activating the window.

WARNING! To support dragging from an inactive window, you must override
LPane::Click(). See the PowerPlant Advanced Topics chapter on
Drag and Drop for a thorough discussion of this issue.

Setting window attributes

The LWindow class has three accessors related to attributes. You
use these accessors to determine the state of the window’s
attributes, or to modify the attributes at runtime. The functions and
their purpose are listed in Table 11.2.

Table 11.2 Window attribute accessors

Typically you set the attributes in Constructor when you design the
visual interface for your application, or before creating a window on
the fly. Setting or clearing attributes does not have an immediate
effect on a window that has already been created. For example,
setting the windAttr_CloseBox attribute doesn’t suddenly give
the window a close box.

Function Purpose

HasAttribute() returns whether the attribute is set

SetAttribute() set the specified attribute

ClearAttribute() clear the specified attribute
The PowerPlant Book PPB–331

Windows
Window Size and Zooming
Window Size and Zooming

In addition to the many window attributes, a window has its own
unique way of keeping track of its dimensions.

Windows may have a minimum and maximum size (although this
feature is only important for resizable windows). Windows also
have a standard size—used for zooming.

Minimum and maximum sizes

These sizes control how large or small the window may become as
the user resizes the window manually. If the window is not
resizable, these values are not used.

The minimum and maximum sizes are stored in a single Rect data
member named mMinMaxRect. The top and left fields of the Rect
define the minimum size. The bottom and right fields of the Rect
define the maximum size. For example, if the mMinMaxRect fields
were {100,100,300,400}, then the minimum window size would be
100 x 100 pixels, and the maximum window size would be 300 x 400
pixels.

The accessors for this data are GetMinMaxSize() and
SetMinMaxSize(). Typically you set this information in
Constructor when defining the window characteristics.

The minimum size should be large enough to show some
meaningful content. In general, a window shouldn’t be smaller than
a size of 100 by 100 pixels.

The maximum size should be large enough to show all the data in
the window. By default, PowerPlant sets the maximum size to 32K
by 32K. In Constructor you see this value expressed as -1.

Standard size and zooming

Clicking the zoom box of a zoomable window toggles the window
between its standard state and its user state. The standard state is
the optimal size and position for the window. The user state is the
runtime size and position of the window that the user sets manually
on the desktop. The user state changes when the user drags or
resizes the window.
PPB–332 The PowerPlant Book

Windows
Window Descriptor
When the user clicks the zoom box, PowerPlant checks whether the
window is in the standard state. If it is, PowerPlant resizes the
window to the user state. If the window is not in the standard state,
PowerPlant resizes the window to the standard state.

The standard size characteristic of a window defines the size of the
window in its standard state. This value is stored in an
SDimension16 data member named mStandardSize. The
accessors are GetStandardSize() and SetStandardSize().

Typically you set this information in Constructor when defining the
window characteristics. The default standard size is 32K by 32K. In
Constructor you see this value expressed as -1.

When PowerPlant resizes a window to its standard state,
PowerPlant uses either the standard state value or the size of the
dominant screen, whichever is smaller. The dominant screen is the
screen that contains most of the window. If the screen dimensions
are used, PowerPlant allows a two-pixel margin around the edges of
the screen and the menu bar.

For example, if the standard state of a window is 600 by 400 pixels,
it will fit comfortably on a 13-inch monitor. If most of the window is
on a Classic-sized monitor, PowerPlant resizes the window to 508
by 318 pixels.

Figure 11.2 Standard and User States

Window Descriptor

As you know, every pane has GetDescriptor() and
SetDescriptor() accessors for the pane’s descriptor
The PowerPlant Book PPB–333

Windows
Window Kind
characteristic. The LWindow class uses these accessors to retrieve or
modify the window title.

Once again, you can set the title in Constructor. However, this is one
case where you are likely to use the accessors fairly regularly in
your code. The title of a document-related window is likely to
change as the user saves the document to a file.

Window Kind

To help you distinguish PowerPlant windows from non-
PowerPlant Macintosh windows, PowerPlant stores a special value
in the WindowRecord’s windowKind field. PowerPlant assumes
that any window whose windowKind is greater than or equal to
PP_Window_Kind is a PowerPlant window. This constant is
defined in LWindow.h, and its value is 20000.

You can use this feature to keep track of different kinds of
PowerPlant windows in your application, if that is necessary in
your design although you could accomplish the same goal using the
pane ID. Using the window kind is the only way to distinguish
subclasses of LWindow at runtime using a WindowRecord. Just
give different kinds of windows unique window kinds greater than
PP_Window_Kind. You can also use this feature to distinguish
between PowerPlant and other windows. We’ll discuss how to set
the windowKind field in “Creating a Window.”

To get a PowerPlant window’s window kind, use LWindow’s
GetMacPort() member function. Cast the returned GrafPtr to a
WindowPeek so you can access the windowKind field.

Listing 11.1 Getting the window kind
WindowPeek thePeek = (WindowPeek)theWindow-> GetMacPort();
short theKind = thePeek->windowKind;

Working With Windows
Because you already know about how to work with panes, views,
and commanders, you already know most of what there is to know
about windows. However, LWindow does have its own behaviors
in addition to those inherited from other classes.
PPB–334 The PowerPlant Book

Windows
Creating a Window
In this section we discuss:

• Creating a Window—using Constructor, creating a window on
the fly, and deriving window classes.

• Drawing a Window and Its Contents—things to consider when
drawing a window, including offscreen drawing.

• Managing Window Behavior—doing all those things that
windows do.

• Window Utilities in PowerPlant—the functions of the
UWindows and UDesktop classes.

• Dealing with the Window Manager—how to get at the Mac OS
window-related structures you may need on occasion.

Creating a Window

You can create a window using Constructor, or on the fly in your
code. We talk about each method. Then we discuss what you do
when you derive your own class from LWindow.

Using Constructor

Creating a window in Constructor is simple.

While in the Constructor project window, select the Windows and
Views resources, and choose New Resource (command-K) from the
Edit menu. Fill in the details in the Create New Resource dialog to
create a new PPob resource.
The PowerPlant Book PPB–335

Windows
Creating a Window
Figure 11.3 Creating a new window

Double-click the new PPob resource to see the layout editor for the
new window. Double-click the new window in the layout editor to
see and set the window characteristics, as shown in Figure 11.4.
PPB–336 The PowerPlant Book

Windows
Creating a Window
Figure 11.4 Setting window properties with Constructor

Note that a window has some of the same information as a pane,
including location, size, and class ID. There is no binding
information, because this is the top view. There is no pane ID for the
same reason. Remember, when you derive your own classes you
must change the class ID to your own unique value and register the
class with PowerPlant before creating any objects of that class.

All of the window attributes we discussed earlier are available. You
select a window layer. You select the peripheral window parts for
your window. You set the other clicking and drawing attributes.
The PowerPlant Book PPB–337

Windows
Creating a Window
You set the minimum, maximum, and standard sizes. And you set
the window title.

You can set the window proc by choosing an item from the popup
menu illustrated in Figure 11.5.

Figure 11.5 Window kind options

For regular windows, you choose the Document window item. The
movable modal type is most appropriate when creating dialog
boxes. Making a floating window is as simple as choosing the
correct window type and putting the window in the floating layer.
The “side bar” type puts the floating window’s “title bar” on the
side of the window rather than across the top.

Use the floating window types exclusively for floating windows.
Good interface design dictates that floating windows look different
from other windows, because they behave differently.

NOTE To use a floating window, you must also use the
UFloatingDesktop.cp implementation of the UDesktop class. See
“UDesktop.”
PPB–338 The PowerPlant Book

Windows
Creating a Window
You can use System 7’s auto-positioning feature for windows.
Choose an item from the popup menu illustrated in Figure 11.6.

Figure 11.6 Window positioning options

Finally, you can set initial values for a user constant or the window
refCon. The latter represents the classic Mac OS WindowRecord
refCon field. PowerPlant uses the refCon field to store a pointer
to the LWindow object. You cannot use the refCon for other
purposes. Use the userCon field instead.

Use the refCon field in Constructor if you want your window to
have a unique window kind characteristic. Make sure the value is
greater than PP_Window_Kind. When PowerPlant creates the
window object, it moves the value from the refCon field of the
resource to the windowKind field in the WindowRecord, and
replaces the refCon with a pointer to the window object.

All of the possibilities for all of the characteristics give you a
plethora of possible window designs. Creating unique and
interesting windows is as simple as making a few choices in the
pane Property Inspector window for the LWindow object.

With a PPob resource, creating the window (and all of its contents)
in code is simple. Call LWindow’s class creator function,
LWindow::CreateWindow(). PowerPlant does the rest.

See also “Register PowerPlant Classes.”
The PowerPlant Book PPB–339

Windows
Creating a Window
Creating a window on the fly

If you wish to create a window on the fly, you use the
SWindowInfo structure, detailed in Listing 11.2. This structure
specifies the values required to build a window. You define an
SWindowInfo structure, and fill in the values. In the structure you
provide the resource ID of a WIND resource, the layer in which to
place the window, the attributes, the minimum, maximum, and
standard sizes, and the userCon value.

To set the window kind from a resource, set the refCon value in
the window’s WIND resource to be your desired window kind. You
can also change the windowKind field directly after creating the
window. Make sure the value is greater than PP_Window_Kind for
a PowerPlant window.

Then you call the LWindow constructor. There is a constructor that
takes a reference to an SWindowInfo structure as a parameter.

Listing 11.2 The SWindowInfo structure
struct SWindowInfo {
 ResIDT WINDid;
 SInt16 layer;
 UInt32 attributes;
 SInt16 minimumWidth;
 SInt16 minimumHeight;
 SInt16 maximumWidth;
 SInt16 maximumHeight;
 SDimension16 standardSize;
 SInt32 userCon;
};

You can use LWindow-specific calls to set or modify other
information about the window after you create it. After you have
built the window, you can add whatever panes and views you wish.

Deriving your own windows

Creating your own window class is a fairly common occurrence.
There are many reasons why you might want to extend the
functionality of the basic LWindow class.
PPB–340 The PowerPlant Book

Windows
Drawing a Window and Its Contents
For example, you might want a window that can listen to control
items (like an LDialogBox object). You might want your window to
zoom or grow in unusual ways. There’s no telling what you might
want to do with a window.

In the case of deriving from LWindow, you are very likely to
override the functions listed in Table 11.3.

Table 11.3 Commonly overridden LWindow functions

You are familiar with all four of these functions from our earlier
discussions of panes, views, and commanders.

Beyond the functions listed in Table 11.3, it is difficult to typify the
other functions you will override. Suffice it to say, if your window
has unique behavior, you override those functions necessary to
implement that behavior. To determine what functions you need to
override, explore the LWindow class to see how the default
behavior is implemented. We discuss some of these functions in the
“Managing Window Behavior.”

For example, if you want to modify how a window resizes (perhaps
to allow switching between a few specific sizes) you should
examine LWindow::ClickInGrow(),
LWindow::DoSetBounds(), and LWindow::DoSetZoom() to
see if you should override them.

Drawing a Window and Its Contents

A window is a view. Drawing a window is just like drawing a view.
You call the window’s Draw() method. LWindow does not
override this method. The inherited LView::Draw() function first

Function Purpose

ClickSelf() interaction outside of subpanes

FinishCreateSelf() complete window setup

FindCommandStatus(
)

handle menu updating

ObeyCommand() respond to window-level commands
The PowerPlant Book PPB–341

Windows
Drawing a Window and Its Contents
calls the window’s own DrawSelf() function, then walks through
the list of subpanes and tells each of them to Draw().

The LWindow::DrawSelf() function erases the window contents
(if the EraseOnUpdate attribute is set), and then draws the size
box (if there is one). The net effect is the window erases its contents,
and then the subpanes draw themselves into the empty window.

Offscreen Drawing

In certain situation, you may want to use LOffscreenView for
drawing. You can put an LOffscreenView object into the window to
enclose several other panes. When you draw the subpanes, they all
draw in the offscreen view. When all panes are finished drawing,
the complete image is blitted to the screen. Even though this is a
trifle slower than drawing the individual panes directly on screen,
the net effect appears faster to the user because all the panes appear
simultaneously. This technique is also useful if the panes overlap
and might cause flicker while drawing.

LOffscreenView creates and destroys a temporary GWorld every
time you draw. If you want a view or panes within the view to use a
GWorld that lasts for more than one update, use LGWorld.

Examine the function definitions in the UGWorld.cp file. For
example, if you wanted an individual pane to use an LGWorld, you
would create a new LGWorld object from the constructor, and
delete the LGWorld object in the destructor. You could then use the
LGWorld to store the visual image of the pane. Listing 11.3 is one
example of how you might do this.

Listing 11.3 Simple example for LGWorld
MyPane::MyPane() {
 Rect frame;
 CalcLocalFrameRect(frame);
 mGWorld = new LGWorld(frame, 8);
}

MyPane::~MyPane() {
 delete mGWorld;
}

MyPane::DrawSelf() {
PPB–342 The PowerPlant Book

Windows
Managing Window Behavior
 Rect frame;
 CalcLocalFrameRect(frame);
 mGWorld->CopyImage(GetMacPort(), frame);
}

This hypothetical MyPane class would need a new function to draw
the contents of the pane into the GWorld in the first place, and to
update those contents when necessary. Such a function might look
something like Listing 11.4.

Listing 11.4 Drawing in an LGWorld object
MyPane::DrawInGWorld {
 mGWorld->BeginDrawing(); // Draw in GWorld
 // code to draw pane
 mGWorld->EndDrawing();

You use the LGWorld function BeginDrawing() to prepare the
GWorld, and EndDrawing() when you’re finished. All the
drawing in between occurs in the GWorld and not on screen.

TIP LGWorld is another independent PowerPlant class. You can use
LGWorld without using any other part of PowerPlant.

See also “LOffscreenView.”

Managing Window Behavior

Windows have several common behaviors with which you are
familiar, including activating, dragging, resizing, zooming, and
closing. In this section we examine the behavior of an LWindow
object and the default implementation of these functions in
LWindow. Unless your window does something unusual you
shouldn’t have to override this behavior.

Selecting, showing, and hiding a window

Remember the three facets of a pane’s state: visible/hidden, active/
inactive, enabled/disabled. All of these apply to windows.
Windows, of course, do unique things to manage state, but the
general principles remain the same.
The PowerPlant Book PPB–343

Windows
Managing Window Behavior
In addition, you may select a window, and respond when an
application as a whole suspends or resumes. Table 11.4 lists some of
the functions related to the window’s state.

Table 11.4 Some LWindow state-related functions

There are two points to make about these functions.

First, the four “self” functions are protected member functions.
Typically you would never call them directly. They are listed here
for information only. You should use the corresponding public
interface of Show(), Hide(), Activate(), and Deactivate(),
each of which calls the corresponding “self” routine. To implement
unique behavior in a derived class, you would override the “self”
routines.

Second, if you examine the source code for these functions, you’ll
see that several of them call static members of the UDesktop class.
UDesktop encapsulates much of PowerPlant’s window
management behavior.

See also the discussion of “State” and “UDesktop.”

Handling clicks

A click in a window is, in many ways, the defining event in an
application. What you do in response to a click determines how
your application behaves.

Function Purpose

Select() bring window to front

Suspend() behavior when application suspends

Resume() behavior when application resumes

ShowSelf() make window visible

HideSelf() make window invisible

ActivateSelf() make window active

DeactivateSelf() make window inactive
PPB–344 The PowerPlant Book

Windows
Managing Window Behavior
Clicks in a PowerPlant window can be thought of as occurring in
one of two general locations: in the peripheral window parts or in
the window content.

LWindow has default behaviors for handling most if not all of these
situations for you. LWindow::HandleClick() parses the click
and dispatches control based upon the location of the click.

Click in a peripheral control

A click in a peripheral control ultimately results in one of these
functions being called, whichever is appropriate for the click:

• LWindow::ClickInDrag()

• LWindow::ClickInZoom()

• LWindow::ClickInGrow()

• LWindow::ClickInGoAway()

If you examine the code for these functions, you’ll see that each of
them uses Apple events while implementing their respective
behavior. As a result, these actions are scriptable and recordable in a
PowerPlant application.

The default implementation of these functions in LWindow is likely
to suit your needs just fine. If it does not, you can derive your own
window class and override whichever behavior does not fit your
precise needs.

See also “Closing a window.”

Click in the content area of a window

LWindow::ClickInContent() handles a click in the content area
of a window. This function selects the window if necessary. It then
calls Click() to handle the click. LWindow does not override
Click(), so it uses LView::Click().

LView::Click() identifies whether the click occurred inside a
pane within the window. If it is within a pane, the function calls the
pane’s Click() function so the pane can respond.

If the click is within the window contents but not inside a pane,
control passes one step higher up the inheritance chain to
The PowerPlant Book PPB–345

Windows
Managing Window Behavior
LPane::Click(). After performing some housekeeping details,
LPane::Click() calls ClickSelf().

Neither LWindow nor LView overrides ClickSelf(). Therefore,
the LPane::ClickSelf() function executes. The default
implementation of LPane::ClickSelf() does nothing. If you
want your window to respond to clicks outside of any subpanes,
override ClickSelf().

Closing a window

LWindow has two functions associated with closing a window,
AttemptClose() and DoClose(). These very similar functions
are used at different times and in different circumstances.
Understanding the differences can help you decide which to use,
and which to override.

Listing 11.5 displays the code for AttemptClose().

Listing 11.5 LWindow::AttemptClose() function
if ((mSuperCommander == nil) ||
 mSuperCommander->AllowSubRemoval(this))
{
 // Send Close AE for recording only
 SendSelfAE(kAECoreSuite, kAEClose, false);
 delete this;
}

The code for DoClose() is almost identical.

Listing 11.6 LWindow::DoClose() function
if ((mSuperCommander == nil) ||
 mSuperCommander->AllowSubRemoval(this))
{
 delete this;
}

The difference between these functions is that AttemptClose()
sends an Apple event. As a result, a scripting environment can
record the window closure. Otherwise, the functions are identical.
PPB–346 The PowerPlant Book

Windows
Window Utilities in PowerPlant
Within PowerPlant, AttemptClose() is called in response to a
click in the close box of a window. This reflects PowerPlant’s
support for script recordability.

The DoClose() function is called in two cases: when
LDialogBox::ListenToMessage() receives a close message;
and when the window receives an Apple event to close.

If you want to close a window, call AttemptClose(). This is your
best bet to ensure your application’s recordability. If you override
window-closing behavior, AttemptClose() is again the best
bottleneck. However, good design dictates that the same perceived
behavior should occur whether the user clicks in the close box, or
the window receives a close Apple event. To ensure that the same
behavior occurs, you may need to override DoClose() as well,
depending upon what you do in your override of
AttemptClose().

Finally, note that each function calls the commander’s
AllowSubRemoval() function. Why? For example, in a typical
implementation a document is the supercommander of a window.
This gives the document an opportunity to check whether there are
any changes, and gives the user the chance to save them.

Because both AttemptClose() and DoClose() pass through the
AllowSubRemoval() bottleneck, you can institute your required
closing behavior—such as a “save changes” check—in this function
once, and leave AttemptClose() and DoClose() alone.

WARNING! If the floating window is targetable, or it contains the current target
object (such as an editable text field), when you issue a Close
command it will operate on the floating window! That’s because this
is the window that contains the target object. You may want to
override the default closing behavior to close the frontmost regular
window in this case. Your user interface will determine precisely
how you should handle the close behavior.

Window Utilities in PowerPlant

PowerPlant has two classes that contain a variety of utilities for
managing window-related tasks. They are UWindows and
The PowerPlant Book PPB–347

Windows
Window Utilities in PowerPlant
UDesktop. All of the functions in both of these classes are static, so
you can call them at any time.

UWindows

The UWindows utility functions relate to Mac OS WindowRecords,
not to PowerPlant LWindow objects. You can use the UWindows
functions without using any other part of PowerPlant.

The functions in UWindows relate to finding the dimensions or
front-to-back order of an individual Mac OS window record. There
is also a function for finding the device on which most of a specified
rectangle appears. Table 11.5 lists the functions.

Table 11.5 UWindows functions

Consult the PowerPlant Reference for details on how to use these
functions.

UDesktop

UDesktop encapsulates much of PowerPlant’s low-level window
management behavior. Unlike UWindows, UDesktop is dependent
upon the LWindow class. Where functions in UWindows typically
have a Mac OS WindowPtr as a parameter or return value,
UDesktop uses pointers to LWindow objects. As a result, you can’t
use UDesktop without using a significant part of PowerPlant.

Function Purpose

GetWindowContentRect() return the bounding rectangle of the content region

GetWindowStructureRect(
)

return the bounding rectangle of the structure
region

FindDominantDevice() return the GDevice which contains the largest
portion of the specified rectangle

FindNthWindow() return a WindowPtr to the nth window

FindWindowIndex() return index position of a window

FindNamedWindow() return a WindowPtr to the window with the
specified name
PPB–348 The PowerPlant Book

Windows
Window Utilities in PowerPlant
Just like UDesktop relies on LWindow, LWindow relies on the
existence of the UDesktop functions. You must include some file in
your project which implements the class defined in UDesktop.h.
PowerPlant has two versions of UDesktop. You can use
UDesktop.cp or UFloatingDesktop.cp, but not both. If you attempt
to include both, you will get a link error for multiple definitions of
the same class. You can substitute your own implementation of
UDesktop if you wish.

TIP The implementation of UDesktop found in UDesktop.cp does not
support floating windows. Use UFloatingDesktop.cp in your project if
you use floating windows.

Table 11.6 lists all the member functions of UDesktop. Remember
that in this context the term “window” refers to an LWindow object,
not a Mac OS WindowRecord, unless otherwise specified.

Table 11.6 UDesktop functions

Function Purpose

NewDeskWindow() create a new Mac OS window

WindowIsSelected() returns whether window is at the
top of its layer

SelectDeskWindow() bring window to top of its layer
and activate it

ShowDeskWindow() make a window visible

HideDeskWindow() make a window invisible

DragDeskWindow() drag a window

Suspend() suspend all windows

Resume() resume all windows

Deactivate() deactivate all windows

Activate() reactivate appropriate windows

FetchTopRegular() return top regular window

FetchTopFloater() return top floating window

FetchBottomFloater() return bottom floating window

FetchTopModal() return top modal window
The PowerPlant Book PPB–349

Windows
Dealing with the Window Manager
You are free to call UDesktop functions directly at any time if they
suit your purpose. Most of the time, you won’t need to use them
directly. PowerPlant uses these as utility functions to perform what
are, for the most part, low-level window management tasks.
However, you might find some of them useful in particular
circumstances where you need to know some desktop detail, such
as whether the front window is modal or not.

Dealing with the Window Manager

When dealing with windows in a PowerPlant application, you must
still work directly with the Mac OS Window Manager from time to
time. PowerPlant provides several functions for dealing with the
Mac OS GrafPort, or an LWindow object’s associated WindowPtr.

Table 11.7 lists the available functions.

Table 11.7 GrafPort and WindowPtr utility functions

FetchBottomModal() return bottom modal window

FrontWindowIsModal() returns whether front window is
modal

NormalizeWindowOrder(
)

restore window order

Function Purpose

Function Purpose

UQDGlobals::
GetCurrentPort()

return current GrafPort from
QuickDraw globals

LPane::
GetMacPort()

return WindowPtr containing this
pane

LWindow::
GetMacPort()

return WindowPtr associated with
this LWindow object

LWindow::
FetchWindowObject(
)

return a pointer to the LWindow
object associated with the specified
WindowPtr
PPB–350 The PowerPlant Book

Windows
Summary
Both the GetCurrentPort() and FetchWindowObject()
functions are static functions, so they are always available.

Using these four functions in appropriate combination you can do
some interesting things.

For example, you can always find the front window object by
getting the current port and then finding the associated window
object. If you have a pane object, you can get the Mac OS
WindowPtr for the window that contains this pane by calling
GetMacPort().

You may recall a discussion about “Finding the topmost view.” If
the topmost view is a window, you can get the topmost view this
way:

Listing 11.7 Finding the containing LWindow object
GrafPtr theWindowP = thePane->GetMacPort();
LWindow* topView = LWindow::FetchWindowObject(theWindowP);

PowerPlant is a flexible tool. In many cases PowerPlant gives you
several ways to solve a problem. Getting the topmost window object
is but one example.

Summary
In this chapter you learned all about windows in PowerPlant. We
discussed what a window is, and the LWindow class hierarchy.

We discussed the additional features of a window that distinguish it
from other views or panes, including special window attributes,
special sizes, and the LWindow use of the descriptor characteristic.

Window attributes control a window’s layer, the controls around
the edges of the window, how the window draws, and how it
handles clicks.

We discussed how to work with windows, including how to create
windows, draw windows, draw off screen, handle clicks, and close
a window.
The PowerPlant Book PPB–351

Windows
Code Exercise
Finally, we discussed a variety of window-related utility functions
in PowerPlant that allow you to manage window behavior, and
work with the Mac OS Window Manager.

Code Exercise
In this code exercise you write an application named “Windows.” In
the process you implement a feature that is common to many
applications—a Window menu that lists open windows. You also
write the code to create both a floating window and a regular
window.

As you have in several other exercises, you’ll accomplish this in two
sections. First you examine the interface, and then you write the
code.

The Interface

The final application creates two different kinds of windows, as
shown in Figure 11.7: a regular window and a floating window.

Figure 11.7 The windows in “Windows”
PPB–352 The PowerPlant Book

Windows
The Interface
Both windows are empty. This exercise concentrates on creating
windows and working with menus.

Open the Windows.ppob project file in Constructor and examine
the two PPob resources. PPob resource ID 1000 is the regular
window. Examine the characteristics of this window.

The features of this window are pretty common. The window kind
is a document window, and the window is in the regular window
layer. The window uses the auto-position feature. In the clicking
and drawing section, notice that the window does not get the select
click and does not hide on suspend.

The window has a class ID of RegW. This is a custom window with
some unique behaviors. In particular, the FinishCreateSelf()
and destructor functions are different from LWindow. These
functions add or remove the window in the Window menu.

Now, open the PPob for the floating window, and examine the
window’s characteristics as illustrated in Figure 11.8.
The PowerPlant Book PPB–353

Windows
The Interface
Figure 11.8 The floating window properties

There are several differences between the Tools window and the
regular window. Most importantly, the window kind is a floating
PPB–354 The PowerPlant Book

Windows
The Windows Application
window and it is in the floating layer. These two features control
most of the window’s basic appearance and behavior. However,
there are other important characteristics.

The window is not targetable or initially visible. The window has a
close box and a title bar. There is no size box or zoom box. The
window is not resizable. A typical floating window does not resize
or zoom.

Next, observe the clicking and drawing features. This window gets
the select click. As a result, a click that activates the window is also
treated as a click in the window content. You’ll see how this works
when you write code to respond to a click.

This window also hides when the application is suspended. Again,
this is not mandatory. This feature reflects the typical behavior of a
floating window in the Mac human interface.

Finally, this is a custom window with class ID FltW. In this case, the
difference between this window and the behavior of LWindow is in
the ClickSelf() and ClickInGoAway() functions. You’ll write
the code for these functions a little later in this exercise.

You can close the PPob windows and the Constructor project file.

The Windows Application

Before we get started on the actual code, let’s take a quick look at
where we’re going so you know where all the pieces fit.

The Window menu is implemented as a custom class derived from
LMenu. CWindowMenu has some additional features we’ll explore
in just a bit. The application can’t use the PowerPlant default menu-
creation mechanism because PowerPlant creates LMenu objects.
This application creates a CWindowMenu object explicitly and adds
it to the menu bar. The application stores a pointer to the
CWindowMenu object in a global variable, gWindowMenu.

When the user creates or destroys a regular window, the window
title is added or removed as an item in the Window menu. You
write the code to make that happen. You also write the code that
allows the application to run everything. Let’s get to it.
The PowerPlant Book PPB–355

Windows
The Windows Application
1. Examine CWindowMenu.

class declaration CWindowMenu.h

When you look at the class declaration, you see that this class
inherits from LMenu. In addition to the usual constructors and
destructor, CWindowMenu declares five new functions. They are:

• InsertWindow()

• RemoveWindow()

• MenuItemToWindow()

• WindowToMenuItem()

• SetCommandKeys()

You write InsertWindow() and RemoveWindow() in the next
two steps to add or remove items from the Window menu. The
other three functions are provided for you. MenuItemToWindow()
returns the LWindow pointer for a given menu item.
WindowToMenuItem() returns the correct menu item for a given
LWindow pointer. SetCommandKeys() assigns numerical
command keys to the first nine open windows.

There are two new data members as well, mBaseItems and
mWindowList.

The first item in the Window menu is an item to show or hide the
Tools window. If there is a regular window open, the next item in
the Window menu is a separator bar. These are the “base” items
tracked in the mBaseItems member. All other items in the menu
match the titles of various open windows.

The mWindowList member is a list of open regular windows.

When you are through studying, close the file.

2. Add a window to the menu.

InsertWindow() CWindowMenu.cp

The existing code in this function first determines whether the
window is already in the list. If it is not, you must accomplish these
tasks.
PPB–356 The PowerPlant Book

Windows
The Windows Application
a. Add the window to the window list.

Use mWindowList, and call InsertItemsAt() to add a new
item to the list.

b. Get the window title.

Use the window’s GetDescriptor() function.

c. Add an item to the Window menu.

This is a bit more complex. You use the CWindowMenu’s
inherited InsertCommand() function. However, it calls the
Toolbox InsertMenuItem() function. The Toolbox function
recognizes and uses “metacharacters” so you can accomplish
tasks like setting a mark or command key when you insert an
item. Unfortunately, one or more characters in your window
title might be misinterpreted as a metacharacter, causing odd
results.

To avoid this problem, when you call InsertCommand(), pass
a blank space as the text for the new menu item. You also specify
a menu command. Use cmd_UseMenuItem. Add the item to the
end of the menu.

After the call to InsertCommand(), use the Toolbox
SetMenuItemText() function to change the text for the item to
match the window title.

d. Adjust the command keys.

The Window menu has a feature that assigns numerical
command keys to the first nine windows in the window list. Call
SetCommandKeys() to implement this behavior.

Existing code handles the else condition when the window is
already in the list. It changes the text of the menu item to match the
window title. As a result, you can use this function for two
purposes: to add a new window to the menu, or to modify the menu
when the window title changes.

 mBaseItems++;
 }
 }

 // Add the window to the list.
 mWindowList.InsertItemsAt(1, LArray::index_Last, &inWindow);

 // Get the window title.
The PowerPlant Book PPB–357

Windows
The Windows Application
 Str255 theTitle;
 inWindow->GetDescriptor(theTitle);

 // Insert title into the menu as a -1 item.
 InsertCommand("\p ", cmd_UseMenuItem, 16000);
 ::SetMenuItemText(GetMacMenuH(),
 ::CountMItems(GetMacMenuH()), theTitle);

 // Renumber the command keys.
 SetCommandKeys();

} else { // Already in list

3. Remove a window from the menu.

RemoveWindow() CWindowMenu.cp

Existing code ensures that the window you are removing actually
exists. If it does, you have two tasks to accomplish.

a. Remove the menu item corresponding to the window.

The order of window titles in the menu matches the order of
windows in the window list. Get the index number of the
window from the window list. Use the menu object’s inherited
RemoveItem() function to remove the item from the menu.
Don’t forget to add mBaseItems to the index value of the
window to get the correct menu item number.

b. Remove the window from the window list.

Use mWindowList, and call Remove() to remove the specified
window from the list.

// Remove the item from the menu.
Assert_(mWindowList.FetchIndexOf(
 &inWindow) != arrayIndex_Bad);
RemoveItem(mWindowList.FetchIndexOf(
 &inWindow) + mBaseItems);

// Remove the window from the list.
mWindowList.Remove(&inWindow);
PPB–358 The PowerPlant Book

Windows
The Windows Application
if (mWindowList.GetCount() == 0 && mBaseItems > 1) {

The existing code then handles the separator, removing it when
there are no more windows in the Window menu. The existing code
also resets the command keys for the open windows.

When you are through, save your work and close the file. It’s time to
implement window behavior.

4. When creating a window, add it to the menu.

FinishCreateSelf() CRegularWindow.cp

When the user creates a regular window, you want to add it to the
Window menu. The FinishCreateSelf() function is designed
for the tasks you must accomplish to finish a pane, view, or control.

The Mac human interface says that new windows not associated
with any file on disk should be named “Untitled” followed by a
number. The existing code uses the
UWindows::FindNamedWindow() utility to ensure that you have
a unique and appropriate title to assign to your window.

When you have a good title, you have two tasks to accomplish.

a. Set the window title.

Use the window object’s SetDescriptor() function.

b. Add the window to the Window menu.

Use the gWindowMenu global variable. (You’ll initialize this
variable in a subsequent step.) Use the CWindowMenu object’s
InsertWindow() function.

 theTitle += (LStr255) theNumber;
}

// Set window title.
SetDescriptor(theTitle);

// Add the window to the window menu.
gWindowMenu->InsertWindow(this);
The PowerPlant Book PPB–359

Windows
The Windows Application
5. When destroying a window, remove it from the menu.

~CRegularWindow() CRegularWindow.cp

Use the gWindowMenu global variable. (You’ll initialize this
variable in a subsequent step.) Use the CWindowMenu object’s
RemoveWindow() function.

CRegularWindow::~CRegularWindow()
{
 // Remove the window from the window menu.
 gWindowMenu->RemoveWindow(this);
}

You have completely implemented all the new behavior of the
CRegularWindow object. Save your work and close the file.

6. Handle a click in the floating window content.

ClickSelf() CFloatingWindow.cp

In a typical application the window’s contents would usually
handle the click. However, the Tools window is empty, and a click
in the content has no real significance. The code you write in this
step is for instructional purposes only, just so you can see how a
floating window responds to a click.

Make the window beep when there is a click in the contents.
#pragma unused (inMouseDown)

 ::SysBeep (30);

7. Handle a click in the floating window close box.

ClickInGoAway() CFloatingWindow.cp

When the user clicks in the close box for the floating window, you
could destroy the window. When the user wants to see the Tools
window again, you would have to build it from scratch. This
application uses a different strategy. It creates the window once,
and then shows or hides the window.

Existing code calls the Toolbox TrackGoAway() function. If the call
returns true, hide the window.

There is one other task you must perform. You must set the menu
update flag as well. PowerPlant does not update menus for clicks in
the title bar or peripheral controls. However, a click in the close box
PPB–360 The PowerPlant Book

Windows
The Windows Application
should modify the Window menu. The first item in the Window
menu says (alternatively) either Show Tools or Hide Tools.

if (::TrackGoAway(GetMacPort(), inMacEvent.where)) {

 // Hide the window.
 Hide();

 // Update the menus.
 SetUpdateCommandStatus(true);
}

You’ll create and show the window in subsequent steps. However,
you have fully implemented the unique behavior of the floating
window. Save your work and close the file. All that remains is to
use these items—the menu, the regular window, and the floating
window—in the finished application. (See “When To Update
Menus.”)

8. Install the Window menu.

Initialize() CWindowsApp.cp

As we mentioned at the start of this section, you cannot rely on the
PowerPlant menu-creation mechanism because it creates LMenu
objects. The Window menu is a CWindowMenu object.

In the application constructor, existing code registers the custom
classes. After that, in the Initialize() function you have three
tasks to accomplish.

a. Create a CWindowMenu object.

Use the new operator. The declared constant for the MENU
resource ID is rMENU_Window. Store the result in the global
variable, gWindowMenu. It’s always wise to check that creation
was a success. You can use ThrowIfNil_.

b. Get the application’s LMenuBar object.

Use LMenuBar::GetCurrentMenuBar().

c. Add the new menu to the menu bar.

Use the menu bar’s InstallMenu() function.
// Make the window menu.
gWindowMenu = new CWindowMenu(rMENU_Window);
ThrowIfNil_(gWindowMenu);
The PowerPlant Book PPB–361

Windows
The Windows Application
// Get the menu bar.
LMenuBar *theMBar = LMenuBar::GetCurrentMenuBar();
ThrowIfNil_(theMBar);

// Install the window menu.
theMBar->InstallMenu(gWindowMenu, 0);

9. Create the Tools window.

Initialize() CWindowsApp.cp

As we discussed above, this application’s strategy for the Tools
palette is to create the window once, then show and hide it as
necessary. You should create the Tools palette in the application’s
Initialize() function.

To do so, call the LWindow::CreateWindow() function. The
declared constant for the PPob resource is
rPPob_FloatingWindow.

You can use the LWindow::CreateWindow() function because
the floating window—although it has slightly different behavior—is
identical to an LWindow object with respect to the data required to
create the window object and its contents.

However, you should typecast the return value from
LWindow::CreateWindow() to be a CFloatingWindow pointer.
Store the result in an application data member, mToolsWindow.

theMBar->InstallMenu(gWindowMenu, 0);

// Create the tools window.
mToolsWindow = dynamic_cast<CFloatingWindow *>
 (LWindow::CreateWindow(rPPob_FloatingWindow, this));
ThrowIfNil_(mToolsWindow);

10. Create a regular window at launch.

StartUp() CWindowsApp.cp

The StartUp() function is called when the application launches
without documents. As a result, a typical use for this function is to
create a default window if the user does not open a document.

That’s just what the “Windows” application does. When the
application launches, a window opens automatically. To implement
this behavior, simply call the application’s ObeyCommand()
PPB–362 The PowerPlant Book

Windows
The Windows Application
function. Use the cmd_New command. (See “PowerPlant and Apple
Events.”)

CWindowsApp::StartUp()
{
 ObeyCommand(cmd_New, nil);
}

11. Respond to commands.

ObeyCommand() CWindowsApp.cp

In this function you should respond to three commands: a selection
in the Window menu, cmd_New, and cmd_ToolsWindow. In the
substeps in this step, you handle each command.

a. Handle a Window menu command.

Recall that when you inserted an item in the Window menu, you
assigned cmd_UseMenuItem as the corresponding command
number. That means PowerPlant generates a synthetic
command for each item.

Existing code identifies synthetic commands, and tests to ensure
that the command is from the Window menu. If it is, you get the
window object that corresponds to the menu item. Use the
CWindowMenu’s MenuItemToWindow() function. Then, if
there is a window and it is visible, select the window. Use
UDesktop::SelectDeskWindow().

if (theMenuID == gWindowMenu->GetMenuID()) {
 // Get window corresponding to the menu item.
 LWindow *theWindow =
 gWindowMenu->MenuItemToWindow(theMenuItem);

 if (theWindow != nil && theWindow->IsVisible()) {

 // Bring the window to the front.
 UDesktop::SelectDeskWindow(theWindow);
 }
} else { // Synthetic command not in Window menu

b. Create a new regular window.

The existing code has a case statement for cmd_New. In
response to that command, you should create and show the
window. Use the LWindow class creator function. The declared
constant for the PPob resource ID is rPPob_RegularWindow.
The PowerPlant Book PPB–363

Windows
The Windows Application
case cmd_New:
{
 // Create the window.
 LWindow *theWindow;
 theWindow = LWindow::CreateWindow(rPPob_RegularWindow, this);
 Assert_(theWindow != nil);

 // Show the window.
 theWindow->Show();
}
break;

c. Show or hide the tools window.

The application receives the cmd_ToolsWindow command
when the user selects the first item in the Window menu. In
response to this command, you should toggle the visibility of the
window. Determine if the window is visible. It it is, hide it. If it is
not, show it. Use the mToolsWindow data member.

case cmd_ToolsWindow:
{
 // Toggle visible state of the tools window.
 if (mToolsWindow->IsVisible()) {
 mToolsWindow->Hide();

 } else {
 mToolsWindow->Show();
 }
}
break;

Notice that the default case for both synthetic and non-synthetic
commands passes any unrecognized command to the inherited
ObeyCommand() function for further processing.

12. Update menus.

FindCommandStatus() CWindowsApp.cp

Finally, you must update menus appropriately. You should respond
to three kinds of items: Window menu items, the New item in the
File menu, the Tools window item. In the substeps in this step, you
handle each item.
PPB–364 The PowerPlant Book

Windows
The Windows Application
a. Update Window menu items.

Recall that when you inserted an item in the Window menu, you
assigned cmd_UseMenuItem as the corresponding command
number. That means PowerPlant generates a synthetic menu
command for each item. It also means that PowerPlant will call
the FindCommandStatus() function for each item.

Existing code identifies synthetic commands, and tests to ensure
that the item is from the Window menu. If it is, you should get
the window object that corresponds to the menu item. Use
CWindowMenu’s MenuItemToWindow() function. If there is a
window, enable the item, use a mark, and set the mark to
noMark. Then, if the window is the top window, set the mark to
a check mark. Use UDesktop::FetchTopRegular() to
identify the top regular window.

if (theMenuID == gWindowMenu->GetMenuID()) {

 // Find window corresponding to the menu item.
 LWindow *theWindow =
 gWindowMenu->MenuItemToWindow(theMenuItem);

 if (theWindow != nil) {
 // All window items enabled and use a mark.
 outEnabled = true;
 outUsesMark = true;
 outMark = noMark;

 if (theWindow == UDesktop::FetchTopRegular()) {

 // Check menu item for top regular window.
 outMark = checkMark;
 }
 }
} else { // Synthetic command not in Window menu

b. Enable the New item in the File menu.

The existing code has a case statement for cmd_New. Enable the
item.

case cmd_New:
{
 // Enable the New command.
 outEnabled = true;
The PowerPlant Book PPB–365

Windows
The Windows Application
}
break;

c. Set the Show/Hide Tools text.

The application receives the cmd_ToolsWindow command for
the first item in the Window menu. Enable the item. Set the text
based on the visibility of the window. Determine if the window
is visible. It it is, the item should say “Hide Tools.” If the
window is not visible, the item should say “Show Tools.” Use
the outName parameter to set the item text. PowerPlant does the
rest.

case cmd_ToolsWindow:
{
 // Item is always enabled.
 outEnabled = true;

 // Toggle the menu item text.
 if (mToolsWindow->IsVisible()) {
 LString::CopyPStr("\pHide Tools", outName);
 } else {
 LString::CopyPStr("\pShow Tools", outName);
 }
}
break;

Notice that the default case for both synthetic and non-synthetic
commands passes any unrecognized command to the inherited
FindCommandStatus() function for further processing.

13. Build and run the application.

All right! Time to see the result of your work. Make the project and
run it. When you do, an empty window should appear with the
name “Untitled 1.”

Look in the Window menu. The first item should be Show Tools,
followed by a separator bar and the name of the regular window.
Close the window and look in the Window menu again. How does
it differ?

When you launch the application, the Tools window is not visible.
Remember, the PPob for the Tools window specified that the
PPB–366 The PowerPlant Book

Windows
The Windows Application
window was not initially visible. As a result, although you create
the window at launch, the window does not appear automatically.

Choose the Show Tools item. The Tools window appears. Look in
the Window menu again, and the first item should say “Hide
Tools.”

Create a new regular window. The floating window remains active.
Click in the Tools window. The computer beeps. Although you have
clicked in another window, the regular window remains active.
Play with the Tools window. Move it around. Click in the close box,
and the window disappears. Show it again, then choose Hide Tools
from the Window menu. The window hides.

Create several new regular windows. Look in the Window menu,
and observe the various menu items. Close some windows, and
observe what happens in the Window menu. Every time you open
or close a regular window, the menu adjusts accordingly.

Activate various windows and observe the check mark in the
Window menu. The mark should always denote the currently active
regular window. Try the command keys for Window menu items.
The corresponding window should become active.

If you would like to expand on this application, here are some
suggestions.

• Add a ClickSelf() function to the regular window, and make
it beep just like the floating window. Rebuild the app, make two
windows, and click the inactive window. The window activates,
but does not beep. Click again in the active window, and it
beeps. Now, use Constructor to turn on the GetSelectClick
feature of the regular window. Repeat the experiment. What
happens this time? Does the window beep when you activate it?
It should, because the activating click now activates the window
and is passed to the window for processing.

• Turn off the GetSelectClick feature for the floating window and
see if it makes a difference. It shouldn’t. Why not? Because a
floating window is always active.

• Create a function that allows the user to change a window title.
Update the Window menu along with the window title.

• Put some content in the windows!
The PowerPlant Book PPB–367

Windows
The Windows Application
Congratulations! You’ve passed another milestone. You have now
worked extensively with menus, and created and used both regular
and floating windows. In the next chapter we cover another kind of
window in great detail—dialogs.

However, before you go running off to the next stage of the
adventure, we want you to stop for a moment and think about the
concept of adding a Window menu to an application.

As implemented in this chapter, the menu is an integral part of the
application. There is nothing wrong with that. However, adding
such a menu to existing code or removing it from a project would
entail some substantial changes scattered here and there in the code.
For example, you would have to modify window creation, window
destruction, the application object’s FindCommandStatus() and
ObeyCommand() functions, as well as the application constructor.

You might wish it could be easier than this. Well, it is. We are going
to revisit this topic in Chapter 15, “Periodicals and Attachments.”
Keep it in mind.
PPB–368 The PowerPlant Book

12
Dialogs

In this chapter we discuss how PowerPlant handles dialog boxes.
Creating and using a dialog in a PowerPlant application is simple.
You’ll learn just how easy it is as we discuss:

• What Is a Dialog—comparing traditional and PowerPlant dialog
handling.

• Dialog Characteristics—the special features of LDialogBox that
distinguishes it from other windows.

• Working With Dialogs—how to create and use all kinds of
dialogs in a PowerPlant application.

Along the way we will also encounter some PowerPlant utilities
that manage simple dialogs almost automatically. We will use the
terms “dialog” and “dialog box” as synonyms.

What Is a Dialog
In this brief section we look at dialogs from three perspectives:

• Traditional Dialogs—the standard Mac OS approach to dialog
management

• PowerPlant Dialogs—the PowerPlant approach to dialog
management

• LDialogBox Hierarchy—the LDialogBox ancestors, and what
they give to LDialogBox

When you’re through this section you should have a clear picture of
the PowerPlant “philosophy” on dialogs.

Traditional Dialogs

In traditional Macintosh programming, a dialog box is a special
kind of window. If you have written dialog-box code, you know
The PowerPlant Book PPB–369

Dialogs
PowerPlant Dialogs
that you must write special code to ensure that a dialog box behaves
properly.

To use a modal dialog, you call the Toolbox routine
ModalDialog(). You must provide an event filter procedure in
the ModalDialog() call. If you do not, the modal dialog seizes
complete control of the computer. Nothing can work in the
background. Windows won’t update, and background processes
won’t receive time. This is not good.

To manage movable modal and modeless dialogs, you must modify
the event dispatch mechanism of your application. You use
IsDialogEvent() to identify dialog-related events. You use
DialogSelect() to take care of dialog-related events. The process
occurs as an adjunct to your regular event handling. As a result,
much of dialog event-handling code duplicates code in your main
event handling mechanism.

Bottom line, in traditional Mac OS programming, a dialog is a
special kind of window that require special event handling and
dispatch. This is not true in PowerPlant.

PowerPlant Dialogs

In terms of event handling and dispatch, there is no distinction in
PowerPlant between a dialog and any other kind of window. In
PowerPlant, a dialog is just another kind of window. Sure, it is a
special kind of window, but the code to handle the dialog is built
right into the PowerPlant event handling and dispatch mechanism.

In PowerPlant, a modal window occupies a special layer in the
desktop display. As a result, other windows are deactivated
properly and the modal window (or an object in the window) gets
first crack at an event. There is no need for DLOG or DITL
resources. Constructor makes it easy to arrange controls in any
window.

The PowerPlant command and visual hierarchies work together to
ensure that whatever event occurs, the appropriate pane, view, or
control receives the event and has an opportunity to process it. The
fact that the target object or pane is in a dialog window is irrelevant
to this process.
PPB–370 The PowerPlant Book

Dialogs
LDialogBox Hierarchy
PowerPlant does not use ModalDialog(), IsDialogEvent() or
DialogSelect() to identify and dispatch dialog-related events.
When a PowerPlant application receives a command or keystroke,
the current target object gets the event, whatever kind of window
contains the target object. When a PowerPlant application receives a
click, the pane clicked gets the event. If the click is outside a modal
dialog, the application beeps. Everything works just the way it
should, with the same dispatch mechanism used throughout the
application for all windows: movable modal, floating, or regular.

However, there is one limitation. If you want an old-fashioned, non-
movable modal dialog, you must use the Mac OS Toolbox and
ModalDialog() and an event filter. You can do this inside a
PowerPlant application, as you’ll see in this chapter. However, you
cannot use a PPob resource and PowerPlant event dispatch to
manage a non-movable modal dialog.

While it is important that you understand these design principles so
you can use PowerPlant effectively, you also need to know the code-
level implementation of this design. For that, we start with a quick
look at the LDialogBox class hierarchy.

See also “Window layers.”

LDialogBox Hierarchy

Figure 12.1 illustrates the classes from which LDialogBox inherits.

Figure 12.1 LDialogBox hierarchy
The PowerPlant Book PPB–371

Dialogs
Dialog Characteristics
You can see that an LDialogBox object is a window (hence a view
and a pane), can have attachments, is an LModelObject so it is
scriptable, is a commander, and is a listener. In a nutshell, an
LDialogBox is a window that is also a listener.

Inheriting from LListener is the most significant distinction between
an LDialogBox and other windows. Most dialog boxes contain
control items. Because it is a listener, the dialog box object can listen
to messages from its controls. It can manage the controls or perform
other actions in response to the messages.

When you write dialog-related code, you can keep responsibility for
managing the dialog right where it belongs—in the dialog itself, or
in a supercommander.

Dialog Characteristics
LDialogBox is actually a very simple extension of LWindow.
Because a dialog is a window, everything you learned about
windows in the previous chapter applies to dialogs.

There is only one characteristic added to a regular window—button
tracking for the default and cancel buttons.

LDialogBox has data members to identify the default and cancel
buttons in a dialog. They are mDefaultButtonID and
mCancelButtonID. You specify the button by its Pane ID number.

You would typically specify these values in Constructor when you
build the visual hierarchy. When the LDialogBox stream constructor
builds the dialog, it automatically puts the required outline (using
LDefaultOutline) around the default button. LDialogBox also
automatically supports the standard key-equivalents for both the
default and cancel buttons—Enter or Return for the default button,
command-Period or Cancel for the cancel button. You can see how
in LDialogBox::HandleKeyPress().

You can also set the buttons at runtime. The accessors for these data
members are SetDefaultButton() and SetCancelButton().
Examine LDialogBox::FinishCreateSelf() to see how
PowerPlant sets up the buttons to behave correctly.
PPB–372 The PowerPlant Book

Dialogs
Working With Dialogs
Working With Dialogs
For all its simplicity, PowerPlant gives you several different
techniques you can use to create and manage a dialog. In this
section—the real meat of this chapter—the discussion covers these
topics:

• Creating a Dialog—using Constructor, creating a dialog on the
fly, and deriving dialog classes.

• Messages in Dialogs—using messages generally, and using
LDialogBox with negative message numbers.

• StDialogHandler—using this class to create and manage dialogs.

• Simple Movable Modal Dialogs—using UModalDialogs utility
functions to run simple movable modal dialogs.

• Traditional Dialogs—how to integrate the Dialog Manager with
PowerPlant to do things the old-fashioned way.

As we talk about dialog management, you will learn everything you
need to know to implement a dialog by any of the five methods
alluded to above:

• Use a class derived from LDialogBox.

• Use LDialogBox with negative message numbers.

• Use the StDialogHandler utility class.

• Use UModalDialog functions.

• Use the Mac OS directly.

You will find that one approach might be very useful in certain
circumstances, and another useful at other times. But first, let’s look
at how to create the dialog object.

Creating a Dialog

You can create a dialog using Constructor, or on the fly in your
code. We’ll talk about each method. Then we discuss what you do
when you derive your own class from LDialogBox.

Using Constructor

Dialogs work almost exactly like windows.
The PowerPlant Book PPB–373

Dialogs
Creating a Dialog
If you have built a PPob resource for a dialog in Constructor,
creating the dialog (and all of its contents) is simple. You call
LWindow::CreateWindow(). You provide the resource ID
number for the PPob resource, and a pointer to the dialog’s
supercommander. PowerPlant does the rest. There is no
LDialogBox::CreateDialog(). The LWindow function serves
just fine. Typically you typecast the returned LWindow pointer to
be an LDialogBox pointer.

Creating a dialog in Constructor is simple. While in the Constructor
project window, select the Windows and Views choose New
Resource (command-K) from the Edit menu. When you do, the
dialog in Figure 12.2 appears.

Figure 12.2 Creating a new dialog

Choose PPob as the resource type, and LDialogBox as your view
type. You can set the name and ID right here. Click the create button
to create the new PPob resource. Open the new PPob resource to see
the layout editor, and then the Property Inspector window for this
particular dialog. It is identical to the window dialog as shown in
Figure 11.4, with one exception. You can specify the default and
cancel buttons by Pane ID, as shown in Figure 12.3.
PPB–374 The PowerPlant Book

Dialogs
Creating a Dialog
Figure 12.3 Tracking dialog buttons

Remember, when you derive your own classes you must change the
class ID to your own unique value and register the class with
PowerPlant before creating any objects of that class.

When setting the characteristics for a dialog window, set the
Window Proc to one of the available dialog options, as shown in
Figure 12.4.

Figure 12.4 Window Proc options

To create a movable modal dialog, choose the Movable modal item
in the popup menu.

WARNING! Although you can choose a modal dialog box with various borders,
the behavior of a pure modal dialog created this way will not follow
human interface guidelines. See “Traditional Dialogs” for more on
this topic

To create a modeless dialog, use the document window option. A
modeless dialog should have a go away box, a title bar, no zoom
box, no grow box, and should not be resizable.
The PowerPlant Book PPB–375

Dialogs
Creating a Dialog
Because of the elegant design of PowerPlant event handling, you
don’t need to do anything else to specify a movable modal or
modeless dialog. These are just other kinds of windows. Of course,
you must populate the dialog with the necessary panes, views, and
controls, just like you would for any window.

See also “Creating a Window” and “Register PowerPlant
Classes.”

Creating a dialog on the fly

You build a dialog on the fly the same way you would a regular
window. There is a dialog constructor that takes an SWindowInfo
structure as its only parameter.

Typically, Constructor or the dialog utility functions available in
PowerPlant will provide all the functionality you need. We discuss
dialog utilities in “StDialogHandler” and “Simple Movable Modal
Dialogs.”

See also “Creating a window on the fly.”

Deriving your own dialogs

Deriving your own dialog class is one of the principal techniques
used in PowerPlant for creating and managing custom dialogs. Each
dialog is likely to have a different set of controls, and you may wish
to respond to those controls in unique ways.

You can do so by deriving from LDialogBox and overriding the
ListenToMessage() and ObeyCommand() functions. You are
already familiar with these functions from our earlier discussions of
listeners and commanders. LDialogBox is both a listener and a
commander.

A typical approach to dialog management in a derived class is to
perform the following steps.

1. Create the derived dialog object. Usually you do this with a
PPob, after registering the new class with PowerPlant.

2. Link the dialog object to its controls. You call
LinkListenerToControls() with the RidL resource ID
for this dialog. Remember from the Controls chapter that
Constructor automatically creates a RidL resource with the
same resource ID as the window for all the controls in a
PPB–376 The PowerPlant Book

Dialogs
Messages in Dialogs
window. Alternatively, you link a few individual controls to
the dialog as necessary.

3. Override ListenToMessage(). The dialog object listens to
messages from linked controls. ListenToMessage() can
respond to the message directly. Or, ListenToMessage()
can call the dialog’s ProcessCommand() function. This
function in turn calls ObeyCommand().

4. Override ObeyCommand(). If ListenToMessage() calls
ProcessCommand(), control passes to ObeyCommand().
Handle the message in ObeyCommand().

Of course, you may override any other functions necessary to fully
implement your dialog’s behavior. You might override
FindCommandStatus() to handle menu updating, for example.

You also add whatever new functions you need to process the
information generated in the dialog. For example, you might define
a function to manage enabling or disabling a set of controls that are
dependent upon the state of a check box.

Taking this approach, responsibility for handling dialog-related
events rests primarily with your dialog object. Your dialog’s
behavior is certainly message-based, and could be command-based
as well if you transform messages into commands and call
ProcessCommand().

There is an alternative to putting all this responsibility down in the
dialog object. For example, you might have a situation where
changing a setting in a dialog might affect several windows.
Responsibility for such a widespread change should probably
reside with the application. It should almost certainly reside with
some object higher than the dialog. In such a case, the dialog should
issue a command when it hears the message.

How do you send a command up through the chain of command?

Messages in Dialogs

Recall that a control can send any message by calling
BroadcastMessage() at the appropriate moment. Some controls
also use the BroadcastValueMessage() function. Either way, if
the dialog is linked to the control, the dialog hears the message.
The PowerPlant Book PPB–377

Dialogs
Messages in Dialogs
In response to the message, you want something to happen. As we
discussed above, the dialog object can send a command to itself in
response to the message by calling ProcessCommand(). The
dialog can, alternatively, send a message/command directly to the
dialog’s supercommander. LDialogBox::ListenToMessage()
has a mechanism for passing a command to a higher level. Listing
12.1 contains the code.

Listing 12.1 Excerpt from LDialogBox::ListenToMessage()
else if (inMessage < 0)
{
 // Relay message to supercommander
 if (GetSuperCommander() != nil) {
 SDialogResponse theResponse;
 theResponse.dialogBox = this;
 theResponse.messageParam = ioParam;
 ProcessCommand(inMessage, &theResponse);
 }
}

If the message is negative, LDialogBox creates an
SDialogResponse structure. It then sends the message as a
command to the supercommander’s ProcessCommand() function,
along with the SDialogResponse data. It is the
supercommander’s responsibility to handle the command or pass it
on up the chain of command.

Keep in mind that there is a distinction between the message that a
dialog receives, and a command that might be issued as a result of
receiving the message. However, in
LDialogBox::ListenToMessage() that distinction becomes
blurred. The negative message number becomes a negative
command number.

If you use this technique exclusively—that is, if all the messages
(except the close message) from your dialog’s controls are
negative—then you don’t have to derive a class from LDialogBox at
all. You can give the dialog’s supercommander the responsibility for
responding to messages.

A third solution is a mix of the two approaches. You derive a dialog
class from LDialogBox. However, if the dialog engenders a situation
PPB–378 The PowerPlant Book

Dialogs
Messages in Dialogs
that requires high-level attention, you make sure that the control
involved sends a negative message. You also ensure that
somewhere in the chain of command there is a commander that can
deal with that message appropriately.

Of course, if you override LDialogBox you can override
ListenToMessage() and replace or ignore the negative message
mechanism entirely.

Let’s stop for a moment and consider all the possibilities. The
situation is this: you have a dialog, it contains controls, the controls
send messages. So far you have at least four possible ways of
handling messages in a dialog.

• You create controls that are also listeners, and respond directly
to each other. (We discussed this possibility in “Deriving your
own controls.”)

• Your controls send positive message numbers, and the dialog
object handles them in the ListenToMessage() or
ObeyCommand() functions.

• Your controls send negative message numbers exclusively. You
use LDialogBox directly, and require the supercommander to
handle the resulting commands.

• Your controls send a mix of positive and negative messages. You
distribute responsibility for responding to the messages between
a dialog object and its supercommander.

The various PowerPlant mechanisms, while simple in their own
rights, give you many possible paths to a desired outcome. As a
PowerPlant programmer you analyze your needs and pick the path
that best suits your situation.

TIP When it comes time to close a dialog, you have choices again. The
default or cancel buttons can send the dialog a cmd_Close
message. Or you may call the dialog’s DoClose() function directly
at the appropriate moment. However, in some cases it is wise to
simply hide the dialog and show it again when necessary. To
implement this, you should override AllowSubRemoval() to hide
the window rather than deleting it, and return false to not allow
removal of the dialog. Overriding AllowSubRemoval() ensures
The PowerPlant Book PPB–379

Dialogs
StDialogHandler
that the correct behavior occurs whether AttemptClose() or
DoClose() is called.

While everything up to now may seem complicated, it’s about to get
a lot simpler.

See also “Broadcasting.”

StDialogHandler

StDialogHandler is a stack-based utility class for managing movable
modal dialogs.

Until now, the various strategies we’ve discussed for managing a
dialog all rely on the PowerPlant event dispatch mechanism.
StDialogHandler takes a different approach. It manages all events
while a dialog box is active. This is closer to the traditional way in
which the Mac OS handles dialogs.

Being a stack-based class, you create a local StDialogHandler object.
The constructor requires that you pass in two parameters, the PPob
resource ID for the dialog, and the supercommander for the dialog.
The constructor requires that there be a RidL resource describing
the controls in the dialog, and the RidL resource must have the same
ID number as the PPob resource ID.

WARNING! Don’t use StDialogHandler with a PPob for a non-movable modal
window. The modal window will not behave according to human
interface guidelines—the user will be able to switch applications.
PowerPlant uses movable modal windows.

Before showing the dialog, you may need to set the values of any
panes that could not be set in the PPob. After you display the dialog,
you repeatedly call the StDialogHandler’s DoDialog() function.
This is analogous to the Toolbox ModalDialog() call.
DoDialog() retrieves and processes events, and returns messages
from the controls (all messages, positive or negative). In response to
the message, your code acts accordingly. Listing 12.2 shows the
code for a very simple loop that calls DoDialog() and responds to
the messages received.
PPB–380 The PowerPlant Book

Dialogs
Simple Movable Modal Dialogs
Listing 12.2 Sample DoDialog() loop
while (true) {
 MessageT hitMessage = theHandler.DoDialog();

 if (hitMessage == msg_Cancel)
 {
 break;
 }
 else if (hitMessage == msg_OK)
 {
 // process result of dialog
 break;
 }
}

When you are through with the dialog, you exit the DoDialog()
loop, and ultimately exit the function in which the StDialogHandler
object was created. The class destructor is called automatically and
cleans up for you.

If that’s not easy enough, it gets easier still.

Simple Movable Modal Dialogs

There are many cases where you want to display a movable modal
dialog that gets a single number or string. For example, you may
want the user to specify a font size, or enter a name.

The UModalDialogs class implements two static functions that use
StDialogHandler. One of these functions returns a single number.
The other returns a single string. Using them is trivial.

To display a dialog to get a single integer, call
UModalDialogs::AskForOneNumber(). It handles all the work
for you. You provide the supercommander, the PPob ID number,
the pane ID number for the editable text field, and the default
number that should appear in the dialog. Making the call displays a
movable modal dialog for entering a single number. The call returns
true if the user clicks OK. Here’s an example of code that uses
UModalDialog::AskForOneNumber().
The PowerPlant Book PPB–381

Dialogs
Traditional Dialogs
Listing 12.3 Getting a single number
Boolean result = UModalDialogs::AskForOneNumber (
 this, dialogID, editFieldID, number);
if (result)
{
 // do something with number
}

The UModalDialogs::AskForOneString() function works
exactly the same, except you provide a string instead of a number.

TIP Examine these two functions to learn how to use StDialogHandler
effectively in more complex cases.

Traditional Dialogs

If you have a choice, do not use the Dialog Manager directly from
PowerPlant. PowerPlant is much more powerful, and much more
elegant. The StDialogHandler and UModalDialogs classes really
make dialog management a snap.

From time to time, however, you may find yourself forced to use the
Dialog Manager directly or indirectly for various non-movable
modal dialogs. You may wish to display a simple alert. You may
need to support legacy code that uses ModalDialog(). Or you
may want to do something as simple as display the Mac OS
standard file dialog. You can do so, as long as you keep two things
in mind.

First, remember that any time you display an alert or a modal dialog
using the Dialog Manager, ModalDialog() seizes control of all
events. PowerPlant event processing—such as giving time to
periodicals—is interrupted. In addition, background processes get
no time unless you provide an event filter.

Second, before doing anything that invokes the Dialog Manager
from a PowerPlant application, you must call
UDesktop::Deactivate(). This call ensures that all PowerPlant
windows are properly deactivated before the modal dialog appears.
After you dismiss the dialog, call UDesktop::Activate() to
PPB–382 The PowerPlant Book

Dialogs
Summary
restore all PowerPlant windows to their correct state. You’ll do this
in the code exercise for this chapter.

TIP The need to deactivate PowerPlant windows can sneak up on you.
Remember to call UDesktop::Deactivate() before making any
Mac OS Toolbox call that displays a dialog. Afterwards, call
UDesktop::Activate().

Summary
In this chapter you learned how PowerPlant handles dialog-related
events. PowerPlant treats dialogs as just another kind of window
and relies on the command and visual hierarchies to dispatch an
event or command to the proper object, regardless of the nature of
the window containing the object.

You also learned what makes a dialog object different from other
windows—it can track the default and cancel buttons.

Finally, you discovered the flexibility PowerPlant gives you for
dialog management. You can create movable modal, and modeless
dialogs with ease. You can choose from a variety of methods for
managing the dialog, including deriving your own dialog classes,
using negative command numbers, using StDialogHandler, using
UModalDialogs, and even the Mac OS Dialog Manager.

In the code exercise you can put this knowledge to practical use.

Code Exercise
In this code exercise you build an application named “Dialogs.”
This is a long code exercise. To make it a little more digestible, we’re
going to treat this as two separate code exercises: one for simple
dialogs, and one for a more complicated dialog.

In the simple dialog exercise, you create and use four dialogs using
three techniques: UModalDialogs, StDialogHandler, and the Mac
OS Toolbox. In the complex dialog exercise, you create a dialog
The PowerPlant Book PPB–383

Dialogs
The Simple Dialog Interfaces
window that listens to its controls and handles the messages it
receives in a variety of ways.

The application is based on the same dynamic caption object you
used in the code exercise for Chapter 10, “Commanders and
Menus.” The four simple dialogs allow the user to change the text,
font, font size, and style of the caption by modifying the caption’s
text traits resource or its descriptor. The complex dialog performs
all these services in the same dialog. Changes in any dialog are
applied to the caption text in the top regular window.

The Simple Dialog Interfaces

All the necessary resources have been provided for you in their
entirety. There are four simple dialogs.

Table 12.1 Simple dialogs and their resources

The PPob resources are in Dialogs.ppob. The DLOG and DITL
resources are in Dialogs.rsrc. Constants for these resource IDs
and the dialog contents are declared in DialogsConstants.h.

Explore these resources until you are comfortable with their
elements. Each PPob contains a dialog window. When you examine
the dialog characteristics, you’ll see that each dialog is movable
modal, and in the modal layer. Each dialog has an OK and a Cancel
button, and one other item, either a popup menu or an editable text
field.

Implementing Simple Dialogs

Figure 12.5 illustrates the application’s Dialog menu. This part of
the exercise concerns the last four items in the menu. These are the
four simple dialogs listed in Table 12.1.

Dialog Type Resource Type Resource ID

Set Text movable modal PPob 1200

Set Font movable modal PPob 1300

Set Size movable modal PPob 1400

Set Style modal DLOG and DITL 1500
PPB–384 The PowerPlant Book

Dialogs
Implementing Simple Dialogs
Figure 12.5 The Dialog menu

When the user chooses one of the last four items, the application
object displays the appropriate dialog. When the user approves the
dialog, the application object retrieves the necessary information
and changes the topmost caption. If the user cancels the dialog, the
application does nothing.

In this section you write the code to implement the text dialog using
UModalDialogs. You implement the font dialog using
StDialogHandler. The size dialog also uses StDialogHandler, so that
code is provided for you. You implement the style dialog using the
Mac OS Dialog Manager.

1. Examine commands in the Dialog application.

ObeyCommand() CDialogsApp.cp

In this step you explore ObeyCommand() so you have an idea of
what’s happening in support of the dialogs you are about to build.

This function has a series of case statements for the commands the
application handles. Of particular interest to us here are these four
commands:

• cmd_SetTextDialog

• cmd_SetFontDialog

• cmd_SetSizeDialog

• cmd_SetStyleDialog

The application receives these commands when the user chooses the
corresponding item in the Dialog menu. Locate the case
The PowerPlant Book PPB–385

Dialogs
Implementing Simple Dialogs
statements for these commands, and examine the code. You don’t
write any code in this step, just review the existing code.

Each starts identically. The application gets the top regular window.
If there is a window and it is the right kind of window, the
application then gets the dynamic caption object.

Listing 12.4 Setting up to create a dialog.
// Get the top regular window.
LWindow *theWindow = UDesktop::FetchTopRegular();

if (theWindow != nil && theWindow->GetPaneID() ==
 rPPob_SampleTextWindow) {

 // Get the dynamic caption.
 CDynamicCaption *theCaption;
 theCaption = dynamic_cast<CDynamicCaption *>
 (theWindow->FindPaneByID(kDynamicCaption));
Assert_(theCaption != nil);

After it has the caption, the application gets either the caption
descriptor (for the Set Text dialog) or the caption’s text traits record
(for the other dialogs).

Finally, in each case there is code that calls a function to manage
the dialog. For example, to set text the code is:

if (AskForText(theText)) {
 // Set the caption's text.
 theCaption->SetDescriptor(theText);
}

Each of the AskFor...() functions returns a boolean value
indicating whether the user clicks OK or Cancel. If the user clicks
OK, the application sets the appropriate information for the caption.
In the example above, it sets the caption’s descriptor.

This dispatch code is provided for you. You have already worked
extensively with the ObeyCommand() function in previous
exercises, so you know how it works. In the next steps you write
three of the AskFor…() functions to display and manage dialogs.
Each demonstrates a different technique for creating, displaying,
and managing dialogs.
PPB–386 The PowerPlant Book

Dialogs
Implementing Simple Dialogs
2. Use UModalDialogs to manage a dialog.

AskForText() CDialogsApp.cp

This movable modal dialog contains an LEditField pane to allow the
user to enter text. Your task is to create, display, and manage the
dialog. You get the text, dismiss the dialog, and return the correct
value—true or false—to the caller. You can do all this with one line
of code and the UModalDialogs::AskForOneString()
function. The declared constant for the PPob resource is
rPPob_SetTextDialog. The declared constant for the edit pane is
kSetTextEditField.

 Boolean theResult = false;

 theResult = UModalDialogs::AskForOneString(this,
 rPPob_SetTextDialog, kSetTextEditField, ioText);

 return theResult;

3. Use StDialogHandler to manage a dialog.

AskForFont() CDialogsApp.cp

As you know, the StDialogHandler stack-based class takes over all
event processing. Your tasks are similar to those in the previous
step. You must create, display, manage, and dismiss the dialog.
Along the way, you get the necessary data (in this case a font
number) and return the correct value to the caller.

a. Create the dialog.

Declare a local StDialogHandler variable. You provide the PPob
resource ID and the commander. The declared constant for the
resource ID is rPPob_SetFontDialog. After you create the
handler, get the pointer to the dialog window from the handler
object.

Boolean theResult = false;

// Create the dialog handler.
StDialogHandler theHandler(rPPob_SetFontDialog, this);

// Get the dialog.
LWindow *theDialog;
The PowerPlant Book PPB–387

Dialogs
Implementing Simple Dialogs
theDialog = theHandler.GetDialog();
Assert_(theDialog != nil);

Existing code then gets the popup menu item and initializes it.

b. Show the dialog.

After the existing code initializes the popup menu, display the
dialog. Solution code for this substep is in substep c.

c. Run the dialog.

After displaying the dialog, loop repeatedly and call the handler
object’s DoDialog() function. Respond to the messages. There
are two possible messages, msg_Cancel and msg_OK.

If the user cancels the dialog, exit the loop and return a value of
false.

If the user accepts the dialog, get the text for the current font in
the popup menu. Use the Toolbox function
GetMenuItemText(). Then get the font number. Use the
Toolbox function GetFNum(). Set theResult to true, and
return.

// Make the dialog visible.
theDialog->Show();

while (true) {

 // Handle dialog messages.
 MessageT theMessage = theHandler.DoDialog();

 if (theMessage == msg_Cancel) {

 // Just break out of the loop.
 break;

 } else if (theMessage == msg_OK) {

 // Get the font name chosen.
 ::GetMenuItemText(thePopup->GetMacMenuH(),
 thePopup->GetValue(), ioFontName);

 // Get the font number.
 ::GetFNum(ioFontName, &outFontNumber);
PPB–388 The PowerPlant Book

Dialogs
Implementing Simple Dialogs
 // Turn on the result flag and
 // break out of the loop.
 theResult = true;
 break;
 }
}

return theResult;

This approach gives you more flexibility than the UModalDialogs
utilities. Although this is a simple example that receives two
messages, you can use StDialogHandler to receive and handle an
arbitrary set of messages from the dialog contents.

The code in AskForFontSize() uses the same approach as this
step. That code is provided for you.

4. Use the Mac OS Dialog Manager to manage a dialog.

AskForStyle() CDialogsApp.cp

In this step you write code at the beginning and end of this function.
The code to run the dialog is provided for you, because it is pure
Toolbox and has nothing directly to do with PowerPlant.

However, if you wish to use the Dialog Manager to handle dialogs,
there are some PowerPlant-related tasks you must perform before
you run the dialog.

a. Deactivate PowerPlant windows.

Use a function in UDesktop.

b. Clear PowerPlant focus.

The code you are about to write sets the GrafPort directly,
effectively changing the port behind PowerPlant’s back. Call
LView::OutOfFocus() so PowerPlant knows that the focus is
no longer reliable.

DialogPtr theDialog;

// Deactivate desktop windows.
UDesktop::Deactivate();

// invalidate LView's focus cache.
LView::OutOfFocus(nil);
The PowerPlant Book PPB–389

Dialogs
Implementing Simple Dialogs
// Create the dialog.

Existing code creates and runs the dialog. It uses ModalDialog().
In this example there is no event filter proc provided. If you use the
Dialog Manager and modal dialogs in a real application, you should
provide an event filter.

After the dialog is complete, the existing code disposes of the
dialog. You have one more PowerPlant task to perform.

c. Reactivate PowerPlant windows.

Once again, use a function in UDesktop. This code goes at the
very end of the function.

 ::DisposeDialog(theDialog);

 // Activate desktop windows.
 UDesktop::Activate();

That takes care of the simple dialogs. Save your work. You can leave
the file open if you wish, you’ll be using it again a little later.

5. Build and run the application.

Make the application. You may get a couple of warnings about
unused variables, but you can ignore them. You’ll use them in the
second part of this exercise.

All of the four simple dialogs should work correctly at this point.
Display each dialog in turn.

Observe the state of the menu bar and menu items. When you
display the Set Text dialog, the Edit menu is enabled.
UModalDialogs takes care of that for you because you have an
editable text field in the dialog. For the Set Font and Set Size dialogs,
only the System menus—Apple, Help, Application—are available.
For the Set Style dialog, the Apple and Application menus are also
disabled. This is a modal dialog, and you cannot leave the
application when a modal dialog is frontmost.

Play with the various dialogs, clicking the Cancel and OK buttons,
and observe the effect on the sample text.

If the application does not behave as you expect, check your code
against the solution code to make sure you performed each step
PPB–390 The PowerPlant Book

Dialogs
The Complex Dialog Interface
correctly. If you’d like to study further, you can quit the application,
enable the debugger, rebuild the application, and run it under the
debugger. Set breakpoints at various judicious spots and watch
what happens. You could also add a new dialog to modify the
caption’s color. Perhaps you can use the color control you built in
the exercise on controls.

However, if you’d like to continue forward, there’s more to be done!
Let’s put all four dialogs into one. This enables the user to modify
any text trait in the same dialog, and to preview the effect of
changes.

The Complex Dialog Interface

In essence, a dialog in PowerPlant is a window with controls. You
use those controls just like you would in any other window. The
controls send messages. Any appropriate object may listen to the
controls. When it receives a message the listener acts. Typical
listeners include custom controls in the dialog, a custom
commander object, the dialog window itself, or the application
object. In this application, the listener is the dialog window.

Figure 12.6 illustrates the Text Options dialog you work with in the
remaining steps in this exercise. Use Constructor to open the
Dialogs.ppob project file, and examine the Text Options Dialog
PPob resource with ID number 1100. This PPob resource describes
the contents of this dialog.
The PowerPlant Book PPB–391

Dialogs
Implementing a Complex Dialog
Figure 12.6 The Text Options dialog

If you examine the window characteristics you’ll see it is a movable
modal dialog in the modal layer. It is a custom object. The class ID is
TxtD. The text options dialog class overrides a few of the
LDialogBox functions. We’ll examine the class in the next step.

After examining the window characteristics, look at the individual
controls in the window. Each has a value message. The value
message is the sum of the PPob resource ID and the pane ID. For
example, the Preview check box is pane ID 3, and the value message
is 1103. This kind of systematic numbering can make it easier to
keep track of controls in a complex dialog.

The OK and Cancel buttons use negative message numbers, -1101
and -1102 respectively. We’ll use this fact to demonstrate what
happens to negative message numbers when working with a dialog.

Implementing a Complex Dialog

Like the simple dialogs, the user displays the Text Options dialog by
choosing the correct item in the Dialog menu. The application’s
ObeyCommand() function receives a cmd_TextOptionsDialog
message. That’s where we’ll begin writing code.
PPB–392 The PowerPlant Book

Dialogs
Implementing a Complex Dialog
Before we do that, however, let’s take a quick look at the
CTextOptionsDialog class.

6. Examine the CTextOptionsDialog Class

class declaration CTextOptionsDialog.h

The class ID is TxtD, just like the value specified in the PPob
resource.

This class has two new data members, mTextTraits and
mOriginalTextTraits. The dialog modifies the text traits
resource interactively, but must allow the user to cancel the
operation and restore the caption to its original state. The dialog
object stores a pristine copy of the original text traits in
mOriginalTextTraits. The mTextTraits member is the “new”
text traits. It reflects the changes going on because of choices in the
dialog.

This class overrides:

• FinishCreateSelf()

• ListenToMessage()

• FindCommandStatus()

You’ll work on each of these functions in subsequent steps.

This class also declares three new functions:

• SetupDialog()

• GetTextTraits()

• AdjustSizeMenuForFont()

Each of these functions is provided for you. SetupDialog()
initializes the data members and sets the controls in the window to
initial values. GetTextTraits() returns the modified or “new”
text traits. AdjustSizeMenuForFont() sets the items in the Size
popup menu to use outline style if there is a bitmap font available
for that size.

In the remaining steps in this exercise we’re going to take the
following path. We start at the application and create the window.
Then we write the code to implement the dialog. Finally, we return
to the application to handle messages not fully handled by the
dialog. Let’s get started.
The PowerPlant Book PPB–393

Dialogs
Implementing a Complex Dialog
7. Instantiate and display the dialog window.

ObeyCommand() CDialogsApp.cp

When the user chooses the Text Options item in the Dialog menu,
the application’s ObeyCommand() function receives a
cmd_TextOptionsDialog message. There is a case statement to
handle that message. The existing code gets the top regular window
and the text traits for the caption object inside that window.

After that, you have three tasks to accomplish. You must:

a. Create the dialog.

Use the LWindow::CreateWindow() function. Typecast the
return value as a CTextOptionsDialog pointer. The declared
constant for the PPob resource ID is
rPPob_TextOptionsDialog.

b. Initialize the dialog.

Use the dialog object’s SetupDialog() function.

c. Display the dialog.

Use the dialog object’s Show() function.
theCaption->GetTextTraits(theTextTraits);

// Create the text options dialog.
CTextOptionsDialog *theDialog;
theDialog = dynamic_cast<CTextOptionsDialog*>
 (LWindow::CreateWindow(rPPob_TextOptionsDialog, this));
Assert_(theDialog != nil);

// Setup the dialog
theDialog->SetupDialog(theTextTraits);

// Show the dialog.
theDialog->Show();

Save your work. Notice that there is no event handling and no
dialog loop. You are simply creating a window. The regular
PowerPlant event handling mechanism takes care of all event
handling.
PPB–394 The PowerPlant Book

Dialogs
Implementing a Complex Dialog
8. Finish building the dialog.

FinishCreateSelf() CTextOptionsDialog.cp

After creating the dialog object, PowerPlant calls the object’s
FinishCreateSelf() function. You write the complete function
in this step. This function should accomplish two tasks.

a. Call the inherited FinishCreateSelf().

CTextOptionsDialog inherits from LDialogBox. The inherited
function sets up the OK and Cancel buttons.

b. Link the dialog to its controls.

Use LinkListenerToControls(). The declared constant for
the RidL resource ID is rRidL_TextOptionsDialog.

 // Call inherited. LDialogBox FinishCreateSelf
 // sets up the default and cancel buttons.
 LDialogBox::FinishCreateSelf();

 // Link the dialog to the controls.
 UReanimator::LinkListenerToControls(this, this,
 rRidL_TextOptionsDialog);

The dialog is now finished. In the normal course of events, the user
clicks controls in the dialog window. The dialog’s
ListenToMessage() function handles each message. In the next
few steps you handle some of those messages.

9. Respond to the cancel message.

ListenToMessage() CTextOptionsDialog.cp

When the user clicks the Cancel button, the dialog receives the
cmd_TxtD_CancelButton message from the control. This
message has a value of -1102. You must do two things.

a. Restore the original text traits.

Call the dialog’s ProcessCommand() function. Send a
cmd_SetTextTraits command along with the original text
traits from the mOriginalTextTraits member. The
application object ultimately receives and handles this
command.
The PowerPlant Book PPB–395

Dialogs
Implementing a Complex Dialog
b. Dispose of the dialog.

This is an application-level responsibility. The application
created the dialog, the application should dispose of it. Call the
inherited ListenToMessage() function. The
LDialogBox::ListenToMessage() function passes negative
messages as commands to the supercommander, in this case the
application.

case cmd_TxtD_CancelButton:
{
 // Restore the original text traits.
 ProcessCommand(cmd_SetTextTraits, &mOriginalTextTraits);

 // Pass message to inherited ListenToMessage.
 LDialogBox::ListenToMessage(inMessage, ioParam);
}
break;

10. Respond to the preview message.

ListenToMessage() CTextOptionsDialog.cp

When the user clicks the Preview check box, the dialog receives the
cmd_TxtD_PreviewCheckbox message. In response you should:

a. Determine if the button is on or off.

Examine the contents of the ioParam parameter.

b. If the button is on, set the new text traits.

Call ProcessCommand(). Send a cmd_SetTextTraits
command along with the new text traits from the mTextTraits
member.

c. If the button is off, restore the original text traits.

Call ProcessCommand(). Send a cmd_SetTextTraits
command along with the original text traits from the
mOriginalTextTraits member.

case cmd_TxtD_PreviewCheckbox:
{
 if (*(static_cast<SInt32 *>(ioParam)) == Button_On) {

 // Use new text traits.
 ProcessCommand(cmd_SetTextTraits, &mTextTraits);

PPB–396 The PowerPlant Book

Dialogs
Implementing a Complex Dialog
 } else { // Preview turning off

 // Restore original text traits.
 ProcessCommand(cmd_SetTextTraits, &mOriginalTextTraits);
 }
}
break;

11. Respond to the plain style message.

ListenToMessage() CTextOptionsDialog.cp

When the user clicks the plain style check box, you must not only set
the text traits, but clear all the other style check boxes as well.
However, every time you set the contents of one of the other check
boxes, it sends a message! This could cause problems.

To complete this step you should:

a. Stop listening.

This prevents the dialog from hearing messages as it changes the
values of certain controls.

b. Turn this check box on.

Use SetValueForPaneID(). The declared constant for this
pane is kTxtD_PlainCheckbox.

c. Turn off all the other style check boxes.

Loop from kTxtD_BoldCheckbox to and including
kTxtD_ExtendCheckbox. Turn each control off.

d. Start Listening.

Now that you are finished changing control values, you can
listen again.

e. Set the new text traits style to normal.

Use mTextTraits. The Toolbox constant for this is normal.

f. If the preview feature is on, set the new traits.

Check the value of the kTxtD_PreviewCheckbox control. If it
is on, send the cmd_SetTextTraits message.

case cmd_TxtD_PlainCheckbox:
{
 // Turn off listening temporarily.
The PowerPlant Book PPB–397

Dialogs
Implementing a Complex Dialog
 // Otherwise we get in a tug-of-war as
 // controls broadcast their changing values.
 StopListening();

 // Turn check box on always. You can't turn
 // this box off by clicking on it.
 SetValueForPaneID(kTxtD_PlainCheckbox, Button_On);

 for (PaneIDT i = kTxtD_BoldCheckbox;
 i <= kTxtD_ExtendCheckbox; ++i) {

 // Turn off the other style check boxes.
 SetValueForPaneID(i, Button_Off);
 }

 // Start listening again.
 StartListening();

 // Set the style to plain.
 mTextTraits.style = normal;

 if (GetValueForPaneID(kTxtD_PreviewCheckbox) == Button_On) {

 // Send the set text traits command.
 ProcessCommand(cmd_SetTextTraits, &mTextTraits);
 }
}
break;

12. Pass unhandled messages up the chain.

ListenToMessage() CTextOptionsDialog.cp

The default case takes care of any messages not handled. They
should go to the inherited ListenToMessage() function.

default:
{
 // Call inherited.
 LDialogBox::ListenToMessage(inMessage, ioParam);
PPB–398 The PowerPlant Book

Dialogs
Implementing a Complex Dialog
 break;
}

The code to handle all the other messages is provided for you.
Examine the code if you wish. The tasks performed are essentially
the same as what you have already accomplished.

13. Update menus.

FindCommandStatus() CTextOptionsDialog.cp

The last thing the dialog object must take care of is menu updating.
Here is an exception to the rule that you always pass on that which
you don’t handle to the inherited function. When a movable modal
dialog is the frontmost window, the Apple menu, the Help menu,
and the Application menu should be active. All others should be
inactive. The System takes care of the Help and Application menus.

You should activate the About item in the Apple menu, and disable
all other commands.

// Disable all commands.
outEnabled = false;

if (inCommand == cmd_About) {

 // Enable the about command.
 outEnabled = true;
}

Save your work and close this file. You have completely
implemented the dialog window. The final task is for the
application to handle those commands not taken care of by the
dialog window.

14. Handle messages at the application.

ObeyCommand() CDialogsApp.cp

The application receives three commands from the Text Options
dialog window:

• cmd_TxtD_OKButton—a negative message converted by
LDialogBox::ListenToMessage() into a command and
sent to the supercommander.

• cmd_TxtD_CancelButton—a negative message converted by
LDialogBox::ListenToMessage() into a command and
sent to the supercommander.
The PowerPlant Book PPB–399

Dialogs
Implementing a Complex Dialog
• cmd_SetTextTraits—a command issued by the dialog
window’s ListenToMessage() function to update the caption
in the top regular window.

In this step you handle the cancel button. The remaining code is
provided for you.

When the user cancels the Text Options dialog, the dialog sends a
cmd_SetTextTraits command that restores the original text
traits. The application’s only duty is to dispose of the dialog
window. To do that, you should:

a. Get a pointer to the dialog response record.

It’s in the ioParam parameter.

b. Get a pointer to the dialog window.

This is stored in the dialogBox field of the dialog response
record.

c. Delete the dialog.

Use the delete keyword.
case cmd_TxtD_CancelButton:
{
 // Get the dialog response.
 SDialogResponse *theResponse =
 static_cast<SDialogResponse *> (ioParam);
 Assert_(theResponse != nil);

 // Get dialog box from the dialog response.
 CTextOptionsDialog *theDialog;
 theDialog = dynamic_cast<CTextOptionsDialog *>
 (theResponse->dialogBox);
 Assert_(theDialog != nil);

 // Delete the dialog.
 delete theDialog;
}

In response to a click on the OK button, the code provided for you
uses the same technique to get the dialog window, and then get the
PPB–400 The PowerPlant Book

Dialogs
Implementing a Complex Dialog
new text traits from the window. The code then sets the traits and
deletes the dialog.

In response to the cmd_SetTextTraits command, the application
gets the caption for the top regular window and sets its traits.

Save your work and close the file. You’re all done.

15. Build and run the application.

At last! Make the project and run it. When you do, a window should
appear with a caption object, as illustrated in Figure 12.7.

Figure 12.7 The dynamic caption window

Display the new Text Options dialog. Observe the state of the menu
bar and menu items. Only the System menus—Apple, Help,
Application—are available. This is appropriate for a movable
modal dialog.

Change settings while the Preview check box is checked and
unchecked. Observe the different behavior.

If the application does not behave as you expect, check your code
against the solution code to make sure you performed each step
correctly. If you’d like to study further, you can quit the application,
enable the debugger, rebuild the application, and run it under the
debugger. Set breakpoints at various judicious spots and watch
what happens.

For example, set a breakpoint in the dialog’s ListenToMessage()
default case statement. Follow the flow of control when the OK
button is clicked to see what happens to a negative message.
The PowerPlant Book PPB–401

Dialogs
Implementing a Complex Dialog
If you’d like to enhance the application, modify the dialog to
include a color control, and change the text color.

Have a good time exploring!

Now it’s time to leave the world of windows, dialogs, panes, views,
and controls, and move on to a different part of PowerPlant:
documents. In the next two chapters we explore the document
pattern in PowerPlant. You’ll learn how to open and close files on
disk, write and read data in files, and print documents. The best
part of the adventure lies ahead!
PPB–402 The PowerPlant Book

13
File I/O

You have a solid handle on how to manipulate the visual interface
of a Macintosh application using PowerPlant. You have learned
about all the visual elements: panes, views, and controls. You know
how they communicate, and how to use them.

You have learned how to create a PowerPlant application, and how
to use PowerPlant’s debugging and memory management utilities.
You know how to set up and manage the command structure in a
PowerPlant application, and how PowerPlant handles menus. You
have also learned how to manipulate the common interface views in
a Mac application, windows and dialogs.

At this point, you can write a complete, self-contained PowerPlant
application. However, there are two important features of an
application that we have not discussed—file I/O and printing.

In this chapter we introduce you to PowerPlant’s document-based
strategy for managing persistent data—data that is saved to a file.

PowerPlant’s approach to file I/O involves the collaboration of
several different classes. As a result, it will help a great deal if,
before we go into class-level details, we take a look at the big
picture. With that in mind, the topics in this chapter are:

• The Document Strategy—how PowerPlant classes work together
to save data.

• LDocApplication—the document services provided by
LDocApplication.

• What Is a Document—a look at PowerPlant’s document classes.

• What Is a File—the LFile class and how it serves as your bridge
to the Mac File Manager.

• What Is a Stream—the various PowerPlant stream classes.
The PowerPlant Book PPB–403

File I /O
The Document Strategy
• Saving and Opening Files—how you can use all of these
components together to read and write data.

The Document Strategy
In this section you get an aerial view of how PowerPlant manages
documents. After you have the big picture, seeing how the pieces fit
together will be a lot easier.

Figure 13.1 illustrates PowerPlant’s approach to documents and file
I/O. Each major component in the design—and its corresponding
PowerPlant class—is shown. The discussion that follows explains
all the details.

Figure 13.1 A document-centered design for file I/O

Until now we have ignored a simple fact about how computers
work. A computer brings data into RAM for manipulation and
display. It stores data “off site” on a hard disk or other storage
medium. By “off site” we mean not inside the central processor or
associated RAM. This design allows the data to survive while the
computer is busy doing other things, or is turned off. In other
words, the data becomes persistent.

We refer to an identifiable unit of stored data as a document.
Essentially, this is what all of us call a “file” on our hard drives.
PPB–404 The PowerPlant Book

File I /O
The Document Strategy
We’re going to use the term “document” in this discussion, to avoid
confusion a little later on.

In a real sense, the application program itself is a document. The
operating system loads it (or relevant parts of it) into RAM for
manipulation and display.

However, we’re going to take a somewhat more narrow view of a
document. In this discussion, a document is an identifiable unit of
stored data used by an application! The document contains whatever
information is necessary for the application’s purpose. It might be a
single byte, or it might be gigabytes of information.

In this approach, the document is fundamental. It is the critical unit
used by an application for data management.

Although most applications use documents, some do not. For the
rest of this discussion we assume that the applications we speak of
are all document-dependent.

An application that uses documents must have document
management functions. The application must open a document,
close the document, and create a new document. In PowerPlant, this
behavior is encapsulated in the LDocApplication class.

In good object-oriented design, the document should be—as much
as possible—responsible for itself. Then the application does not
need to know the details of the document’s internal workings.

Therefore, the document can be thought of as an independent object
that collaborates with the application. In PowerPlant, this is the
LDocument class, and its descendant, LSingleDoc.

The document is responsible for its own maintenance. Although the
application issues commands to open and close a document, it is the
document itself that is responsible for writing its contents to storage
and reading its contents from storage. The application simply
knows it has a document. The document knows what its contents
are. This frees the application from the responsibility of knowing
anything about the contents of the document.

Because the document is responsible for reading and writing
storage, the document must deal with the computer’s file system. In
The PowerPlant Book PPB–405

File I /O
LDocApplication
PowerPlant, that interaction occurs through an LFile object. There is
an important design subtlety here. The LFile object does not
represent just the document on disk—what we commonly refer to
as a file. The LFile object represents the access path to the document
in storage. In a very real sense, the LFile object is the interface to the
file system itself.

The document issues the commands, but the LFile object is
responsible for the work when it comes time to actually read or
write data in storage. There is more than one way to accomplish the
task. You can read all the data in a single block. Or you can treat the
stored information as a stream and read in the necessary bits and
pieces. PowerPlant uses the LStream class to help you access data as
a stream, should you choose to do so.

Of course, after you have moved the data out of storage and into
RAM, it is quite likely that some person will want to view the data.
That’s where windows come into play. A window is merely the
document’s way of displaying the data on a monitor. In this
strategy, a window is subservient to a document. The document
“owns” the window that displays its data. The window has nothing
whatsoever to do with saving contents to storage.

This is really the essence of the LDocument class. It associates files
and windows.

Now that you know how the pieces fit together, you might want to
take another look at Figure 13.1. Then we can talk about the
individual elements in this design.

LDocApplication
The application forms the top of the document chain in terms of
responsibility. It issues commands that open, close, and create new
documents. It is also responsible for issuing the command to print a
document, but we talk about that in the next chapter.

LDocApplication is a simple extension of the PowerPlant
LApplication class. Figure 13.2 illustrates its ancestry.
PPB–406 The PowerPlant Book

File I /O
LDocApplication
Figure 13.2 LDocApplication hierarchy

We discussed the principal features of an application in “The
Application Object.” You can review that information if you need to
brush up on the features of an application.

LDocApplication is simply an application with document support.
It provides support on three levels:

• Command handling

• Apple events

• Function interface

When you create your own document-related PowerPlant
application, you will subclass from LDocApplication. Although not
an abstract class, several of the important member functions are
empty.

Command handling

Because it is a commander, LDocApplication has the usual
ObeyCommand() and FindCommandStatus() functions.

If you use standard PowerPlant command numbers for the New,
Open, and Page Setup items, any class you derive from
LDocApplication will handle these menu items and commands
automatically.

In the default LDocApplication implementation, these items are
always enabled. When the user chooses one of these commands
from the File menu, LDocApplication::ObeyCommand()
dispatches control to the appropriate function.
The PowerPlant Book PPB–407

File I /O
LDocApplication
Apple events

LDocApplication has five functions that provide Apple event
support for document-related commands. These functions are:

• SendAEOpenDoc()

• SendAECreateDocument()

• DoAEOpenOrPrintDoc()

• HandleAppleEvent()

• HandleCreateElementEvent()

These are handlers and dispatchers that manage the flow of control
relating to documents. These are complete functions. It is unlikely
that you will override them, with two exceptions.
HandleAppleEvent() and HandleCreateElementEvent()
are inherited from LModelObject. These two functions are
commonly overridden when implementing scriptability.

Because PowerPlant document commands—even those from within
the application itself—go by way of Apple events, these handlers
suffice to dispatch all basic document-related actions.

However, these functions do not actually open, create, or print a
document. They call implementation routines to do the actual work.

Function interface

LDocApplication provides these four functions for document
management:

• OpenDocument()

• PrintDocument()

• MakeNewDocument()

• ChooseDocument()

However, in LDocApplication, these functions do nothing. You
must derive your own application class from LDocApplication, and
write code to implement these four functions. We talk about how to
do that in “Saving and Opening Files.”

Before that, let’s look at the other components of the PowerPlant
document design pattern.
PPB–408 The PowerPlant Book

File I /O
What Is a Document
What Is a Document
From the PowerPlant perspective, a document is an object that
descends from LDocument. LDocument itself cannot be
instantiated. Figure 13.3 illustrates the LDocument class hierarchy.
LDocument appears with a grey bar because it is an abstract class.

Figure 13.3 LDocument class hierarchy

In this section we look at the characteristics and behaviors of both:

• LDocument

• LSingleDoc

LDocument

As an abstract class, LDocument provides a generic interface for all
documents. LDocument has four data members of interest to us.

Table 13.1 LDocument data members

The sDocumentList data member is static, hence a class variable.
There is only one instance of this variable for all document objects.

Data member Stores

mIsModified document has been changed

mIsSpecified document is associated with a file on disk

mPrintRecordH handle to Mac OS print record

sDocumentList LArray object of all documents
The PowerPlant Book PPB–409

File I /O
LDocument
The various LDocument member functions use these data members
in their work. These functions provide support for:

• Command handling—how LDocument implements
ObeyCommand() and FindCommandStatus().

• Document management—LDocument’s functions for saving and
closing files.

• Other features—managing lists of documents and the document
descriptor.

Command handling

Being a commander, LDocument has the usual ObeyCommand()
and FindCommandStatus() functions.

If you use the standard PowerPlant command numbers for the
Close, Save, Save As, Revert, Print, and Print One menu items, any
class you derive from LDocument will handle these menu items and
commands automatically.

In the default LDocument implementation, Save As, Print, and
Print One are always enabled when there is a document active. The
Save menu item is enabled if there is a document active, and the
document has been changed or doesn’t yet exist on disk. The Revert
item is enabled if the document has changed and already exists on
disk.

When the user chooses one of these commands from the File menu,
LDocument::ObeyCommand() dispatches control to the
appropriate function in LDocument to implement the command.
We talk about those functions in “Document management” below.

As a commander, LDocument has one more interesting behavior. It
overrides the AttemptQuitSelf() function. This is where
PowerPlant checks for any unsaved documents, and allows the user
to save them before quitting. If you want to use a different alert than
the PowerPlant default alert, or you want to manage this process in
some other way, override this function in your own LDocument
subclass.
PPB–410 The PowerPlant Book

File I /O
LDocument
Document management

LDocument is responsible for opening, saving, closing, reverting,
and printing a document. Table 13.2 lists the member functions
involved in this process.

Table 13.2 LDocument document management functions

In LDocument, the functions related to closing a file are complete.
You probably won’t need to override them. The AskSaveAs()
function is also complete.

The other functions relating to saving, reverting, and printing a
document are all empty. You must provide the functionality in your
LDocument subclass. We talk about how to do that in “Saving and
Opening Files.”

Remember, most of the dispatch and command handling
functionality is provided by the application framework. All you
have to do is provide the final function at the end of the chain that
actually implements the required behavior. In the case of closing a
document, the framework handles that for you too.

Other features

LDocument has two very useful utility functions for document
management. Table 13.3 lists them.

Function Purpose

AskSaveAs() manage the standard file dialog

DoAESave() do a Save As operation

DoSave() do a Save operation

DoAEClose() respond to a close Apple event

AttemptClose(
)

attempt to close the document

DoRevert() revert to the last saved version

DoPrint() print the document
The PowerPlant Book PPB–411

File I /O
LSingleDoc
Table 13.3 LDocument utility functions

These are both static functions, so you may call them at any time
using the LDocument class specifier. These functions allow you
global access to all open documents, or to a specific named
document.

There is one other feature of LDocument. It has a descriptor
characteristic. This is analogous to a pane’s descriptor. However,
the GetDescriptor() accessor is a pure virtual function. How
you implement the descriptor feature in your own document class is
up to you. Typically you would fill in the outDescriptor
parameter with the name of the document.

LDocument is an abstract class, and as such cannot be instantiated.
However, any class you derive from LDocument will have all of
these features. PowerPlant derives one such class, LSingleDoc.

LSingleDoc

LSingleDoc is a very simple extension of LDocument. Although it is
not an abstract class, the important functions for saving, reverting,
and printing a document are still empty. You must derive your own
class from LSingleDoc to implement real functionality.

The purpose of LSingleDoc is to provide the connection between an
LDocument object, a single document on disk, and a single window
on screen.

LSingleDoc has two new data members. They are mWindow and
mFile. The mWindow data member is, predictably, a pointer to an
LWindow object. The mFile data member is a pointer to an LFile
object. You are already familiar with LWindow. We discuss LFile’s
characteristics and behaviors in “What Is a File” below.

Function Purpose

GetDocumentList() returns a reference to the LList object
containing all open documents

FindNamedDocument() returns an LDocument pointer to the
specified document
PPB–412 The PowerPlant Book

File I /O
What Is a File
There are no accessors for either data member. They are protected,
so you can access them directly only from inside the class. You
cannot access them from outside an LSingleDoc descendant.

In LSingleDoc, the GetDescriptor() function returns the name
of the document. If the document is associated with a file on disk, it
returns the name of the file. If there is no file, but there is a window
(an unsaved new document for example), it returns the name of the
window. If there is neither a file nor a window, it returns zero.

LSingleDoc provides one other useful feature for you. It overrides
the LCommander AllowSubRemoval() method. An attempt to
close a document-related window is really an attempt to close the
document that owns the window.
LSingleDoc::AllowSubRemoval() intercepts the command
and attempts to close the document. If successful, the document will
close the window as part of the process of closing itself.

What Is a File
The LFile object is a base class in PowerPlant. That is, it has no
ancestor classes. In addition, it is an independent module in
PowerPlant with no dependencies on other parts of the framework.
You can use LFile independently, if you wish, as a wrapper for the
Mac OS File Manager. See Figure 13.4 for an illustration of the LFile
class hierarchy.

Remember from our discussion of the PowerPlant file I/O design
strategy that the LFile object represents both the document in
storage on disk, and the file system itself. This duality is reflected in
LFile attributes and LFile behaviors.

LFile attributes

LFile has three data members, with accessors for each. These data
members store the Mac OS FSSpec record for the file on disk, the
reference number (refNum) for the data fork of the file, and the
refNum for the resource fork of the file. Table 13.4 lists the
accessors.
The PowerPlant Book PPB–413

File I /O
What Is a File
Table 13.4 LFile data accessors

In normal use, when you create an LDocument object for an existing
file (when opening a file, for example), you create an LFile object
and set the specifier to point to the correct file. The LFile object then
becomes your path to disk. When you save a new document, you
get a new specifier (typically obtained from the standard “put file”
dialog). The LFile object takes care of setting the refNum values for
the two file forks.

LFile behaviors

LFile also encapsulates everything you need for file creation,
working with the data fork, and opening or closing the resource
fork. This is the interface into the File Manager. Table 13.5 lists the
functions in LFile.

Table 13.5 LFile functions

Accessor Purpose

GetSpecifier() return FSSpec for the file

SetSpecifier() set the FSSpec for the file

GetDataForkRefNum() return refNum for data fork

GetResourceForkRefNum() return refNum for resource fork

Function Purpose

MakeAlias() return an alias for specified file

CreateNewFile() create a file with resource map and
empty data fork

CreateNewDataFile() create a file with data fork only

OpenDataFork() open path to data fork

CloseDataFork() close path to data fork

ReadDataFork() read entire data fork

WriteDataFork() write entire data fork

OpenResourceFork() open path to resource fork

CloseResourceFork() close path to resource fork
PPB–414 The PowerPlant Book

File I /O
What Is a Stream
All of these functions are fully realized in LFile. These LFile
wrapper functions greatly simplify the process of dealing with the
Mac OS File Manager by hiding many of the details.

If you examine the source code for these functions, you’ll see that
they throw errors whenever necessary. You should catch these
errors for any file operations you create, especially when reading
and writing data.

There are no functions for reading or writing resources. You must
write your own code to read or write data in the resource fork. You
can use LFile to open and close the fork as necessary.

Finally, you may have also noticed that LFile reads and writes the
data fork in one large chunk. If that data represents information for
a variety of structures or objects, you must unflatten the data
yourself.

While the one-gulp approach to the data fork works just fine in
many cases, sometimes reading the entire data fork at once is
neither wise nor possible. For example, large text documents,
spreadsheets, databases, or images may overload your application’s
available memory. You may want to read just part of the data.
That’s where streams come into play.

What Is a Stream
A stream is an ordered series of bytes. The stream concept is a very
powerful one. When accessing data in a stream, it really doesn’t
matter where the data is coming from or going to. You have access
to the stream, and you either read bytes from the stream or put
bytes into the stream. While the ultimate source or destination of the
stream is certainly of concern at one level, your data accessors don’t
need to know the source or destination. This keeps data I/O
separate from reading and writing data.

PowerPlant provides general support for streams that you can use
in any circumstance, and specific support for streams when
accessing data in a file on disk. In this section we are going to
concentrate on two classes:

• LStream
The PowerPlant Book PPB–415

File I /O
LStream
• LFileStream

Figure 13.4 illustrates how the PowerPlant stream and file classes
are related.

Figure 13.4 LStream and LFile class hierarchy

Notice that LStream and its subclasses, like LFile and so many other
segments of PowerPlant, form an independent module.

LStream

In PowerPlant, LStream is a generic implementation of streams for
the Macintosh environment. It is not an abstract class, but it must be
subclassed to be useful, as you’ll see in a bit as we discuss:

• Stream attributes

• Stream behaviors

Stream attributes

A stream has a length and a marker. The length is the number of
bytes in the stream. The marker is your current position in the
stream—the point where the next byte is read from or written to.
LStream defines accessors to these data members: GetLength(),
SetLength(), GetMarker(), and SetMarker().

You can measure from the beginning of the stream, the end of the
stream, or from the position of the marker. PowerPlant defines an
enumerated type, EStreamFrom, with these possible values:

• streamFrom_Start
PPB–416 The PowerPlant Book

File I /O
LStream
• streamFrom_End

• streamFrom_Marker

Stream behaviors

The whole purpose of a stream is to read and write data, so all the
functions are centered around that task. Table 13.6 lists the relevant
functions.

Table 13.6 LStream data accessing functions

There are functions to read or write pointer data, handle data,
Pascal style strings, and C strings. Each of these functions is fully
realized in LStream, and you aren’t likely to override them. Each
reads or writes the length of the data first, and then reads or writes
the correct amount of data in the stream.

Function Purpose

WritePtr() write data referred to by a pointer

ReadPtr() allocate a non-relocatable block and read
data into it

WriteHandle() write data referred to by a handle

ReadHandle() allocate a relocatable block and read data
into it

WritePString(
)

write a Pascal string

ReadPString() read a Pascal string

WriteCString() write a C string

ReadCString() read a C string

WriteData() write an arbitrary amount of data to the
stream

ReadData() read an arbitrary amount of data from the
stream

PeekData() read data without changing marker

ReadAll() read remaining contents of stream into a
handle
The PowerPlant Book PPB–417

File I /O
LFileStream
In addition to these typical functions, LStream overloads the << and
>> operators to read and write data (as in iostreams). There are
overloaded versions of each operator to read or write the following
data types:

• Pascal and C strings

• Rect

• Point

• the contents of a Handle

• signed and unsigned 8-, 16-, and 32-bit integers

• float and double numbers

Most of these functions—including the overloaded operators—rely
on either the ReadData() or WriteData() routines. In LStream,
these are empty functions. They read and write nothing. That’s why
you must subclass LStream for it to be useful. You can design the
subclass to read or write data to the correct destination, be it a file
system, a serial port, a network connection, and so on.

PowerPlant has three LStream subclasses.

• LDataStream is designed for a stream where the data buffer is a
non-relocatable block—a pointer block.

• LHandleStream is designed for a stream where the data buffer is
a relocatable block—a handle block. Consult the PowerPlant
Reference and the source code for details on these classes.

• LFileStream is of special interest in a discussion of File I/O.

LFileStream

LFileStream inherits from both LFile and LStream. See Figure 13.4.
It has all the LFile behaviors we discussed earlier in this chapter,
and overrides none of them.

It overrides and implements the GetBytes() and PutBytes()
functions from LStream. LFileStream uses the File Manager calls
FSRead() and FSWrite() to read or write the data. LFileStream
also overrides the length and marker accessors to use the File
Manager calls GetEOF(), SetEOF(), GetFPos(), and
SetFPos().
PPB–418 The PowerPlant Book

File I /O
Saving and Opening Files
This is a perfect example of how to override LStream to customize it
for a particular environment—in this case the File Manager.

If you use LFileStream as your document’s file object, you can read
or write data of arbitrary length in the data fork of the file. You can
also get it all in one big block if you wish if you use the
ReadDataFork() or WriteDataFork() functions inherited from
LFile.

Saving and Opening Files
Now that we have had a good look at the pieces, let’s see how they
all fit together. In this section we discuss typical tasks you must
perform as you:

• Implement an Application

• Implement a Document

• Implement a Preferences File

Implement an Application

Your first step in creating an application that can save and open files
is to subclass LDocApplication. You override three functions:
MakeNewDocument(), OpenDocument(), and
ChooseDocument().

These functions can be very simple. Listing 13.1 contains sample
code for all three. The open and new routines rely on the document
constructor to do most of the work. The routine to choose a
document manages the StandardGetFile() dialog.

Listing 13.1 Sample document functions
void CMyApp::OpenDocument(FSSpec *inMacFSSpec)
{
 CMyDoc *theDoc = new CMyDoc(this, inMacFSSpec);
}

LModelObject* CMyApp::MakeNewDocument()
{
 CMyDoc *theDoc = new CMyDoc(this, nil);
 return theDoc;
The PowerPlant Book PPB–419

File I /O
Implement a Document
}
void CMyApp::ChooseDocument()
{
 StandardFileReply macFileReply;
 SFTypeList typeList;

 UDesktop::Deactivate();
 typeList[0] = 'TEXT';
 ::StandardGetFile(nil, 1, typeList, &macFileReply);
 UDesktop::Activate();
 if (macFileReply.sfGood) {
 SendAEOpenDoc(macFileReply.sfFile);
 }
}

Note the use of UDesktop::Deactivate() and
UDEsktop::Activate() around the call to
StandardGetFile(). Also, note that the code sends an Apple
event to open the document, to support recordability in a scripting
environment.

See also “Traditional Dialogs.”

Implement a Document

In your document class, you have a bit more work to do. Precisely
what you do and how you do it will depend upon your application.
However, the typical tasks are well defined. In this section we
examine the tasks you perform when you:

• Create and open a document

• Save a document

• Revert a document

Create and open a document

In your document constructor—or in an initializing function called
immediately after creating a document—you must set up all the
information necessary for the document. Your tasks are:

1. Create a window for the document.

2. Set the window’s name.

3. If you are opening a document, open the associated file.
PPB–420 The PowerPlant Book

File I /O
Implement a Document
You do not create a file object if you are creating a new document.
The new document is not yet associated with a file on disk.

Opening a file also involves well-defined tasks. To open a file you:

1. Create and initialize a file object—either LFile, LFileStream,
or a file object of your own design.

2. Open the data fork, read the data, and close the data fork.
This assumes you use the data fork.

3. Open the resource fork, read resources, and close the
resource fork. This assumes you use the resource fork.

4. Install the data content of your window.

5. Set the name of the window to match the file on disk.

The precise implementation of these steps will, of course, depend
upon your application. For example, you may need to read
resources first and data second. These steps are just a guide to the
typical tasks you should keep in mind as you open a file.

Installing your data in the document may be an involved process.
You decide your own data storage format. You may want to
implement a streaming operation and rebuild objects from the
stream. Or you may read the entire data fork at once, and then
rebuild your document from the single block of data. Either way,
remember that your reading and writing operations should be the
exact converse of each other.

Having accomplished these tasks, you’re still not quite through.
You must save a file as well.

Save a document

To save a document, you implement the document class’s
DoAESave() and DoSave() functions. In the PowerPlant
architecture, DoAESave() is called when the user is performing a
Save As operation. This occurs when the user is saving a file for the
first time, or saving the file under a new name.

The function receives a file specification and a desired file type. The
file type is usually a constant, fileType_Default. This tells you
to save the file in its “natural” file type for your application.
However, the inFileType parameter may have a user-specified
file type (to allow exporting a file in a different format, for example).
The PowerPlant Book PPB–421

File I /O
Implement a Document
A user-specified type might come from a custom save dialog, or
from a script driving the application. If the file type is a non-default
file type, specify the correct type and creator when saving the file.

To implement DoAESave() your function should:

1. Delete the document’s existing file object. This does not
delete the original file on disk, just the file object that
represents the old file.

2. Create and initialize a new file object for the new file.

3. Create a new file on disk of the correct file type and creator.

4. Open the data and/or resource fork.

5. Save your document’s data. In a well factored design, this
usually means calling DoSave().

6. Close the data and/or resource forks.

7. Set the window’s name to the name of the new file.

To implement the DoSave() function, you perform these steps.

1. Gather your document’s data.

2. Write it to disk.

Just what is involved in gathering your data depends upon your
application. You may want to use a stream and write data for each
object in the document. You may accumulate your data in a single
block and write it all at once.

TIP Recall that LDocument::AskSaveAs() manages the
StandardPutFile() dialog when the user performs a Save As
operation. This is the dialog the user sees when asked to provide a
name for the file. If the user replaces the file, PowerPlant deletes the
file on disk before beginning a new save operation. You may wish to
override this mechanism in your own document class. A more robust
mechanism would be to create a temporary file and save the data to
a temporary file. Only when the save operation is successful should
you replace the existing file with the Toolbox call
FSpExchangeFiles().
PPB–422 The PowerPlant Book

File I /O
Implement a Preferences File
Revert a document

The final I/O task your document must perform is reverting a file to
its most recently saved state. Once again, the precise form this takes
depends upon your application, but the steps are clear and simple.
The document already has an associated file on disk. To revert the
document you should:

1. Open the data fork, read the data, and close the data fork.
This assumes you use the data fork.

2. Open the resource fork, read the resources, and close the
resource fork. This assumes you use the resource fork.

3. Replace the existing contents of the document with the data.

The order of these tasks is significant. Don’t delete the existing
contents of your document until you’ve got the new contents from
file. Then, if the operation fails you haven’t destroyed the
document.

WARNING! When creating a document-based application, don’t forget to include
the file PP Document Alerts.rsrc in your project. It contains
PowerPlant’s default document-related alerts. See Appendix B,
“Resource Notes” for more information on the contents of this file.

Implement a Preferences File

Before we conclude this chapter, there is one more common, file-
related task to discuss—maintaining a preferences file. Many
applications have preference files.

PowerPlant makes creating and maintaining a preferences file as
simple as possible with LPreferencesFile.

The constructor builds an FSSpec for a file in the Preferences folder
in the System folder. That file has the name you specify. The
constructor does not actually create or open the file on disk.

You use the member functions inherited from LFile to manage the
file—create, open, read, write, and so forth. There is, however, one
more nice feature to LPreferencesFile.
The PowerPlant Book PPB–423

File I /O
Summary
Preferences are often stored as a resource. The only new function in
LPreferencesFile is OpenOrCreateResourceFork(). This
function opens or creates the resource fork for the file, whichever is
appropriate. After you have the fork open, you can use the Resource
Manager to write your preferences resource to the file.

Summary
In this chapter you learned how several PowerPlant classes work
together to implement a well-designed file I/O system.

LDocApplication is responsible for opening and creating
documents—establishing documents in the application. In your
application you implement simple functions to create and open a
document.

LDocument is responsible for saving and closing documents, as
well as reverting and printing—file management with documents.
LSingleDoc implements the one document/one file/one window
relationship typical of most Macintosh applications.

In your document class you write the routines to read the data from
a file on disk into a document, and write data back out to disk. In
the process you take advantage of LFile and LFileStream. These
classes give you simple alternatives for reading and writing data to
a Macintosh file.

Code Exercise
In this exercise you write an application named “Documents.” The
Documents window contains an editable text pane, so you can type
text into the window. You did as much in the very first chapter in
this book when you wrote PPEdit.

What’s new here is that you can also open any text file (smaller than
the 32K TextEdit limit), and save your work to a text file.
PPB–424 The PowerPlant Book

File I /O
The Interface
The Interface

The interface is not the center of attention in this exercise, but it is
important. The PPob resource is provided for you. Take a moment
to open the Documents.ppob project file with Constructor.
Examine the PPob resource for the Documents window.

The window contains a scrolling view that contains a TxtV object.
This is a custom object derived from LTextEditView.

The code for the CTextView class (class ID TxtV) is provided for
you. Its added features include a “dirty” flag and an override of
UserChangedText(). CTextView::UserChangedText() sets
the dirty flag and the menu update flag. As a result, the application
responds appropriately when the user changes the contents of the
window.

For example, the Save item is enabled only if the document has been
modified. The Revert item is enabled only if the document has a
specified file and has been modified. This functionality is part of
LDocument::FindCommandStatus().

Other than that, there is nothing unusual in this window. You can
close the PPob and quit Constructor.

Implementing Documents

Now it’s time to write some code.

Not surprisingly, in the steps in this exercise you are going to
accomplish the tasks outlined in this chapter for associating a
window with a file. You create a document that keeps track of a
window and a file, and move the data between them as appropriate.

Because this is a document-related application, notice that the
project file includes the PP Document Alerts.rsrc file. If this
file was not present, things would not go exactly as we planned.

You’re going to work at this from the top down. That is, you start at
the application level and implement the application functions
necessary to support documents. Then you implement a document
class derived from LSingleDoc. Let’s get to it.
The PowerPlant Book PPB–425

File I /O
Implementing Documents
1. Examine the application class.

class declaration CDocumentsApp.h

Notice that this class inherits from LDocApplication, giving it all the
default features of that class. It overrides five functions:

• FindCommandStatus()

• StartUp()

• OpenDocument()

• MakeNewDocument()

• ChooseDocument()

The FindCommandStatus() and StartUp() functions are
provided for you. The FindCommandStatus() function disables
the Page Setup item in the File menu, because this application
doesn’t support printing. We do printing in the next chapter. The
Startup() function calls ObeyCommand() to create a new
document.

You write the remaining functions in the next three steps. These are
empty functions in LDocApplication.

2. Open a document.

OpenDocument() CDocumentsApp.cp

PowerPlant calls this function to open a new document. This may be
in response to an open-document Apple event, or after the user
chooses a document using the StandardGetFile dialog. The
function receives a pointer to a valid FSSpec record containing the
file specification.

In response, create a new document object. You must provide the
document’s supercommander and the file specification. You can do
this with one line of code.

// Create a new document using the file spec.
new CTextDocument(this, inMacFSSpec);

3. Make a new document.

MakeNewDocument() CDocumentsApp.cp

PowerPlant calls this function when the user attempts to create a
new document not connected to a specific file. The function receives
PPB–426 The PowerPlant Book

File I /O
Implementing Documents
no parameters, and returns a pointer to an LModelObject. The
PowerPlant document classes inherit from LModelObject.

In response, create a new document object, and return a pointer to
the object. You can use the same document constructor and pass nil
for the file specification, if you design the constructor to handle both
conditions (either a valid FSSpec pointer or nil). You’ll do that in a
subsequent step.

// Make a new empty document.
return new CTextDocument(this, nil);

4. Choose a document.

ChooseDocument() CDocumentsApp.cp

PowerPlant calls this function when the user chooses the Open item
in the File menu. In response, you should display and manage the
StandardGetFile dialog. To accomplish this task you should:

a. Deactivate the desktop.

Use the UDesktop utilities.

b. Allow the user to choose a document.

Declare an SFTypeList variable, and set its contents to look for
files of type TEXT. Also declare a StandardFileReply
variable. Then call StandardGetFile().

c. Activate the desktop.

Use the UDesktop utilities.

d. Tell the application to open the file.

If the reply from StandardGetFile() is good, send the
application an Apple event to open the document. The
application object has a SendAEOpenDoc() function for just
this purpose.

// Deactivate the desktop.
::UDesktop::Deactivate();

// Browse for a document.
SFTypeList theTypeList = {'TEXT'};
StandardFileReply theReply;
::StandardGetFile(nil, 1, theTypeList, &theReply);

// Activate the desktop.
The PowerPlant Book PPB–427

File I /O
Implementing Documents
::UDesktop::Activate();

// Send an apple event to open the file.
if (theReply.sfGood)
 SendAEOpenDoc(theReply.sfFile);

You can save your work and close the file. That’s all that’s necessary
at the application level to implement support for documents in
PowerPlant.

However, the code you just wrote—as well as the rest of
PowerPlant—relies on the existence of a fully-realized document
class. You’re going to implement a document class in the remaining
steps in this exercise.

5. Examine the document class.

class declaration CTextDocument.h

When you look at the class declaration for this class, you see that
CTextDocument inherits from LSingleDoc. This class implements
the typical one-document-one-window model.

As a descendant of LSingleDoc, CTextDocument has data members
mWindow for the window object, and mFile for the file object. It
also has a new data member, mView. This stores a pointer to the text
view in the window so you can access the view directly.

The code for FindCommandStatus() is provided for you. It
simply disables printing commands because this application does
not support printing. The new function NameNewDoc() provides a
properly-numbered “Untitled” title for new documents. The code is
provided for you.

You write every other function in this class in the following steps.
They are:

• CTextDocument()

• OpenFile()

• DoAESave()

• DoSave()

• DoRevert()

• IsModified()
PPB–428 The PowerPlant Book

File I /O
Implementing Documents
6. Create a document object.

CTextDocument() CTextDocument.cp

This is the document constructor. This function receives a pointer to
the supercommander, and a pointer to an FSSpec record. The
second parameter may be nil.

This function has several tasks to accomplish. The existing code
calls the LSingleDoc constructor with the supercommander
parameter. In the body of this function, you should:

a. Create a window.

The constant for the PPob resource ID is rPPob_TextWindow.
Store the resulting pointer in the mWindow data member.

b. Make the text view the latent subcommander.

The constant for the text view ID is kTextView. Get the pane,
and store the pointer to the object in mTextView. Then make the
text view the latent subcommander of the window object.

c. Name the window or open the file.

If inFileSpec is nil, call NameNewDoc(). If it is not nil, call
OpenFile(). You write OpenFile() in the next step.

d. Show the window.

Use the window’s Show() function.
// Create window for our document.
mWindow = LWindow::CreateWindow(rPPob_TextWindow, this);
Assert_(mWindow != nil);

// Make text view target when window activated.
mTextView = dynamic_cast<CTextView *>
 (mWindow->FindPaneByID(kTextView));
Assert_(mTextView != nil);
mWindow->SetLatentSub(mTextView);

// Set name of window or open file.
if (inFileSpec == nil) {

 NameNewDoc();

} else {
The PowerPlant Book PPB–429

File I /O
Implementing Documents
 OpenFile(*inFileSpec);
}

// Make the window visible.
mWindow->Show();

In this function you have created a window and set the file (if
necessary) for the document. These are the two primary features of
a document in PowerPlant. However, the file-related tasks have
been delegated to the OpenFile() function. That’s next.

7. Open a file.

OpenFile() CTextDocument.cp

Opening a file is a process fraught with the possibility of error, so
the code that attempts to open a file is written inside a Try_ block.
The Try_ and Catch_ statements are provided for you. The code
you write goes inside the Try_ block.

This is a fairly complex step, but PowerPlant provides most of the
functionality for you as part of the LFile and LTextEditView classes.
The tasks you must accomplish are:

a. Create a new file object.

This doesn’t create a file on disk, just the LFile object. Store the
pointer to the object in the document’s mFile data member.

b. Open the data fork of the file.

Use an LFile member function.

c. Read the entire contents of the file and close it.

Again, use LFile member functions. Get the data in a Handle.
Declare a local Handle variable to store the handle. Don’t forget
to close the fork when you’re done.

TIP Actually, you might want to leave the file open to prevent the user
from deleting the file in the Finder. If you do, make sure you close
the file when the user closes the window.
PPB–430 The PowerPlant Book

File I /O
Implementing Documents
d. Put the data in the text view and mark it as clean.

You have a pointer to the text view in the mTextView data
member. Use an LTextEditView member function to set the
contents of the CTextView object.

Also, because this is now a pristine view unchanged from the
state of the file, set the text view’s dirty flag to false. Use the text
view’s SetDirty() member function.

e. Dispose of the data.

Use the Toolbox call DisposeHandle() to dispose of the local
Handle. LTextEditView makes its own copy of the data.

f. Set the window title to match the file name.

You have a pointer to the window object in mWindow. The name
of the file is in the inFileSpec.name field.

g. Set the flag that says this document has a file.

Set the document’s mIsSpecified data member.
Try_ {
// Create a new file object.
mFile = new LFile(inFileSpec);

// Open the data fork.
mFile->OpenDataFork(fsRdWrPerm);

// Read the entire file and close the file.
Handle theTextH = mFile->ReadDataFork();
mFile->CloseDataFork();

// Put the contents in the text view
// and clear the dirty flag.
mTextView->SetTextHandle(theTextH);
mTextView->SetDirty(false);

// Dispose of the text.
::DisposeHandle(theTextH);

// Set window title to the name of the file
mWindow->SetDescriptor(inFileSpec.name);

// Flag that document has an associated file.
The PowerPlant Book PPB–431

File I /O
Implementing Documents
mIsSpecified = true;

} catch(LException& inErr) {

Most of the details of the Mac OS File Manager have been hidden
from you by PowerPlant. This is one of the advantages of an
application framework.

You can now create and open a document fully and completely.
You’re making great progress. The next steps implement the ability
to save a document.

8. Implement “Save As” functionality.

DoAESave() CTextDocument.cp

When the user chooses the Save As item in the File menu, or
attempts to save a document that has no associated file on disk,
control passes to this function. The function receives a file
specification and a desired file type.

Again, there are several tasks you must accomplish.

a. Delete the existing file object.

This is the object pointed to by mFile. This does not delete any
file on disk. You’re just setting up a new file.

b. Make a new file object.

This doesn’t create a file on disk, just the LFile object. Store the
pointer to the object in the document’s mFile data member.

c. Set the correct file type.

In this case, the default type is 'TEXT'. The inFileType
parameter might be a user-specified type from a custom save
dialog, if you support saving files in various formats.

Set a local OSType variable to 'TEXT'. If inFileType is not
fileType_Default, set the OSType variable to inFileType.

d. Make a new file on disk.

Use an LFile member function. You must specify a file creator.
You can use 'ttxt' if you wish, the creator for TeachText.

e. Write the data to the file.

Call DoSave(). You write this function in the next step.
PPB–432 The PowerPlant Book

File I /O
Implementing Documents
f. Set the window title to match the file name.

You have a pointer to the window object in mWindow. The name
of the file is in the inFileSpec.name field.

g. Set the flag that says this document has a file.

Set the document’s mIsSpecified data member to true.
// Delete the existing file object.
delete mFile;

// Make a new file object.
mFile = new LFile(inFileSpec);

// Get the proper file type.
OSType theFileType = 'TEXT';
if (inFileType != fileType_Default)
 theFileType = inFileType;

// Make new file on disk.
mFile->CreateNewDataFile('ttxt', theFileType);

// Write out the data.
DoSave();

// Change window title to reflect the new name.
mWindow->SetDescriptor(inFileSpec.name);

// Document now has a specified file.
mIsSpecified = true;

DoAESave() handles all the details for specifying a file and setting
the window title. It relies on DoSave() to do the actual work of
saving a file.

9. Save a document.

DoSave() CTextDocument.cp

This function requires that a file already exist on disk. It’s purpose is
to write the data to disk. This is a very straightforward process. You
can rely on the fact that the mFile data member connects you to a
real file on disk.

To save data you must:
The PowerPlant Book PPB–433

File I /O
Implementing Documents
a. Open the data fork.

Use an LFile member function. Use the Toolbox constant
fsRdWrPerm for read/write permission.

b. Get the data from the text view.

Declare a local Handle variable to receive the data. You have a
pointer to the text view in mTextView. Use an LTextEditView
member function to get the data.

c. Lock the data in memory.

You can use the StHandleLocker utility class to take care of this
for you. Simply declare a local variable of that class. Specify the
Handle you want to lock.

d. Write the data to the file.

Use an LFile member function to write the data referred to by
the local Handle variable.

e. Close the data fork.

Once again, use an LFile member function. If you have decided
to keep the file open while the document is open, you can skip
this step.

f. Mark the file as clean.

Call the text view’s SetDirty() function. Pass false as a
parameter. Now that you have saved the file, the state of the
document and the file are identical.

// Open the data fork.
mFile->OpenDataFork(fsRdWrPerm);

// Get the text from the text view.
Handle theTextH = mTextView->GetTextHandle();

// Lock the text handle.
StHandleLocker theLock(theTextH);

// Write the text to the file.
mFile->WriteDataFork(*theTextH, ::GetHandleSize(theTextH));

// Close the data fork.
mFile->CloseDataFork();
PPB–434 The PowerPlant Book

File I /O
Implementing Documents
// Saving makes doc un-dirty.
mTextView->SetDirty(false);

You can now completely save a document. You’re almost done.
There are two tasks remaining: reverting a document, and letting
PowerPlant know whether the document has been modified or not.

10. Revert a document.

DoRevert() CTextDocument.cp

The ability to revert a document to its previously-saved state is a
user-friendly feature that should be supported in all applications
that save documents. Implementing this functionality is simple. You
have already performed all of the necessary tasks in other functions.
There is nothing new here. You must open the file, read the data,
and replace the data in the document.

The specific tasks are:

a. Open the data fork of the file.

Use an LFile member function.

b. Read the entire contents of the file and close it.

Again, use LFile member functions. Get the data in a Handle.
Declare a local Handle variable to store the handle. Don’t forget
to close the fork when you’re done, unless your following the
strategy of leaving the file open while the document is open.

c. Put the data in the text view.

You have a pointer to the text view in the mTextView data
member. Use an LTextEditView member function to set the
contents of the CTextView object.

Also, because this is now a pristine view unchanged from the
state of the file, set the text view’s dirty flag to false. Use the text
view’s SetDirty() member function.

d. Dispose of the data.

Use the Toolbox call DisposeHandle() to dispose of the local
Handle. LTextEditView makes its own copy of the data.

e. Refresh the view.

You’re changing the contents of the view, so mark the view for
updating. Call the view’s Refresh() method.
The PowerPlant Book PPB–435

File I /O
Implementing Documents
// Open the data fork.
mFile->OpenDataFork(fsRdWrPerm);

// Read the file contents and close the file.
Handle theTextH = mFile->ReadDataFork();
mFile->CloseDataFork();

// Put the contents in the text view and clear the dirty flag.
mTextView->SetTextHandle(theTextH);
mTextView->SetDirty(false);

// Dispose of the text.
::DisposeHandle(theTextH);

// Refresh the text view.
mTextView->Refresh();

11. Determine if the document has been modified.

IsModified() CTextDocument.cp

From time to time PowerPlant needs to know whether a document
has been modified. For example, at menu updating time, the
document’s modified state controls whether the Save item is
enabled.

This function is very simple. Simply ask the text view if it is dirty.
Store the result in mIsModified and return the result.

// Document changed if the text view is dirty.
mIsModified = mTextView->IsDirty();
return mIsModified;

12. Build and run the application.

When the application launches, an empty text window should
appear. You can type some text into the window, then choose the
Save item in the File menu. Notice that because there is no file
associated with this document, you’ll see the StandardPutFile
dialog. Specify a name and save the file. Then close the window.

Now choose Open from the File menu. The StandardGetFile
dialog appears. Locate your file, and open it. There’s your text, in all
its glory. You can open other text documents as well. Give it a shot.

Make a few changes, then choose Revert from the File menu.
PowerPlant displays an alert asking you to confirm the operation.
PPB–436 The PowerPlant Book

File I /O
Implementing Documents
Click OK, and your document reverts to the previously-saved
condition.

Finally, observe the items in the File menu after you save a
document, and again after you change the document. When the file
is clean, the Save item is disabled. When the file is dirty, the Save
item is enabled. Make a new window, and examine the Revert item.
You cannot revert the document, it has no file.

Continue exploring until you have satisfied yourself that the
application now can open, close, save, and revert documents fully
and completely. When you have finished, you can quit the
application.

If you’d like to continue exploring this topic, there is a lot of room
for experimentation. For example, add some other objects to the
window that require you to save data. Collect and save that data.
Restore the objects to the correct state when opening the file.

Have a good time exploring, but don’t get lost! There are only two
more chapters to go. Next we talk about printing. After that comes
the frosting on the cake.
The PowerPlant Book PPB–437

File I /O
Implementing Documents
PPB–438 The PowerPlant Book

14
Printing

In this chapter we discuss printing in a PowerPlant application.

Like file I/O, printing is typically the responsibility of a document.
If you have not already done so, you should read “The Document
Strategy” to ensure that you understand the role of the document in
a PowerPlant application. In this chapter we assume you are
familiar with document concepts.

PowerPlant’s approach to printing involves the collaboration of
several different classes. As a result, it will help a great deal to look
at the overall printing strategy before we go into class-level details.
With that in mind, the topics in this chapter are:

• Printing Strategy—an overview of printing in PowerPlant.

• LPrintout—the attributes and behaviors of the fundamental
printing view in PowerPlant.

• LPlaceHolder—details about this unusual view class.

• UPrinting—describes the four printing classes that do all the
work.

• Printing in Views and Panes—printing-related behaviors in
visual classes.

• The Mac OS, LPrintout, and LPlaceHolder—printing rectangles
in the Mac OS and PowerPlant.

• Printing in PowerPlant—how to get your document on paper.

As usual, we’ll end the chapter with a summary and code exercise.

Printing Strategy
PowerPlant creates a special view for managing printing, LPrintout.
The member functions of this class provide you with all the routines
you need to loop through your document’s pages and print them.
The PowerPlant Book PPB–439

Printing
Printing Strategy
LPrintout mediates between your application and the printer,
accommodating things like paper size, page breaks, which objects
appear on which page, and so forth. In the default implementation,
each pane’s DrawSelf() function ultimately draws the pane’s
contents onto the printed page.

A printout contains one or more instance of a special view called a
placeholder. The placeholder interacts with the printout—its
superview—to determine printing dimensions based on paper size.

The placeholder begins life as an empty view with no contents.
However, after you create the placeholder and before you print, you
give the placeholder a single occupant. That occupant is another
view—one of the views you have already encountered. It might be a
single LTextEditView. It might be an LView object containing an
arbitrary number of subpanes.

The critical feature here is that the placeholder itself has a single
occupant, so it has one view with which it communicates. That view
contains all the subviews and panes to be printed within that
placeholder’s boundaries.

To install the occupant into the placeholder, you temporarily move
the view from its original visual hierarchy into the printing
hierarchy. The placeholder takes care of putting the view back
where it belongs when printing is complete.

After you have installed the occupant, you’re ready to print. We’ll
talk about the code-level details required to accomplish this task
later on in this chapter. In this section, we want to concentrate on
what happens when you tell the printout to print itself.

Because the printout is at the top of a visual hierarchy—in this case
the printing hierarchy—it can ask all of its subpanes for
information. In this context, the piece of information of greatest
interest to the printout is, essentially, how big are the panes? The
printout must determine how many pages there are in the
document, and on which page each pane should be printed.

To accomplish this task, PowerPlant introduces the concept of a
panel, as distinguished from a page.
PPB–440 The PowerPlant Book

Printing
Printing Strategy
Remember that a view (and LPrintout is a view) has both an image
and a frame. A panel is one “framefull” of an image. Figure 14.1
illustrates the concept of a panel in relation to a frame.

Figure 14.1 Frames and panels

This image has 15 panels, extending five wide by three high. You
would take that many frames to completely cover the image. In this
particular example, the image is perfectly divisible by the size of the
frame, but that’s not necessary. PowerPlant always rounds up to
ensure that the number of panels fully covers the image.

Of course, if the frame changes size, the number of panels also
changes. Each view is responsible for figuring out the number of
panels required to cover its entire image, using its contained views
and panes in the process. Ultimately, LPrintout is the highest level
view, and it keeps track of the total number of panels in its contents,
and puts them on the correct page when printing.

PowerPlant contains code to count panels, measure panels,
determine which panel is on which page, and so forth. Happily, you
don’t have to concern yourself with these details. That’s the beauty
of a framework. Let PowerPlant take care of figuring out low-level
details like panels and pages. You can concentrate on high-level
concepts like printing the document without worrying too much
about counting pixels.
The PowerPlant Book PPB–441

Printing
LPrintout
Now let’s take a look at the actual classes that implement this
strategy, and see how to use them effectively.

LPrintout
The functionality encapsulated in LPrintout gives you almost
everything you need to print in PowerPlant. To support this
functionality, LPrintout has several features that no other view class
has. In this section we discuss

• LPrintout Characteristics—the features of LPrintout.

• LPrintout Behaviors—the functions you’ll encounter while using
LPrintout.

LPrintout Characteristics

LPrintout has several features necessary for its work—printing
panes and views. In this section we discuss LPrintout’s:

• Frame

• Data members

• Page numbering

Frame

As you know, all views have a frame. In LPrintout, the frame is the
paper size in the current printer record. If the user changes printers
or paper size, PowerPlant updates the LPrintout frame.

In LPrintout, the (0,0) point in local/image coordinates is the top left
of the paper rectangle. As a result, all coordinates are the absolute
location on the paper. This simplifies setting margins and otherwise
placing panes for printing. We will revisit this topic when we
discuss “Adding a placeholder.”

Do not confuse the paper size with the printable area supported by
a printer. The printable area is usually smaller than the paper
rectangle because most printers have mechanical limitations that
prevent them from printing to the very edge of the paper.
PPB–442 The PowerPlant Book

Printing
LPrintout Characteristics
Data members

In addition to its unusual use of the frame characteristic, LPrintout
has the data members listed in Table 14.1

Table 14.1 LPrintout data members

Most of this information is maintained for you automatically by
PowerPlant.

Page numbering

The only attribute currently defined in PowerPlant for printing
determines whether to number pages down or across in a large,
multi-page document.

Assume you have a document that is six pages long—two pages
wide and three pages deep. Should page two be the page to the
right of page one or the page below page one? Figure 14.2 illustrates
the alternatives.

Data Member Stores

mPrintSpec a handle to the printer record.

mPrinterPort pointer to the printer port

mWindowPort pointer to a window port used by
LPrintout

mHorizPanelCoun
t

number of panels horizontally in printout

mVertPanelCount number of panels vertically in printout

mAttributes LPrintout attributes

mForeColor foreground color for printing

mBackColor background color for printing
The PowerPlant Book PPB–443

Printing
LPrintout Behaviors
Figure 14.2 Page numbering in PowerPlant

By default, PowerPlant counts across, so that all pages along the top
row print first. You can modify this attribute using LPrintout’s
attribute accessors HasAttribute() and SetAttribute(). The
constant to count pages down is printAttr_NumberDown.

LPrintout Behaviors

LPrintout has a series of functions that implement printing in the
Mac OS using standard QuickDraw.

Table 14.2 lists the LPrintout printing functions.

Table 14.2 LPrintout printing functions

Function Purpose

DoPrintJob() print the contents of the LPrintout
view

PrintPanelRange() open printer driver, call
PrintCopiesOfPages()

PrintCopiesOfPages(
)

the printing loop to print each page

GetPrintJobSpecs() extract information about the print
job from the Toolbox print record
PPB–444 The PowerPlant Book

Printing
LPlaceHolder
All of these functions are fully realized in PowerPlant, and most are
used internally. The only one you are likely to call directly is
DoPrintJob(). We’ll discuss the circumstances under which you
make this call in “Printing a Document.”

You may have noticed that there are no functions for common,
printing-related tasks such as displaying the print job dialog, the
page setup dialog, and so forth. Those functions are in a utility class,
UPrinting, discussed in “Printing Utilities.”

In summary, most of the features and behaviors in LPrintout are
only of indirect interest to you. PowerPlant uses them internally.
The important facts to remember are that LPrintout uses the paper
size for its frame, can number pages across or down, and has the
DoPrintJob() function to print its contents.

Now let’s take a look at the placeholder.

LPlaceHolder
LPlaceHolder is a unique view class designed to assist the printing
process. The purpose of a placeholder is to allow you to print a pane
at a size and/or location that is different from the pane’s
characteristics when displayed in a window. It is a simple class with
very few (but important) distinctions between itself and LView.

Like LPrintout, let’s discuss

• LPlaceHolder Features

• LPlaceHolder Behaviors

LPlaceHolder Features

A placeholder has two characteristics that differentiate it from other
views. It has an occupant, and the occupant has an alignment.

CountPanels() determine how many panels are in a
printout

PrintPanel() print a specified panel

Function Purpose
The PowerPlant Book PPB–445

Printing
LPlaceHolder Features
The occupant

There may be one and only one occupant in a placeholder. The
occupant must be another pane (including most views and
controls). However, the occupant cannot be an LWindow or
LDialogBox. LWindow (and any class derived from LWindow)
must be a top-level view and cannot reside inside LPlaceHolder.

When you install the occupant in the placeholder, the placeholder
stores the occupant’s original size, location, and superview. When
you remove the occupant from the placeholder, or delete the
placeholder, the placeholder automatically restores the occupant to
its original size, location, and superview.

Alignment

While in the placeholder, the occupant has an alignment. This
locates the pane inside the placeholder’s dimensions. PowerPlant
uses the Mac OS Toolbox AlignmentType values. The possible
values are defined in the icons.h file in the universal headers. The
possible alignments are:

kAlignNone kAlignLeft
kAlignVerticalCenter kAlignCenterLeft
kAlignTop kAlignTopLeft
kAlignBottom kAlignBottomLeft
kAlignHorizontalCenter kAlignRight
kAlignAbsoluteCenter kAlignCenterRight
kAlignCenterTop kAlignTopRight
kAlignCenterBottom kAlignBottomRight

If you specify no alignment, the frame of the occupant pane—
typically a view—is resized to fit the placeholder dimensions. If you
don’t specify a horizontal alignment, the occupant width is set to
the placeholder width. Similarly, if you don’t specify a vertical
alignment, the occupant height is set to the placeholder height.

The “no alignment” option allows you to keep the frame of the
occupant view automatically adjusted to the size of the placeholder.
This resizing is very important in a typical application.

The placeholder frame controls the print area of your document.
You can think of the placeholder frame as the panel size for the
document. If the occupant view’s frame matches the placeholder
PPB–446 The PowerPlant Book

Printing
LPlaceHolder Behaviors
frame, then your occupant view’s frame fills the printing panel. If
the occupant view’s image is less than or equal to the frame size,
then you get one page. If the occupant view’s image is greater than
the frame size, you get multiple pages.

Subpanes within the occupant view are not resized. They remain at
the same size and position relative to the top left corner of their
superview.

LPlaceHolder Behaviors

Other than constructors and destructor, LPlaceHolder has two new
behaviors that it adds to those it inherits from LView. LPlaceHolder
also overrides two panel-related functions it inherits from LView.
Table 14.3 lists all four functions.

Table 14.3 LPlaceHolder functions

Based on the pane and alignment you specify,
InstallOccupant() preserves the pane’s original state and
resizes the pane to fit the placeholder as necessary.
RemoveOccupant() restores the original state. The LPlaceHolder
destructor calls RemoveOccupant().

The panel-related functions tell the occupant to perform the
requested task. They add no new functionality to these behaviors.

UPrinting
PowerPlant has four printing classes that perform all the real work
of printing. The four classes defined in UPrinting.h are:

Function Purpose

InstallOccupant(
)

put pane in placeholder, preserving
original size, location, and superview,
resizing to fit placeholder if necessary

RemoveOccupant() restore occupant to original condition

CountPanels() tell occupant to count panels

ScrollToPanel() tell occupant to scroll to panel
The PowerPlant Book PPB–447

Printing
Printing in Views and Panes
• LPrintSpec—wrapper class that covers printing for regular Mac
OS (or classic) and Carbon.

• StPrintContext—the print loop.

• StPrintSession—handles opening and closing the print driver.

• UPrinting—provides several utility routines

You must add UPrinting.cp to any project based on LDocument
or LDocApplication. UPrinting.cp includes the necessary files for
classic printing (UClassicPrinting.cp) or Carbon printing
(UCarbonPrinting.cp) based on the target.

Printing in Views and Panes
Although we have ignored them until now, all views and panes
have printing-related behaviors. This section gives you background
information on these functions. With one exception, it is unlikely
that you will ever override or modify any of these functions.
PowerPlant printing functionality is virtually complete.

Printing-related functions in views and panes perform three tasks:

• count and scroll panels

• dispatch control to each pane to be printed

• print the pane

Printing follows the visual hierarchy. You start with a top-level
view and work down to the leaf-level panes. Let’s look first at the
printing functions in views, and then at panes.

Table 14.4 lists the five printing-related functions in views.

Table 14.4 View printing functions

Function purpose

CountPanels() return number of panels horizontally
and vertically in this view

ScrollToPanel() scroll view to specified panel
PPB–448 The PowerPlant Book

Printing
Printing in Views and Panes
Table 14.5 lists the same five functions as implemented in panes.

Table 14.5 Pane printing functions

A pane always has one panel. Remember, a panel is a “framefull” of
the image. In a pane, the image and frame are the same size.

All of the functions for counting panels and passing the printing
request down through the visual hierarchy to the final panes is
complete and fully realized in PowerPlant. You typically will not
have to modify this process.

Of all of these functions, the only one you are likely to override is
PrintPanelSelf(). We talk about that in “Printing a Document.”

PrintPanel() perform necessary housekeeping, call
PrintPanelSelf() for view, call
SuperPrintPanel() for subpanes

SuperPrintPanel(
)

superview is printing this view; perform
necessary housekeeping, call
PrintPanelSelf() for view, call
SuperPrintPanel() for subpanes

PrintPanelSelf() uses inherited LPane function—the
default calls DrawSelf()

Function purpose

Function purpose

CountPanels() for panes, always one

ScrollToPanel() panes do not scroll, pane is valid

PrintPanel() perform necessary housekeeping, call
PrintPanelSelf()

SuperPrintPanel(
)

superview printing this pane; call
PrintPanel()

PrintPanelSelf() default calls DrawSelf()
The PowerPlant Book PPB–449

Printing
The Mac OS, LPrintout, and LPlaceHolder
The Mac OS, LPrintout, and LPlaceHolder
Before we get into the real work of printing a document in
PowerPlant, let’s take a quick look at how the Mac OS handles some
basic printing rectangles, and relate that to PowerPlant’s use of the
same rectangles. This should help ease your conversion to
PowerPlant printing. Table 14.9 lists some printing rectangles as
they are expressed in both the Mac OS and PowerPlant.

NOTE How the Mac OS handles basic printing rectangles depends on
whether you’re using Carbon or Mac OS Classic. Instead of
accessing data members directly, use the accessor functions listed
in Table 14.6.

Table 14.6 Mac OS and PowerPlant printing rectangles

The paper size is the size of a sheet of paper. The printable area is
the area where the printer is capable of printing. The printing area is
the area where you are actually printing. Typically, the printable
area is a rectangle within the paper size, and the printing area is a
rectangle within the printable area.

If the printing area is larger than the printable area, or offset so that
part of the printing area extends outside of the printable area, part
of your image will not print.

In PowerPlant, the LPlaceHolder frame controls the printing area.
This should be less than or equal to the printable area. The
LPlaceHolder frame should also be positioned within the LPrintout
frame so that it stays on the paper.

Typically you set the position and size of the LPlaceHolder frame in
Constructor. At that time you may make assumptions about the size
of the paper and the printable area. At runtime, you may want to

Concept Mac OS (Classic or Carbon) PowerPlant

paper size LPrintSpec::GetPaperRect() LPrintout frame

printable area LPrintSpec::GetPageRect() n/a

printing area n/a LPlaceHolder frame
PPB–450 The PowerPlant Book

Printing
Printing in PowerPlant
modify LPlaceHolder to adjust to the actual printable area. Check
the LPlaceHolder frame against the Mac OS
LPrintSpec::GetPageRect() information.

Printing in PowerPlant
Fundamentally, printing is a visual task. LPrintout is a view class.
Panes and views handle most of the low-level drawing, whether on
screen or to a printer.

This section has these principal topics:

• Building a Printing Hierarchy—using Constructor to set up the
printing hierarchy, and doing the same on the fly.

• Printing a Document—the tasks you perform and functions you
override to get your document onto paper.

• The Print Record—how PowerPlant maintains the print record,
and why you might want to override it.

• Printing Utilities—PowerPlant printing utility functions.

Building a Printing Hierarchy

You can create a printing hierarchy using Constructor, or on the fly
in your code. We talk about each method. Then we discuss what to
do when you derive your own class from LPrintout.

Using Constructor

Printing uses the same PPob resource concept with which you are
familiar. If you have built a PPob resource in Constructor, creating
the printing hierarchy is simple. You call
LPrintout::CreatePrintout() with the resource ID number
for the PPob resource that describes the LPrintout object.

Creating a printout in Constructor is simple. While in the
Constructor project window, with no resource or a PPob resource
selected, choose New Resource (command-K) from the Edit menu.
When you do, the dialog in Figure 14.3 appears.
The PowerPlant Book PPB–451

Printing
Building a Printing Hierarchy
Figure 14.3 Creating a new printout

Choose LPrintout as your view type. Click the create button to
create the new PPob resource. Open the new PPob resource, and
then the Property Inspector window for this particular printout, as
shown in Figure 14.4. This is where you set the printout
characteristics.

Figure 14.4 Setting printout properties with Constructor
PPB–452 The PowerPlant Book

Printing
Building a Printing Hierarchy
A printout has width, height, class ID, and a user constant. The
width and height aren’t that important because PowerPlant resizes
the printout to match the paper size of the current printer record.

Set the printout to be active and enabled. You can also set your page
numbering option. See “Page numbering.”

The other characteristics of panes and views are not used.
Remember, if you derive your own printout class you must change
the class ID to your own unique value and register the class with
PowerPlant before creating any objects of that class.

See also “Register PowerPlant Classes.”

Adding a placeholder

Inside the printout view, you add one or more placeholders—
objects of the LPlaceHolder class. The placeholder describes the
bounds of a printable area of your document. In many cases, the
printout has a single placeholder. After installing each placeholder,
set the placeholder’s characteristics. Figure 14.5 shows the window.

Figure 14.5 Setting LPlaceHolder properties

The placeholder has many of the features of other views.

The placeholder’s position, size, and binding relative to the
superview are important. The superview is the LPrintout object.
PowerPlant resizes the printout object to match the paper size of the
printer—not the printable area. If you put the placeholder at the
The PowerPlant Book PPB–453

Printing
Building a Printing Hierarchy
very top left corner of the printout—setting both top and left to
zero—part of your view’s image area will be truncated. Most
printers cannot print to the edge of the paper.

If you want your placeholder to occupy all but a certain margin
around the edge of the paper, put the top left corner of the
placeholder where you want the top left pixel to appear on the
paper. For example, a margin of one inch would be 72 pixels. Then
set the size to provide the proper margins on the right and bottom.
Finally, make sure that frame binding is on for all four sides. Then,
when PowerPlant resizes the printout to match whatever the paper
size is, your placeholder will resize properly and still give you the
correct margin.

Scrolling is typically of no relevance to a placeholder, so the values
for image size, scroll unit, scroll position, and reconcile overhang
are unimportant.

Set the placeholder’s ID, and make sure it is enabled and visible.

The only new characteristic of a placeholder is its alignment. If you
do not specify an alignment in your code, PowerPlant uses the
alignment specified in the PPob. Typically, you use no alignment. In
that case, the view ultimately installed as the occupant in the
placeholder resizes automatically to the dimensions of the
placeholder.

You do not need to create a placeholder for every single pane and
view in your visual hierarchy. You only need a single placeholder.
At runtime you place a view into the placeholder as its sole
occupant. That view should contain all the panes you want printed.

Creating a printout on the fly

If you wish to create a printout on the fly, you can define a new
printout using the default LPrintout constructor. This sets up and
initializes the printout to default values. You can then modify the
printout’s characteristics as necessary. Study the LPrintout source
code and the PowerPlant Reference for details.

You will also need to create one or more LPlaceHolder views and
install them inside the printout.
PPB–454 The PowerPlant Book

Printing
Printing a Document
Deriving your own printouts

Creating your own printout class is a fairly unusual occurrence.
Most of the traditional printing functionality in the Mac OS is built
right into PowerPlant, thus eliminating the need to subclass from
LPrintout. However, there are reasons why you might want to
derive a new printout class with additional functionality.

For example, you might want to implement a different printing
architecture, such as QuickDraw GX. You might want to add error
control or display a custom printing status dialog. In the latter case,
you are very likely to override the functions listed in Table 14.7.

Table 14.7 Commonly overridden LPrintout functions

If you examine the source code for these two functions you’ll see
that the locations where you need to add code are already mapped
out for you.

Printing a Document

After you have the printing hierarchy set up, the steps you follow to
print a document in PowerPlant are simple and straightforward.
The details may become very complex depending upon the nature
of your documents. As always, implementation details are
independent of PowerPlant.

This section discusses the general steps you must follow, and gives
suggestions for typical ways in which you might modify the
standard approach to printing.

In this section we talk about how to:

• Print from the Finder

• Print a Document

• Print a Pane

Function Purpose

PrintPanelRange() open and close printer driver

PrintCopiesOfPages(
)

print a range of pages
The PowerPlant Book PPB–455

Printing
Printing a Document
Print from the Finder

Printing from the Finder is a much-ignored feature of the Macintosh
human interface. In a well-designed Mac OS application, the user
can select document icons on the desktop and choose Print from the
Finder’s File menu.

In response, your application prints the selected documents. Your
application may or may not be running at the time. If your
application is running, the document or documents chosen may not
be open.

When the user prints from the Finder, your application receives a
print document event. In PowerPlant, the application object’s
DoAEOpenOrPrintDoc() function handles it. The default
PowerPlant function calls the application’s PrintDocument()
function.

In both PowerPlant application classes—LApplication and
LDocApplication—this function is empty. You must implement this
function in your derived application class if you support printing
from the Finder.

The steps to follow in your application’s PrintDocument()
function are clearly defined. They are:

1. Open the document if it is not already open. You receive a
Mac OS FSSpec record for the document to be printed. If the
document is not already opened, it should never be
displayed on the monitor, just printed.

2. Print the document. In a well-factored application, this
usually means calling the document’s printing behavior.

3. Close the document if it was not already open.

You do not need to worry about quitting your application. If the
user is printing from the Finder, the Finder takes care of that for you
by sending the necessary quit application Apple event.

Finally, if you do not support printing from the Finder, you can
leave PrintDocument() empty. It is not used as part of the
normal document printing from within an application.
PPB–456 The PowerPlant Book

Printing
Printing a Document
Print a Document

When the user chooses the Print item in your application’s File
menu, your application prints the document. Responsibility for
handling this command will rest with whatever commander class
identifies and responds to the printing command in its
ObeyCommand() function. For example, you might want to have a
derived window class respond to this command to print its
contents.

However, it is more typical to have a document respond to this
command. You may recall from the previous chapter that
LDocument has both ObeyCommand() and DoPrint() functions.

The default LDocument::ObeyCommand() function handles the
Print command completely. The function ensures that there is a
print record. It displays the standard print dialog. It sends an apple
event for recording purposes. Then it calls the DoPrint() function.

NOTE The default ObeyCommand() does nothing if there is no print
record. You may want to override this behavior to tell the user why
printing failed.

However, the default LDocument::DoPrint() function is empty.
In your derived document class, you implement this function. The
tasks to accomplish in DoPrint() are:

1. Create the printout view.

2. Set the print record for the printout view.

3. Get placeholder.

4. Install the occupant view in the placeholder.

5. Call the printout view’s PrintJob() function.

Listing 14.1 contains sample code for a typical DoPrint() function.

Listing 14.1 An example DoPrint() function
CMyDoc::DoPrint()
{
 // Create the printout.
The PowerPlant Book PPB–457

Printing
Printing a Document
StDeleter<LPrintout>
thePrintout(LPrintout::CreatePrintout(PPob_TextPrintout));

ThrowIfNil_(thePrintout.Get());

// Set the print record.
thePrintout->SetPrintSpec(mPrintSpec);

// Get the text placeholder.
LPlaceHolder* thePlaceholder = dynamic_cast<LPlaceHolder*>

(thePrintout->FindPaneByID(kTextPlaceholder));
ThrowIfNil_(thePlaceholder);

// Install the text view in the placeholder.
thePlaceholder->InstallOccupant(mTextView, atNone);

// Set the frame size.
SetPrintFrameSize();

// Print.
thePrintout->DoPrintJob();

// Delete the printout (handled automatically by the
// StDeleter object). The text view is returned
// to the window when the placeholder is destroyed.

}

In this example, the code first creates the LPrintout view, just as it
would any other view. It sets the printout view’s print record. It
then gets a pointer to the LPlaceHolder pane inside the printout
view.

The CMyDoc class has a data member, mView, that stores the view
representing the document. The code installs that view inside the
placeholder. It then calls the printout’s DoPrintJob() function to
print the contents of the view. Finally, it deletes the printout.

TIP The view you place as occupant inside the placeholder cannot be an
LWindow. LWindow must be a top-level view. If you want a single
view encompassing the contents of a window, put a simple LView
object inside the window, then put the window contents inside the
enclosing LView object.
PPB–458 The PowerPlant Book

Printing
Printing a Document
Print a Pane

As the printing process in PowerPlant progresses, the ultimate
responsibility for drawing an individual pane falls on that pane’s
PrintPanelSelf() function. In this section, we use the term
“pane” in its most general sense to include all panes—including
views. The default implementation of PrintPanelSelf() simply
calls the pane’s DrawSelf() function.

Override PrintPanelSelf() if you want a pane to print
differently than the way it draws on screen. There are several
common reasons why you might want to do this.

If your pane erases and then draws, you might want to eliminate
erasing. Erasing is a major cause of slow printing. You don’t have to
erase a blank sheet of paper. For example, a window view erases
itself before drawing if the EraseOnUpdate attribute is set.

You may want to add items to the printed document that do not
appear in a view. You might want to add page numbers, or a header
or footer to a document. Conversely, you may not want to print
certain items that appear on screen but that are unimportant in the
printed document.

If your pane draws offscreen and uses CopyBits() to draw, you
may want to replace that behavior for printing. Text that is blitted to
the printer port comes out jaggy. Text that is drawn directly to the
printer port comes out smooth.

If a pane crosses a page boundary, you might want to ensure that
the break occurs at a reasonable spot. Again using text as an
example, the page boundary might slice right through the middle of
a line of text. That text should appear on the following page, rather
than have the top half of the line appear at the bottom of one page,
and the bottom half of the line appear at the top of the next page.

Resolving these sorts of boundary problems is non-trivial, but they
are beyond the scope of PowerPlant. An application framework
does the general work. You extend that framework to meet your
application’s individual requirements. Along the way, you may
encounter a need to use certain utility functions in PowerPlant.
The PowerPlant Book PPB–459

Printing
The Print Record
The Print Record

LPrintSpec is a wrapper class that handles the classic PrintRecord as
well as the new Page Format used by Carbon. LPrintSpec keeps two
different kinds of print records. There is a default or “global” print
record. In addition, every PowerPlant document has its own
LPrintSpec stored in the mPrintSpec data member.

The default Print and Print One command handlers in LDocument
use the document’s print record to control the printing process.

However, the document does not handle the Page Setup command
itself. In the default implementation in PowerPlant, that task resides
in LDocApplication. LDocApplication responds to the Page Setup
command by changing the values in the default or global print
record, not the print record in any document. This is as it should be.
At the application level (that is, when no documents are open), you
should modify a default print record.

When a document is open, a good application should modify the
document’s print record. This behavior does not exist in LDocument
or LSingleDoc. To implement this behavior, you must override the
LDocument::ObeyCommand() function to identify and handle the
Page Setup command. The code might look like this:

Listing 14.2 Modifying a document’s print record
case cmd_PageSetup:
 UDesktop::Deactivate();
 if (mPrintSpec == nil)
 { // get default print record
 THPrint defaultPrintRecord =
 LPrintSpec::GetPrintRecord();
 // make a copy
 mPrintSpec = defaultPrintRecord;
 ThrowIfOSErr_(::HandToHand(&(reinterpret_cast<Handle>

(mPrintSpec)));
 }
 UPrinting::AskPageSetup(mPrintSpec);
 UDesktop::Activate();
 break;
PPB–460 The PowerPlant Book

Printing
Printing Utilities
You would save the print record with the document, and restore it
when opening a file. We discussed file I/O in the previous chapter.

TIP If a document has no print record, LDocument::ObeyCommand()
creates a new print record by calling
LPrintSpec::GetPrintRecord(). You might want to override
this behavior and call LPrintSpec::GetPrintRecord()
yourself and make a copy of the default record. Changes made
when no windows are open are then used for new windows by
default.

Printing Utilities

Should you find yourself required to deal with the Mac OS Printing
Manager, you should use the functions in UPrinting. This class is a
wrapper for the most common Printing Manager calls you are likely
to make. Table 14.8 lists all the available functions.

Table 14.8 UPrinting functions

Each of these functions is a static function, so they are always
available. Consult the PowerPlant Reference and the source code for
details.

Summary
In this chapter you learned how several PowerPlant classes work
together to implement printing.

Function Purpose

BeginSession() open the current printer driver

EndSession() close the current printer driver

AskPageSetup() display the standard page setup dialog

AskPrintJob() display the standard print job dialog

GetPrintError() returns the standard printing errors
The PowerPlant Book PPB–461

Printing
Summary
LPrintout is responsible for managing most of the printing tasks. Its
dimensions match the paper size for the printer, it counts panels,
converts panel number to page number, has the main printing loop,
and so forth.

LPlaceHolder keeps track of its occupant view. The placeholder
dimensions describe the printing area on each page.

You create a printing hierarchy consisting of a printout and one or
more placeholders.

In your document class you write the DoPrint() function. You
identify the view that contains all the panes you want printed. You
install that view as the placeholder’s occupant, and print.

If necessary, you override the PrintPanelSelf() functions in
various pane and view classes to customize printing behavior.

To ease your conversion to PowerPlant printing, Table 14.9 lists
some printing concepts as they are expressed in both the Mac OS
and PowerPlant.

Table 14.9 Mac OS and PowerPlant printing data

The paper size is the size of a sheet of paper. The printable area is
the area where the printer is capable of printing. The printing area is
the area where you are actually printing.

If the printing area is larger than the printable area, part of your
image will not print.

In PowerPlant, the LPlaceHolder frame controls the printing area.
This should be less than or equal to the printable area. Typically you
set the dimensions of LPlaceHolder in Constructor. However, if you
want to modify LPlaceHolder at runtime to match the printable
area, or to ensure that the printing area is smaller than the printable

Concept Mac OS (Classic or Carbon) PowerPlant

paper size LPrintSpec::GetPaperRect() LPrintout frame

printable area LPrintSpec::GetPageRect() n/a

printing area n/a LPlaceHolder frame
PPB–462 The PowerPlant Book

Printing
Code Exercise
area, check the LPlaceHolder frame against the Mac OS
LPrintSpec::GetPageRect() information.

Code Exercise
In this exercise you add printing functionality to the same
application you worked with in the previous chapter. First you
create the interface and then you write the code necessary to
implement printing.

The Interface

The text window remains intact and unchanged from the previous
chapter. If you’d like to review the text window components, refer
to that exercise. To implement printing, you need to add two
elements to the interface, a printout and a placeholder.

Open the Printing.ppob project file in Constructor. It should
look like Figure 14.6. In the start code there is already one PPob
resource, the one for the text window and its contents. In this
section you add another PPob resource for the printout.

Figure 14.6 The Printing.ppob file from the start code

1. Create an LPrintout view.

With no items or a PPob resource selected in the Constructor project
window, choose New Resource (command K) from the Edit menu.
The PowerPlant Book PPB–463

Printing
The Interface
When you do, the Create New Resource dialog appears, as shown in
Figure 14.7.

Figure 14.7 Creating a new PPob resource

Set the resource type to Layout. Set the view kind to LPrintout. Set
the resource name. Set the resource ID to 1100. Then click the Create
button.

A new entry for this PPob resource appears in the Constructor
project window. Double-click the entry, and a large window opens
containing the new text printout. Double click the printout view to
see its characteristics, as shown in Figure 14.8.
PPB–464 The PowerPlant Book

Printing
The Interface
Figure 14.8 LPrintout properties

The default width and height are 8.5” x 11” at 72 dpi. You can turn
off the Active and Enabled check boxes. Close the LPrintout
characteristics window when you’re through. Leave the LPrintout
window open so you can add a placeholder to the printout.

2. Create an LPlaceHolder view.

Open the Catalog window. Drag an LPlaceHolder object and drop it
onto the LPrintout view. Double-click the new placeholder to set its
characteristics, as shown in Figure 14.9.
The PowerPlant Book PPB–465

Printing
The Interface
Figure 14.9 LPlaceHolder properties

The location and size of the placeholder allow for a 72-pixel (one
inch) margin between the printout and the placeholder. The
placeholder is bound on all sides to the printout. Set the pane ID to
1. Make sure the placeholder is visible, but it can be disabled. Set the
PPB–466 The PowerPlant Book

Printing
Implementing Printing
other characteristics accordingly. Make sure you set both the
horizontal and vertical alignment to none.

There is no need to set the view hierarchy. There is only one item in
the view, the placeholder. It is automatically contained in the
LPrintout view.

That’s it. You have just completed the printing interface for this
application. Save your work and quit Constructor.

Implementing Printing

In the previous exercise you implemented opening and saving a
document. In this section you implement printing a document.

Like the previous exercise, the steps take a top-down approach.
That is, you start at the application level and implement the
application functions necessary to support printing a document.
That means supporting printing from the Finder.

Then you add printing to a document class derived from
LSingleDoc. This is where the real work takes place. Happily,
PowerPlant does most of the work. Let’s see how.

3. Implement printing from the Finder.

PrintDocument() CPrintingApp.cp

Recall from earlier in this chapter that PowerPlant calls this function
in response to a print document Apple event received from the
Finder. Such an event is generated when the user selects your
document on the Desktop, and chooses Print from the Finder’s File
menu, or drops your document on a desktop printer icon. This
function is not called when the user chooses Print from your
application’s File menu.

Recall also that in the PowerPlant document strategy, a document is
responsible for printing itself.

Therefore, there are two steps you must take to implement printing
from the Finder.
The PowerPlant Book PPB–467

Printing
Implementing Printing
a. Create a document.

You did this in the previous exercise. This function receives a file
specification. Call the document constructor. Pass in the
supercommander and the file specification.

b. Tell the document to print itself.

Call the document’s DoPrint() function.
// Create a new document using the file spec.
CTextDocument *theDocument = new CTextDocument(this,
inMacFSSpec);
Assert_(theDocument != nil);

// Tell the document to print.
theDocument->DoPrint();

That’s it. You have just implemented printing from the Finder. Save
your work and close the file. Of course, you have just delegated
printing responsibility to the document. You implement that
functionality in the next step.

TIP This code might be a little too simple. For example, what happens if
the user selects a file in the Finder that is already open in your
application? This might have repercussions in your application, or it
might not. Keep it in mind.

4. Print a document.

DoPrint() CTextDocument.cp

PowerPlant calls this function whenever the user chooses the Print
item in the File menu. Recall that this document class inherits from
LSingleDoc, and ultimately from LDocument. In LDocument, the
DoPrint() function is empty. In your subclass (in this case
CTextDocument), you must supply the necessary functionality.

In this function the document should print itself. There are several
steps you must go through to accomplish this task. They are:

a. Create the printout view.

Call the LPrintout class creator function. The declared constant
for the PPob resource is rPPob_TextPrintout. In the process
PPB–468 The PowerPlant Book

Printing
Implementing Printing
of creating the LPrintout, that object is assigned the default print
record by a call to UPrinting::GetPrintRecord().

b. Set the print record for the printout.

You want to print the document with the document’s own
printing options, not the default printing record. The document
has an mPrintSpec member. However, this data member may
be nil. If the document has a print record, set the printout’s print
record to match the document. Call the printout’s
SetPrintRecord() function.

c. Get the placeholder.

The declared constant is kTextPlaceholder for the
placeholder pane ID.

d. Install the text view in the placeholder.

Call the placeholder’s InstallOccupant() function. Use no
alignment. Remember, this makes the text view resize to fill the
placeholder completely, which is just what you want to happen
in this case.

e. Adjust the size of the frame.

Call SetPrintFrameSize(). This function is provided for
you. This task is specific to this application, and not to printing
in general. However, it does illustrate how you can adjust the
printed frame to allow for aesthetic concerns.

Here’s the problem. Remember, that the text view frame has just
been resized to fill the placeholder. It is unlikely that an integral
number of lines of text will just fit perfectly in the frame. As a
result, the top part of a line of text may appear at the bottom of
one page, and the bottom part of that same line of text would
appear at the top of the next page. That makes the document
difficult to read, to say the least.

The SetPrintFrameSize() function adjusts the bottom of the
text view frame so that an integral number of lines just fits in the
frame. As a result, the printed document looks good.

When you implement printing in your own application, you will
run into similar concerns relating to page and object boundaries.
The PowerPlant Book PPB–469

Printing
Implementing Printing
f. Print the document.

Ah, here’s the critical step. PowerPlant does all the work. Call
the printout’s DoPrintJob() function. You’re done.

g. Delete the printout.

When you’re through, delete the printout object. When the
placeholder is destroyed, it returns the text view object to its
original condition in the scrolling view in the text window.

Here’s the solution code that accomplishes all these tasks.
// Create the printout.

StDeleter<LPrintout>
thePrintout(LPrintout::CreatePrintout(rPPob_TextPrintout));

ThrowIfNil_(thePrintout.Get());

// Set the print record.
thePrintout->SetPrintSpec(mPrintSpec);

// Get the text placeholder.
LPlaceHolder* thePlaceholder = dynamic_cast<LPlaceHolder*>

(thePrintout->FindPaneByID(kTextPlaceholder));
ThrowIfNil_(thePlaceholder);

// Install the text view in the placeholder.
thePlaceholder->InstallOccupant(mTextView, atNone);

// Set the frame size.
SetPrintFrameSize();

// Print.
thePrintout->DoPrintJob();

// Delete the printout (handled automatically by the
// StDeleter object). The text view is returned
// to the window when the placeholder is destroyed.

}

Well done! That is all you have to do to implement printing. Save
your work and close the file. Let’s see how it works.

5. Build and run the application.

When the project builds correctly and you run the application, a
familiar text window appears. Enter some text, or open a text
PPB–470 The PowerPlant Book

Printing
Implementing Printing
document, and print it. It should print fine. If you have more than
one page of text, lines should break evenly across page boundaries.

Admittedly, this is a simple case of printing, but it does everything
you need to do to print a document in PowerPlant. There is plenty
of room for experimentation and enhancement, however.

For example, you still cannot print from the Finder. If you try,
TeachText launches! This application does not have a custom
creator type or a BNDL resource. Correct this problem, and try
Finder printing. While in the Finder, select the icon for a document
created by your application, then choose Print in the Finder’s File
menu. If you have a desktop printer icon, drop a document on your
printer icon. Either way, your application should launch and print
the document.

The human interface guidelines say that when printing from the
Finder, if the document is not already open you should not display
a window. You should just print the document. Make your
application follow that guideline.

Remember the page-numbering option in PowerPlant to count
pages down or across. Experiment with that setting on a large and
wide document, and see what happens. Give the user the option of
choosing which way to go.

Create a printout with two or more placeholders—for example, a
header or footer in a text document. Play with the margins and with
alignment settings. Implement even and odd printing. The
possibilities are endless. As always, have a good time exploring.
And when you’re through, we can move on to the final chapter.

Congratulations! Fourteen down and one to go. In the next chapter
we take on periodicals and attachments. These are two of the coolest
features in all of PowerPlant.
The PowerPlant Book PPB–471

Printing
Implementing Printing
PPB–472 The PowerPlant Book

15
Periodicals and
Attachments

You have come a long way. This is the last chapter of the PowerPlant
Book. At the end of this chapter we’ll look back at everything we
have covered so far, and discuss briefly where you should go from
here.

In this chapter we close out the core elements of PowerPlant with a
discussion of two important parts of the PowerPlant application
framework:

• Periodicals—objects that receive time at regular intervals, either
every time through the event loop or at idle time.

• Attachments—objects that modify the appearance or behavior of
other objects at well-defined moments.

We saved these two topics for last for good reason.

Periodicals are very easy to implement, and can serve for any kind
of time-dependent function. They aren’t restricted to particular
application tasks like file I/O or menu handling. Periodicals are
unbounded in terms of utility. Therefore it helps to have a good
understanding of PowerPlant before discussing periodicals.

That is even more true for attachments. Attachments are perhaps
the most astonishingly powerful and simple concept in all of
PowerPlant. They are the epitome of elegance in design and
implementation. You are really going to like attachments.
The PowerPlant Book PPB–473

Periodicals and Attachments
Periodicals
Periodicals
In this section we discuss LPeriodical, and how PowerPlant
implements repetitive tasks. This is a very cool and simple feature
of PowerPlant. The topics are:

• What Is a Periodical—LPeriodical and its descendants.

• Periodical Characteristics—the features of a periodical.

• Working With Periodicals—how to use periodicals in your
application.

Periodicals are very easy to implement.

What Is a Periodical

In PowerPlant terminology, an object that receives time on a regular
basis is a periodical. LPeriodical is an abstract base class. It inherits
from no other class. Because it is an abstract class, you cannot
instantiate a pure LPeriodical object. You must derive a new class
that inherits from LPeriodical.

In PowerPlant, LPeriodical is used exclusively as a mix-in class.
Whenever an object needs to get time repeatedly, it inherits from
LPeriodical. Figure 15.1 illustrates the PowerPlant classes that
inherit from LPeriodical.

Figure 15.1 LPeriodical in PowerPlant
PPB–474 The PowerPlant Book

Periodicals and Attachments
Periodical Characteristics
The subclasses shown in Figure 15.1 belong to various class
hierarchies in PowerPlant. Except for LGrowZone, each also inherits
from other classes besides LPeriodical.

Because it is so loosely tied to the rest of PowerPlant, you can use
LPeriodical separately in non-PowerPlant projects if you wish.

The only other class you need to use is LArray. LPeriodical
maintains lists of objects that need regular attention. Those lists
reflect the way that you use LPeriodical in PowerPlant.

Periodical Characteristics

PowerPlant deals with two kinds of periodicals, repeaters and
idlers. A repeater gets time after every event. An idler gets time at
every idle event.

LPeriodical has two data members, sRepeaterQ and sIdlerQ.
Each of these data members is a pointer to an LArray object. Each
represents a queue of objects, repeaters and idlers respectively.

Both of these data members are static, so they are class variables.
There is one and only one instance of each of these variables shared
by all periodical objects. Because they are static data members, any
application that has periodicals has one list of repeaters, and one list
of idlers.

Working With Periodicals

This section covers everything you need to work with periodicals.
After looking at the member functions, we examine

• Repeaters

• Idlers

• Spending time

Table 15.1 lists the LPeriodical member functions.
The PowerPlant Book PPB–475

Periodicals and Attachments
Working With Periodicals
Table 15.1 LPeriodical functions

The LPeriodical destructor also deserves mention. It removes the
periodical from either or both the repeater and idler queues.

Typically, the only function you override is SpendTime(). It is a
pure virtual function and must be overridden in any subclass of
LPeriodical. To understand these functions, let’s look at how
PowerPlant gives time to periodicals.

Repeaters

PowerPlant calls LPeriodical::DevoteTimeToRepeaters()
every time through the main event loop. You can find this code in
LApplication::ProcessNextEvent(). The
DevoteTimeToRepeaters() function walks through the list of
repeaters and calls each repeater’s SpendTime() function.

To add an object to the repeater list, simply call that periodical’s
StartRepeating() function. In response, the object is added to
the repeater queue. When control returns to the main event loop,
the object’s SpendTime() function will be called.

NOTE The SpendTime() function will be called on the same pass through
the main event loop in which the repeater is added to the repeater
queue.

Function Purpose

StartRepeating() add object to repeater list

StopRepeating() remove object from repeater list

DevoteTimeToRepeaters(
)

walk through all repeaters, call
SpendTime() for each

StartIdling() add object to idler list

StopIdling() remove object from idler list

DevoteTimeToIdlers() walk through all idlers, call
SpendTime() for each

SpendTime() perform a periodical task
PPB–476 The PowerPlant Book

Periodicals and Attachments
Working With Periodicals
PowerPlant calls the SpendTime() function for every repeater on
each pass through the event loop. PowerPlant does not call one
repeater on one pass through the event loop, and another repeater
on another pass.

To remove a periodical from the repeater queue, call
StopRepeating(). You do not need to make this call if you
destroy the object. The destructor does that for you.

Idlers

When PowerPlant receives an idle event or a mouse-moved event, it
calls UseIdleTime(), which in turn calls
LPeriodical::DevoteTimeToIdlers().
DevoteTimeToIdlers() walks through the list of idlers and calls
each idler’s SpendTime() function.

To add an object to the idler queue, simply call that periodical’s
StartIdling() function. In response, the object is added to the
idler queue. The next time there is an idle event or a mouse-moved
event, PowerPlant calls the object’s SpendTime() function.

This is the same SpendTime() function called when the object is a
repeater. PowerPlant calls the SpendTime() function for every
idler for each idle or mouse-moved event.

To remove a periodical from the idler queue, call StopIdling().
You do not need to make this call if you destroy the object. The
destructor does that for you.

TIP A periodical can safely delete itself. The queue’s for idlers and
repeaters (LArray objects) are safe against insertions or removals
while an iterator is traversing the list. See “Arrays.”

Spending time

A single periodical can be on both the repeater and idler queues
simultaneously. You can put the same periodical on either queue at
any time. The two queues are fully independent.

Membership in either queue means that the periodical’s
SpendTime() function is called. In LPeriodical, this is a pure
The PowerPlant Book PPB–477

Periodicals and Attachments
Working With Periodicals
virtual function. You must override this function in the derived
class.

The SpendTime() function can do just about anything you want.
You can maintain a progress bar, run a simple animation, blink a
cursor, and so on. The PowerPlant classes that inherit from
LPeriodical give a hint at the flexibility of this system.

LTextEditView and LEditField inherit from LPeriodical so that they
can blink the text cursor. An object of either class works the same
way. Each is an idler. In the BeTarget() function, the object
installs itself in the idler queue by calling StartIdling(). In the
DontBeTarget() function, each calls StopIdling(). In the
SpendTime() function, each calls ::TEIdle(). As a result, while
the object is the target object, the text cursor blinks. Very simple.

LMovieController is a periodical so that it can handle QuickTime
movies properly. When a movie is present, the controller should
receive every event so that the Toolbox can handle movie-related
events. To support this feature of the Mac OS, LMovieController is a
repeater. The LMovieController constructor calls
StartRepeating() to put the controller in the repeater queue. As
long as the movie controller exists, its SpendTime() function is
called from the event loop for each event. In SpendTime(), the
controller receives the event and calls ::MCIsPlayerEvent() for
processing. When the movie controller is destroyed, it removes
itself from the repeater queue.

LGrowZone is also a repeater. The LGrowZone constructor calls
StartRepeating() to install itself in the repeater queue. The
SpendTime() function implements part of the PowerPlant
memory strategy we discussed in “Setup Memory Management.” If
the memory reserve has been released, SpendTime() attempts to
restore the reserve. This function also warns the user of memory
problems if necessary.

These four examples give you a taste of the power and flexibility of
the PowerPlant periodical design. Using the identical mechanism,
PowerPlant implements cursor updating, event processing, and
memory management. Not bad.

Your use of LPeriodical is limited only by your imagination. If you
have a situation where an object needs time repeatedly, make it a
PPB–478 The PowerPlant Book

Periodicals and Attachments
Attachments
periodical. Design the SpendTime() function to perform the
necessary tasks. Install the object in the appropriate queue—either
repeater or idler—at the appropriate times, and remove it from the
queue when finished.

Remember that your periodical object is not required to respond
every time SpendTime() is called. Your object can keep track of
the passage of time, and only do something if a required interval
has passed. For example, you might want to update a timer every
minute. Your timer object might get called several thousand times
during that minute, but only act when a full minute has passed.

The periodical mechanism does not guarantee that your object will
receive time within a certain time limit. The mechanism depends on
the main event loop. Repeaters will get time on every pass through
the event loop. If a single event requires a lot of time to process,
your repeater must wait. Idlers get time at idle events. If no idle
event is forthcoming, idlers get no time.

In actual practice, the event loop typically cycles several times a
second. Intervals between idle events are usually very short.
However, if your object is extremely fussy about receiving time at
precise intervals, you will have to implement some other
mechanism to ensure that your object gets called—probably a Time
Manager task.

NOTE The StDialogHandler class implements its own event loop. That loop
uses the same design as the main event loop, so repeaters and
idlers are called while a modal dialog based on StDialogHandler is
active.

Attachments
An attachment is an object that—typically—alters the runtime
behavior of another object. It is connected (attached) to the affected
object. We refer to these two objects as the attachment and the host.

The attachment mechanism is very general—and very powerful.
Exactly what an attachment is, and how to use one, becomes clear as
we discuss:
The PowerPlant Book PPB–479

Periodicals and Attachments
What Is an Attachment
• What Is an Attachment—classes that are attachable as well as the
attachment classes.

• Attachment Strategy—how PowerPlant implements the
attachment design pattern.

• Attachment Characteristics—the attributes and functions of
attachments.

• Working With Attachments—everything you need to know to
implement attachments.

• Specific PowerPlant Attachments—details about the attachment
classes provided for you in PowerPlant.

What Is an Attachment

There are two parts to the attachment mechanism in PowerPlant:
the objects to which you connect the attachments, and the
attachments themselves.

Objects to which you can connect an attachment are said to be
“attachable.” Be careful of the terminology here. The term
“attachable” in normal usage implies that something is capable of
being attached to something else. In PowerPlant, we use the
converse meaning. Saying that an object is attachable means
something can be attached to it.

An object to which an attachment is connected is called a host.

There are two corresponding base classes, LAttachable and
LAttachment. Let’s look at LAttachable first, and then at
LAttachment.

Figure 15.2 illustrates the PowerPlant classes that are attachable—
that is, to which you can hook an attachment.
PPB–480 The PowerPlant Book

Periodicals and Attachments
What Is an Attachment
Figure 15.2 LAttachable class hierarchy

Stop for a moment and consider the import of Figure 15.2. Every
commander class can have attachments—windows, applications,
and so on. Event dispatchers can have attachments—applications
and StDialogHandler. Every pane class—panes, views, and
controls—can have attachments. In other words, every visual,
command, and event-related element in PowerPlant can have
attachments.

LAttachment describes the features of a generic attachment.
PowerPlant also includes several attachment classes ready for your
use. Figure 15.3 lists the PowerPlant attachment classes.

Figure 15.3 LAttachment class hierarchy

If you look at the list of subclasses that derive from LAttachment,
you begin to get clues about the usefulness of attachments.
PowerPlant uses attachments for modifying the appearance of a
The PowerPlant Book PPB–481

Periodicals and Attachments
Attachment Strategy
pane, for modifying the behavior of a pane, to support commands
and keystrokes, the undo mechanism, and the clipboard. You can
use attachments for other purposes as well. That’s a lot of utility for
one design pattern.

TIP For programmers familiar with MacApp, PowerPlant attachments
supply the functionality of the MacApp adorner and behavior
classes.

We’ll discuss the individual attachment classes in “Specific
PowerPlant Attachments.” For now, let’s get an overview of how
attachments work, and then look at the features of attachments in
general.

Attachment Strategy

The PowerPlant approach to attachments is similar to the periodical
mechanism with which you are already familiar. It is a very simple
strategy.

As you know, there are attachments and hosts. These objects are
closely connected.

Each host maintains a list of its own attachments. As a result, an
object may have several attachments.The host can add or remove
attachments from the list, so you can modify the list of attachments
at runtime.

At certain well-defined moments, PowerPlant tells the host to walk
through the list of attachments. We’ll discuss the precise moments
in “When and how PowerPlant calls attachments.” PowerPlant
sends a specific message that identifies the task that the host is
about to undertake. PowerPlant also sends any necessary data that
might be required to fulfill the task. This message is sent before the
host performs its principal, underlying task.

In response, the host tells each attachment in the list to do whatever
it is the attachment does. The attachment determines if the message
is one to which it should respond. If the attachment is designed to
respond to the message, the attachment executes.
PPB–482 The PowerPlant Book

Periodicals and Attachments
Attachment Characteristics
The attachment also returns a Boolean value that tells PowerPlant
whether the host object should still execute the original task.

Using this mechanism you can modify the appearance and/or
behavior of any attachable object at runtime, without modifying the
underlying object. You simply add or remove attachments.

That’s all there is to it. The attachment mechanism is like a blend of
the periodical and messaging systems. At certain well defined
moments, a message is sent to each attachment. If the attachment
recognizes the message, it responds and performs its task.

To implement this strategy, both attachable objects and attachments
have data members and functions. Let’s see what they are as we
examine attachment characteristics.

Attachment Characteristics

In this section we examine both:

• Features of attachable objects

• Features of attachments

We look at LAttachable first, because it is an extremely simple class
that implements the whole strategy.

Features of attachable objects

LAttachable has one data member, mAttachments. This is a
pointer to an LArray of attachment objects.

Table 15.2 lists all the LAttachable functions, except for the
constructor and destructor.

Table 15.2 LAttachable functions

Function Purpose

AddAttachment() add an attachment to the list

RemoveAttachment() remove an attachment from the
list
The PowerPlant Book PPB–483

Periodicals and Attachments
Attachment Characteristics
The first three functions modify the contents of the attachment list.
The class destructor calls RemoveAllAttachments() when
destroying an attachable object. You can use it directly yourself if
you want to remove all attachments for any reason.

The ExecuteAttachments() function is the dispatch mechanism
for the host. This is the function that PowerPlant calls when it wants
attachments to do their work.

Typically you will never override any of these functions.
LAttachable is a complete, fully-realized class that provides all the
functionality you are likely to need.

Features of attachments

LAttachment is almost as simple as LAttachable. It has three data
members, listed in Table 15.3.

Table 15.3 LAttachment data members

Each attachment is designed to respond to a particular message.
That value is kept in the mMessage member. We’ll discuss the
possible messages in “Working With Attachments.”

RemoveAllAttachments(
)

remove all attachments from the
list

ExecuteAttachments() walk the list, call each
attachment’s Execute()
function

Function Purpose

Data Type Member Description

LAttachable* mOwnerHost pointer to the host
attachable object

MessageT mMessage message to which the
attachment responds

Boolean mExecuteHos
t

whether the host object
should also execute
PPB–484 The PowerPlant Book

Periodicals and Attachments
Working With Attachments
The class declares eight functions. Six of these functions are simple
accessors for the three data members. There are two functions
designed to implement attachment functionality, listed in Table
15.4.

Table 15.4 LAttachment functions

The Execute() function does the necessary testing. If the message
received is the message for which the attachment is designed, it calls
ExecuteSelf(). If the attachment executes, Execute() returns
the value of mExecuteHost. Otherwise it returns true.
PowerPlant uses this value to decide whether the host object should
also perform the task in question.

The only function you typically override is ExecuteSelf(). In
fact, in LAttachment this is an empty function. You can study the
PowerPlant attachment classes like LPaintAttachment to see how
they implement ExecuteSelf().

Working With Attachments

In this section we discuss the code-level details you need to
implement attachments in your PowerPlant application. We
discuss:

• When and how PowerPlant calls attachments

• Creating your own attachments

• When to use attachments

• Uses for attachments

When and how PowerPlant calls attachments

PowerPlant asks attachments to execute before:

• any event dispatch

• any commander responds to a command

Function Purpose

Execute() if message is right, call ExecuteSelf()

ExecuteSelf() perform the attachment task
The PowerPlant Book PPB–485

Periodicals and Attachments
Working With Attachments
• any commander handles a keystroke

• any commander updates a menu

• any pane responds to a click

• any pane draws

• any pane prints

• any pane adjusts the cursor

At these moments, PowerPlant calls a host’s
ExecuteAttachments() function. It passes two parameters: a
specific message, and a pointer to additional data.

Table 15.5 summarizes each call to ExecuteAttachments() in
PowerPlant. Each entry in the table lists the type of host object; the
message sent; the data sent; the task or function that may be
performed immediately after the attachments execute.

Table 15.5 PowerPlant use of attachments

Pay particular attention to the items in the “Before” column. An
object may have several attachments. If any attachment returns

Host Message Data Before

application msg_Event EventRecord* event dispatch

StDialog
Handler

msg_Event EventRecord* event dispatch

commander the command command data ObeyCommand()

commander msg_Command
Status

SCommandStatus* FindCommand
Status()

commander msg_KeyPress EventRecord* HandleKeyPress()

commander msg_PostAction LAction* sending action to
supercommander

pane msg_Click SMouseDownEvent
*

ClickSelf()

pane msg_DrawOrPrint Rect* (frame) DrawSelf()

pane msg_DrawOrPrint Rect* (frame) PrintPanelSelf()

pane msg_AdjustCurso
r

EventRecord* AdjustCursorSelf(
)

PPB–486 The PowerPlant Book

Periodicals and Attachments
Working With Attachments
false, these functions do not execute. Attachments can control
whether event dispatch occurs, panes draw, commanders handle
commands, and so forth. This gives each attachment the
opportunity to tell your application “I have completely handled this
situation, you can ignore it.” If all attachments return a value of
true, then the host function executes normally, after the attachments
completes their work.

TIP if you call ExecuteAttachments() yourself and send the
message msg_AnyMessage, all attachments will execute.

In the discussion of “Specific PowerPlant Attachments” you will see
examples of attachments that are designed to respond to various
kinds of messages.

Creating your own attachments

Creating an attachment is a fairly straightforward process. Use the
PowerPlant attachment classes as examples.

You declare your derived class to inherit from LAttachment. Then
you override ExecuteSelf().

The ExecuteSelf() function does whatever it is you need to do.
Attachments can be designed to respond to a specific message, or a
group of messages if you override Execute().

The next sections give you some ideas about when you use
attachments, and what you might do with them.

When to use attachments

In general, an attachment is an excellent solution when you have an
independent behavior that you wish to implement for a variety of
panes or commanders, either in the same project or in different
programming projects.

An attachment is also an excellent solution when you want to
modify the behavior of a pane or commander dynamically. You can
add and remove attachments at will depending upon the
application’s context.
The PowerPlant Book PPB–487

Periodicals and Attachments
Working With Attachments
You can think of an attachment as a kind of inheritance (in a very
loose sense) for behaviors. An attachment connects a special
function to an object, without the need to create a new class of
object. If you think of an object as the sum of itself and its
attachments, you can modify the composition of the object
dynamically by adding or removing attachments.

Uses for attachments

About the only limitation to attachments is your imagination. The
ideas described in this section are but a sampling of what you can
do.

Consider the three principal kinds of objects that can host
attachments. Applications are commanders and event handlers.
Commanders handle commands and keystrokes. Panes handle
clicks. Some panes are also commanders.

You may design an attachment for event pre-processing. Before any
event is ever dispatched, the application’s attachments get a crack at
it. If ever there was a boundless horizon, this is it. You can do
anything you want with the event, and subsequently short circuit
event dispatch or allow the event to be handled normally. It’s up to
you.

A commander’s attachments get first crack at all commands. You
may design an attachment to handle a specific kind of command. In
a traditional approach, your commander’s ObeyCommand()
function handles commands. You might want to create a command-
handler attachment that you can connect to any appropriate
commander. Then you don’t have to duplicate code. If you decide a
commander should respond to a particular kind of command, you
simply hook up an attachment that does the work.

You could use a command-level attachment to create a demo
version of an application. In the demo version, you hook up an
attachment that intercepts certain commands—for example the
New command—to disable them.

You might design an attachment to handle menu updating. A
commander’s attachments get first crack at menu update requests as
well. PowerPlant provides an attachment for this purpose,
LCommandEnabler. Rather than write the code directly into your
PPB–488 The PowerPlant Book

Periodicals and Attachments
Specific PowerPlant Attachments
FindCommandStatus() function, you can hook attachments to
your commander to handle whatever menu commands you need to
take care of.

With respect to panes, attachments have an opportunity to execute
before drawing, clicking, and cursor adjustment. You may do some
fancy drawing in or around a pane. Perhaps you have some panes
that you want to have a fancy border. Create a border attachment
and hook it up to those panes. If you want any unique behavior to
occur when a pane is clicked, create an attachment to implement the
behavior. The possibilities are endless.

Specific PowerPlant Attachments

Looking at some real attachments will help you grasp the power
and potential in the attachment design pattern. As we stated before,
PowerPlant provides several attachment classes. You can use these
whenever appropriate in your own applications. You can also use
them as models for your own attachments. In this section we
discuss the following attachments:

• LBeepAttachment

• LBorderAttachment

• LEraseAttachment

• LPaintAttachment

• LCommandEnablerAttachment

• LKeyScrollAttachment

All of these classes are declared in UAttachments.h and defined in
UAttachments.cp.

The LUndoer class, which derives from LAttachment, is more than a
simple attachment. It is the basis for the PowerPlant
implementation of undo functionality.

See also The PowerPlant Reference for more on action classes and
undo.

LBeepAttachment

This is a simple attachment designed to respond to any message
you want, typically a click message. When you create the object, you
The PowerPlant Book PPB–489

Periodicals and Attachments
Specific PowerPlant Attachments
specify the message to which you want the attachment to respond.
When attached to any host, this attachment beeps when the
appropriate message is received.

LBorderAttachment

This attachment is designed to respond to msg_DrawOrPrint.
When you create this attachment, you specify a PenState, a
foreground color, and a background color. You also specify whether
the host should draw as well.

This attachment draws a border around the pane’s frame with the
specified pen.

LPaintAttachment

This attachment is designed to respond to msg_DrawOrPrint.
When you create this attachment, you specify a PenState, a
foreground color, and a background color. You also specify whether
the host should draw as well.

This attachment paints the host using the specified PenState
settings and foreground and background colors. The painted
rectangle is inset from the pane’s frame by the size of the pnSize
field of the PenState. This lets you use an LPaintAttachment in
conjunction with an LBorderAttachment to draw a filled rectangle.

Because attachments draw first, you can use this attachment to fill in
a background of a pane before drawing occurs.

LEraseAttachment

This attachment is designed to respond to msg_DrawOrPrint. It
simply erases the pane before drawing.

LCommandEnablerAttachment

This attachment responds to msg_CommandStatus. This is a good
example of a command-updating attachment. When you create the
attachment, you specify the command that should be enabled.

When it executes, this attachment enables the menu item associated
with the command. It does not set a mark or do any other item
PPB–490 The PowerPlant Book

Periodicals and Attachments
Specific PowerPlant Attachments
manipulation. It also prevents the host from executing, because it
has already enabled the command in question.

You can use this attachment as a model for an attachment that
handles other updating tasks. For example, you might create a
check mark attachment that puts a check mark in front of a menu
item.

LKeyScrollAttachment

This attachment is a good example of keystroke preprocessing. It is
also an excellent example of the kind of task for which an
attachment is ideally suited.

This attachment handles scrolling a view using keyboard navigation
keys: Home, End, PageUp, and PageDown. This kind of
functionality is a very nice thing to add to a view. Rather than
writing code to implement this functionality in every scrolling view
class, why not create an attachment that does the processing for
you? Then, if you ever want to add this feature to a view, simply
create and connect the attachment.

This particular attachment responds to msg_KeyPress. When you
create the attachment, you provide a pointer to an LView object.
This is the scrolling view. Because this attachment is responding to a
keystroke, the attachment must be hosted by a commander.

If you have a view that is also a commander—a class derived from
both LView and LCommander—you can attach an
LKeyScrollAttachment to it to implement keyboard navigation.

If your view is not a commander, you can attach the
LKeyScrollAttachment to a superview that is a commander (such as
the window containing the view).

WARNING! If you can delete the scrolling view independently of the commander
that has the attachment, you must take care to delete the
attachment as well. If you do not, the attachment keeps the pointer
to the now-deleted view (a dangling pointer) and you’re in for big
trouble.
The PowerPlant Book PPB–491

Periodicals and Attachments
Summary
Summary
In this chapter you learned how elegant design can make difficult
programming tasks much easier to accomplish.

By the simple expedient of making an object inherit from
LPeriodical, you ensure that it receives time on a regular basis.
Implementing any time-dependent task becomes trivial. The object
receives attention on every pass through the event loop, or at idle
time, depending upon whether you install it in the repeater queue
or the idler queue. You override SpendTime(), and you’re done.

PowerPlant’s use of attachments reflects an extraordinarily simple,
powerful, and unbounded design pattern. This kind of elegance can
be found elsewhere in PowerPlant—for example, in the broadcast/
listen messaging mechanism. But nowhere else are true power and
simplicity so well combined.

You create an attachment, specify the type of message to which it
should respond, and override the ExecuteSelf() function. You
connect the attachment to an appropriate host object. PowerPlant
gives your attachment the opportunity to execute at several points
in the ordinary flow of events.

Using attachments, you can create independent behaviors that you
attach or remove from objects dynamically.

Because this chapter is the end of the PowerPlant Book, you’ll find a
brief recap after the code exercise that sums up where we have been.
But first, let’s jump into the final code exercise.

Code Exercise
This is it, the goodies you’ve been waiting for. In this code exercise
you get a glimpse at the real power of object-oriented programming
with a well-designed application framework.

Best of all, you’re going to create two pieces of code that are
valuable, real-world additions to your personal collection of
reusable code. One is a periodical, and the other is an attachment.
Each demonstrates the ease with which you can use both of these
marvelous PowerPlant features.
PPB–492 The PowerPlant Book

Periodicals and Attachments
The Interface
Appropriately, the application you write in this code exercise is
titled “Goodies.” Let’s look at the interface briefly, and then build a
periodical and an attachment.

The Interface

In the Goodies application, you create a window that displays a
progress bar, as shown in Figure 15.4. This application also has a
Window menu, just like the menu you built in the code exercise in
Chapter 11, “Windows.”

There isn’t any real task going on that requires a progress bar, this is
just a demonstration. The window has a button to start the bar as if
there were something going on. When you click the Start button, the
“barber pole” progress bar animates. The text in the button changes
to Stop, and the caption changes to Busy.

Figure 15.4 The Goodies window

Open the Goodies.ppob project file in Constructor and examine
the PPob resource for this window. Pay particular attention to the
characteristics of the barber pole pane, as shown in Figure 15.5.
The PowerPlant Book PPB–493

Periodicals and Attachments
The Interface
Figure 15.5 Barber pole properties

This pane represents a custom class, with ID BarP. It also has two
custom data items, the First PICT ID and Last PICT ID. To animate
the barber pole, the pane cycles through a list of PICTs, displaying
each picture in turn. In this case there are four PICTs, numbered
from 1000 to 1003. The PICT resources have been provided for you
in Goodies.rsrc.

Feel free to examine the custom pane type—the CTYP resource—as
well.You created a custom pane in the code exercise in Chapter 15,
“Controls and Messaging.”
PPB–494 The PowerPlant Book

Periodicals and Attachments
Implementing Goodies
Implementing Goodies

In this section you implement a periodical task and an attachment.
The progress window is a periodical. The Window menu is an
attachment.

This is the same Window menu you created in Chapter 11, so you
should be familiar with how it works. The Window menu is
implemented as a custom class derived from LMenu. The
application can’t use the PowerPlant default menu-creation
mechanism because PowerPlant creates LMenu objects. This
application creates a CWindowMenu object and adds it to the menu
bar.

In Chapter 11, you added code to the application’s
ObeyCommand() and FindCommandStatus() functions to
manage the Window menu. In this exercise you write similar code,
but put it in the attachment’s ExecuteSelf() function! Let’s get
started.

1. Examine the CBarberPolePane class

class declaration CBarberPolePane.h

Look at the code that declares this class. First, notice that this class
inherits from both LPane and LPeriodical. It has a class ID BarP.
There are several constructors, and a destructor.

The class overrides the SpendTime() function, as is necessary in
any descendant of LPeriodical. The class also overrides the
DrawSelf() function inherited from LPane.

Finally, notice the data members and the kThrottleTicks
constant. The object stores the resource IDs of the first, last, and
current PICT on display. It stores the time to change pictures in
mNextTime. It changes the picture every kThrottleTicks ticks
on the system clock.You’ll write the code to do this in the next step.

Close the file when you are through examining this class.

2. Animate the barber pole pane.

SpendTime() CBarberPolePane.cp

The existing code gets the current tick count. After that, you:

a. Determine if it is time to change pictures.

Test the current tick count against mNextTime.
The PowerPlant Book PPB–495

Periodicals and Attachments
Implementing Goodies
b. Advance to the next picture.

If it is time to change, increment mCurrPictID.

c. Keep the picture in the proper range.

Make sure mCurrPictID stays in the range defined by the
mFirstPictID and mLastPictID.

d. Draw the picture.

Call the pane’s Draw() function.

e. Reset the time to change pictures.

Add kThrottleTicks to the current time, and store the result
in mNextTime.

SInt32 theCurrTicks = ::TickCount();
if (theCurrTicks > mNextTime) {

 // Increment the pict id.
 mCurrPictID++;

 // Rollover if needed.
 if (mCurrPictID > mLastPictID)
 mCurrPictID = mFirstPictID;

 // Redraw.
 Draw(nil);

 // Get the next time.
 mNextTime = ::TickCount() + kThrottleTicks;
}

Take a quick look at the DrawSelf() function, just to see what it
does. It gets the current picture and draws it. Notice that in
SpendTime() you call Draw(), not DrawSelf(). Draw() takes
care of setup tasks, and calls DrawSelf() for you.

When you are through, save your changes and close the file.

3. Manage the periodical.

SetBusyState() CProgressWindow.cp

CProgressWindow is also a custom class. It inherits from both
LWindow and LListener. When a CProgressWindow is created, it
installs itself as a listener to the Start/Stop button in the window.
PPB–496 The PowerPlant Book

Periodicals and Attachments
Implementing Goodies
That button sends a msg_ProgressControl message that the
window receives in its ListenToMessage() function. Feel free to
study the code to see how it works.

ListenToMessage() calls SetBusyState() to do the work, and
passes a Boolean value. If the value is true, the window is
becoming busy and the pane should animate. Otherwise, the
window is not busy and the animation should stop. The existing
code stores this value in the window’s mBusy data member. Then:

a. Get the barber pole pane.

The declared constant for this pane ID is kBarberPolePane.

b. Turn on the animation if busy.

Install the pane in the idler queue. Use the StartIdling()
function.

Change the text in the Start button to “Stop.” The declared
constant for this pane ID is kProgressControlButton.

Change the text in the status caption to “Busy…” The declared
constant for this pane ID is kProgressMessageCaption.

c. Turn off the animation if not busy.

Remove the pane from the idler queue. Use the StopIdling()
function.

Change the text in the Stop button to “Start.” Change the text in
the status caption to “Not Busy.” See substep b for the names of
the constants for these pane IDs.

mBusy = inBusy;

// Get the barber pole pane.
CBarberPolePane *theBarberPolePane;
theBarberPolePane = dynamic_cast<CBarberPolePane *>
 (FindPaneByID(kBarberPolePane));
Assert_(theBarberPolePane != nil);

if (mBusy) {

 // Start the barber pole idling.
 theBarberPolePane->StartIdling();

 // Set the button title.
 SetDescriptorForPaneID(kProgressControlButton, "\pStop");
The PowerPlant Book PPB–497

Periodicals and Attachments
Implementing Goodies

 // Set the message caption.
 SetDescriptorForPaneID(kProgressMessageCaption, "\pBusy…");

} else {

 // Stop the barber pole idling.
 theBarberPolePane->StopIdling();

 // Set the button title.
 SetDescriptorForPaneID(kProgressControlButton, "\pStart");

 // Set the message caption.
 SetDescriptorForPaneID(kProgressMessageCaption, "\pIdle");
}

You have now completely implemented the animated barber pole
pane. When the user clicks Start, it animates. When the user clicks
Stop, it stops. Save your work and close the file.

In the rest of this exercise, you add a Window menu attachment to
the application. First, we’ll examine the Window menu code. After
that, you have four principal tasks to accomplish. You must install
the menu in the menu bar, create an attachment to handle the menu,
connect the attachment to the application object, and implement
menu functionality in the attachment.

4. Examine the Window menu.

class declaration CWindowMenu.h

Examine the member functions in this class. You may recall these
functions from Chapter 11, because you wrote some of them. The
InsertWindow(), RemoveWindow(), MenuItemToWindow(),
WindowToMenuItem(), and SetCommandKeys() functions are
all identical to the code you wrote in that previous code exercise.
Feel free to refer to that chapter for a refresher on the menu
operations.

What’s new in this file is the declaration of the
CWindowMenuAttachment class. It inherits from LAttachment. It
has one significant function, ExecuteSelf(). It has a single data
member—a pointer to the Window menu object. You’ll write the
ExecuteSelf() function a little later.

When you’re through examining the class declaration, close the file.
PPB–498 The PowerPlant Book

Periodicals and Attachments
Implementing Goodies
5. Install the Window menu.

Initialize() CGoodiesApp.cp

As we mentioned at the start of this section, you cannot rely on the
PowerPlant menu-creation mechanism because it creates LMenu
objects. The Window menu is a CWindowMenu object.

In the application constructor, existing code registers the custom
classes. In the Initialize() function, you have three tasks to
accomplish.

a. Create a CWindowMenu object.

Use the new operator. The declared constant for the MENU
resource ID is rMENU_Window. Store the result in the global
variable, gWindowMenu.

b. Get the application’s LMenuBar object.

Use LMenuBar::GetCurrentMenuBar().

c. Add the new menu to the menu bar.

Use the menu bar’s InstallMenu() function.
 // Make the window menu.
 gWindowMenu = new CWindowMenu(rMENU_Window);
 ThrowIfNil_(gWindowMenu);

 // Get the menu bar.
 LMenuBar *theMBar = LMenuBar::GetCurrentMenuBar();
 ThrowIfNil_(theMBar);

 // Install the window menu.
 theMBar->InstallMenu(gWindowMenu, 0);

6. Connect a Window menu attachment to the application.

Initialize() CGoodiesApp.cp

The code for this step goes right after the code you wrote in the
previous step. You have two tasks.

a. Create a CWindowMenuAttachment.

Use the new operator and create a CWindowMenuAttachment
object. You write this constructor in the next step.
The PowerPlant Book PPB–499

Periodicals and Attachments
Implementing Goodies
b. Connect the attachment to the application.

Call the application’s AddAttachment() function to connect
the attachment to the application. Add the new attachment to
the end of the attachment list. Specify that the application owns
the attachment. This makes the application responsible for
deleting the attachment when the application is deleted.

theMBar->InstallMenu(gWindowMenu, 0);

 // Install the window menu attachment.
 CWindowMenuAttachment *theAttachment;
 theAttachment = new CWindowMenuAttachment(gWindowMenu);
 AddAttachment(theAttachment, nil, true);

Save your work and close the file.

7. Define the CWindowMenuAttachment constructor.

CWindowMenuAttachment() CWindowMenu.cp

To create this attachment, you must do two things.

a. Call the LAttachment constructor.

Set this attachment so it responds to any message, and allows the
host to execute. This attachment must receive all messages so
that it can identify and respond to menu commands and menu
updating.

b. Initialize the CWindowMenuAttachment.

Set the mWindowMenu data member.
CWindowMenuAttachment::CWindowMenuAttachment(
 CWindowMenu *inWindowMenu)
 : LAttachment(msg_AnyMessage, true),
 mWindowMenu(inWindowMenu)
{
}

Excellent! You have installed the menu, created the attachment, and
connected the attachment to the application. The final task is to
implement menu functionality.

In Chapter 11, you did this in the traditional way—by modifying
the application’s ObeyCommand() and FindCommandStatus()
functions. In the next two steps you implement the same kind of
PPB–500 The PowerPlant Book

Periodicals and Attachments
Implementing Goodies
functionality in the ExecuteSelf() function of the Window menu
attachment.

8. Identify menu update requests.

ExecuteSelf() CWindowMenu.cp

Before updating menus, PowerPlant sends a message to the
application’s attachments. This happens in the
LCommander::ProcessCommandStatus() function. The
message has two parameters. The first is the message itself,
msg_CommandStatus. The second parameter is a pointer to an
SCommandStatus structure. That structure holds the data you
normally find in the FindCommandStatus() parameters.

The attachment receives this message at menu update time. Existing
code says that the host should execute, identifies the message
received, and defines local variables—including a pointer to an
SCommandStatus structure.

After that, you:

a. Determine if this is an item you should update.

All commands from the Window menu are synthetic, so call the
static function LCommander::IsSyntheticCommand(). The
attachment is not itself a commander, so you must specify the
class. Also make sure the menu ID matches the mWindowMenu
menu ID. If the item is a synthetic command from the Window
menu, then you have identified an item that you must update.

b. Get the window object associated with the menu item.

Use CWindowMenu’s MenuItemToWindow() function.

c. Handle the item here.

If there is a window, set the mExecuteHost item to false. You
are taking care of the item entirely right here, so the host object
(in this case the application) does not need to ask a commander
to set this menu item.

d. Set the menu item status.

Set fields in the SCommandStatus structure. Enable the item,
use a mark, and set the mark to noMark. If the window is the top
window, set the mark to a check mark. Use
UDesktop::FetchTopRegular() to identify the top window.
The PowerPlant Book PPB–501

Periodicals and Attachments
Implementing Goodies
SCommandStatus *theStatus = static_cast<SCommandStatus *>
 (ioParam);

if (LCommander::IsSyntheticCommand(
 theStatus->command, theMenuID, theMenuItem)
 && theMenuID == mWindowMenu->GetMenuID()) {

 // Find window corresponding to the menu item.
 LWindow *theWindow =
 mWindowMenu->MenuItemToWindow(theMenuItem);

 if (theWindow != nil) {
 // Handle it's status here.
 mExecuteHost = false;

 // All window items enabled and use a mark.
 *theStatus->enabled = true;
 *theStatus->usesMark = true;
 *theStatus->mark = noMark;

 if (theWindow == UDesktop::FetchTopRegular()) {

 // Check menu item for top regular window.
 *theStatus->mark = checkMark;
 }
 }
}

Remember, the attachment is not a commander. There is no
inherited FindCommandStatus() function for items you don’t
update. If you don’t handle it, the mExecuteHost value remains
true, and the application asks a commander to take care of updating
the item.

Your attachment is only pretending to be a commander, but doing
quite a nice job of it. The next thing your attachment must do is obey
a command!
PPB–502 The PowerPlant Book

Periodicals and Attachments
Implementing Goodies
9. Handle a Window menu command.

ExecuteSelf() CWindowMenu.cp

Every item in the Window menu has cmd_UseMenuItem as the
corresponding command number. That means PowerPlant
generates a synthetic menu command for each item in the menu.

Before calling the ObeyCommand() function, ProcessCommand()
gives attachments an opportunity to handle a command. At that
time it passes the command itself as the message.

The existing code identified the msg_CommandStatus message,
and you handled that message in the previous step. If the message is
not msg_CommandStatus, you must:

a. Determine if this is a command you should obey.

Call LCommander::IsSyntheticCommand(). Make sure the
menu ID matches the mWindowMenu menu ID. If both
conditions are true (it is a synthetic command from the Window
menu) then you have identified a command you must handle.

b. Get the window object associated with the menu item.

Use CWindowMenu’s MenuItemToWindow() function. If you
have a window, then you have a command you must handle.

c. Handle the command here.

Set the mExecuteHost value to false. You are taking care of
the command right here, so the host object (in this case the
application) does not need to ask a commander to obey this
command.

d. Bring the window to the front.

If the window is visible, bring it forward. Use
UDesktop::SelectDeskWindow().

SInt16 theMenuItem;

if (LCommander::IsSyntheticCommand(
 inMessage, theMenuID, theMenuItem)
 && theMenuID == mWindowMenu->GetMenuID()) {

 // Find the window selected.
 LWindow *theWindow =
 mWindowMenu->MenuItemToWindow(theMenuItem);

The PowerPlant Book PPB–503

Periodicals and Attachments
Implementing Goodies
 if (theWindow != nil) {

 // Handle the command here.
 mExecuteHost = false;

 // Bring the window to the front.
 if (theWindow->IsVisible()) {
 UDesktop::SelectDeskWindow(theWindow);
 }
 }
}

Notice once again that you aren’t a commander. You can’t call an
inherited ObeyCommand() function for commands you don’t
handle. If you don’t handle it, the mExecuteHost value remains
true, so the application will ask a commander to obey the command.

Save your work and close the file.

10. Build and run the application.

When the project builds correctly and you run the application, a
progress window appears, like Figure 15.4. Click the Start button
and the barber pole animates. Click Stop and the animation stops.
Choose the New item to make more windows. Start them running.
This is your periodical task at work. Observe that the animation
runs even when the window is in the background.

Examine the items in the Window menu. There should be one for
each window. The currently active window should have a check
mark in front of the item. Choose an item, and the corresponding
window should activate.

Each of these utility items—the progress window and the Window
menu attachment—is a nice bit of reusable code.

The Window menu attachment can be dropped into any
PowerPlant application. You must make a few changes for it to
work. You add the menu to the menu bar when the application
launches. You connect the attachment to the application. You
modify your window’s FinishCreateSelf() function to add an
item for itself in the window. You modify the window’s destructor
PPB–504 The PowerPlant Book

Periodicals and Attachments
Looking Backward, Looking Forward
to remove the corresponding item from the Window menu. That’s
it.

The progress window is highly reusable. Simply create the window
whenever you need to display progress. Keep in mind, this
particular brand of progress window works at idle time. It will not
work to mark progress in a long task that does not return to the
event loop. However, it works great when the task whose progress
you are indicating is another periodical or regularly returns to the
main event loop.

In fact, the CBarberPolePane class could be used more generally as
CPictAnimator—displaying any series of PICT’s in any appropriate
circumstance. You could animate icons, spin arrows, or impement a
slide show.

Possibilities for experimentation abound. Make a progress window
that draws the percentage complete of a task. The task that requires
the progress window should create it, and maintain a connection to
the progress window. It can post the percentage complete, and the
progress window can draw itself. Play with different ways of
representing completeness. You can have a 3-D effect in the bar, an
analog clock with a sweep that completes a circle, or a cup that fills
with color, just to name a few.

For attachments, create a different kind of menu that provides
useful functionality. You might want to try adding a debugging
menu that you can use to turn debugging on and off. Perhaps you
can implement a font menu as an attachment. You might create a
“Demo” attachment that converts an application into a demo
version by disabling certain commands. Experiment with
PowerPlant’s built-in attachments in UAttachment.cp. Try to think
of other ways in which you can use attachments.

As always, have a good time exploring. Don’t worry about getting
lost. You are now ready to head out on your own into the vast
spaces of the PowerPlant landscape.

Looking Backward, Looking Forward
It has been a long journey from your first PPEdit application in
Chapter 1 to the boundless horizons of attachments. Along the way
you have learned a lot about PowerPlant.
The PowerPlant Book PPB–505

Periodicals and Attachments
Looking Backward, Looking Forward
You have seen PowerPlant from a high-level that emphasizes the
design patterns and principles behind this marvelous application
framework. You have seen PowerPlant from the mid-level of classes
and functionality, and how objects of various classes work together
to implement the design principles. And you have seen PowerPlant
from deep inside the code.

You have learned not only what PowerPlant is, but—more
importantly—how to use it. After all, isn’t that the real goal? You
now have all the critical pieces, and you know where they belong in
the big picture.

Still, there is more. PowerPlant is not a done deal. PowerPlant is a
living, breathing piece of code that continues to grow and evolve.
As the Mac OS changes, so too will PowerPlant. Metrowerks wants
to keep you at the forefront of technology. The PowerPlant
engineers are dedicated to keeping PowerPlant the best Macintosh
application framework available anywhere.

Use the PowerPlant Reference freely. Browse the PowerPlant code.
Read the other PowerPlant documentation available in the
CodeWarrior package. And don’t forget the appendices to this
manual. You’ll learn about a wide variety of PowerPlant utilities not
mentioned elsewhere in this book.

It is our hope that in these pages you have seen what a truly elegant,
powerful, and robust application framework—PowerPlant—can do
for you as a programmer. We at Metrowerks want to welcome you
to the world of PowerPlant programming.

Congratulations! And may you code in interesting times.
PPB–506 The PowerPlant Book

A
PowerPlant Utilities

This appendix covers all the utility classes in PowerPlant.

PowerPlant Utilities Overview
These utilities cover a wide range of services. Some of them are
wrapper classes for various Toolbox managers. Others help you
save and restore program state in one form or another. Still others
provide significant help with common programming challenges like
string manipulation, list management, or key filtering.

This appendix is organized by source file. While that might seem an
odd way to structure a discussion of various utilities, this approach
makes sense for two reasons. First, the PowerPlant designers put
related tasks and classes into the same source file. As a result, the
source files reflect functional boundaries in programming. Second,
identifying the utilities by source file helps you find them more
easily. Soon you’ll be able to zip directly to the source file you need
if you want to look up a function.

In most cases there is both a header file and a source file for each
entry in this appendix. However, a single file may contain the
declaration or definition for several classes.

The names for some of the more important “utility” classes begin
with the letter L. Most utility classes begin with the letter U. In
general, the “L” files are more central to PowerPlant and its code.
The “U” files are a little more peripheral or limited in their scope.
For example, LArray is used throughout PowerPlant for many
purposes. UDesktop has specific functions for working with
windows.

Finally, this appendix is not a replacement for the PowerPlant
Reference. The appendix concentrates on how you use these utilities.
The PowerPlant Book PPB–507

PowerPlant Uti l i t ies
Classes Discussed Elsewhere
Consult the PowerPlant Reference for complete information on the
various data members and member functions in each class.

Classes Discussed Elsewhere
The classes and functions declared and defined in the following files
have already been discussed elsewhere in the manual. Please refer
to the appropriate section for information about them.

• PPobClasses—See “Register PowerPlant Classes.”

• UAttachments—See “Attachments.”

• UDebugging—See “Set Debugging Options.”

• UDesktop—See “UDesktop.”

• UEnvironment—See “Check the Environment.”

• UExceptions—See “Set Debugging Options.”

• UFloatingDesktop—See “UDesktop.”

• UMemoryMgr—See “Setup Memory Management.”

• UModalDialogs—See “StDialogHandler” and “Simple Movable
Modal Dialogs.”

• UPrintingMgr—See “Printing Utilities.”

• URegistrar—See “Register PowerPlant Classes.”

• UWindows—See “UWindows.”

More Utility Classes
PowerPlant has many more utility classes designed to help with a
wide variety of tasks. Some of these classes have been mentioned in
passing. Others have not been mentioned at all. This appendix
details the following classes:

LClipboard UDrawingState

LArray UDrawingUtils

TArray UKeyFilters

LArrayIterator UProfiler

LComparator UReanimator
PPB–508 The PowerPlant Book

PowerPlant Uti l i t ies
LClipboard
LClipboard

LClipboard is a descendant of LAttachment. LClipboard is an
independent PowerPlant class that can be used in non-PowerPlant
projects. However, it does rely on the attachable/attachment design
pattern. In typical practice, you’ll use LClipboard along with the
rest of PowerPlant.

LClipboard supports the global clipboard—the “scrap”—
completely. It has all the functions for setting and getting data of
arbitrary type and length on the scrap. If you want to implement a
local clipboard for use within your application, you must subclass
from LClipboard.

Table 15.6 lists the more significant LClipboard functions.

Table 15.6 Some LClipboard functions

To use LClipboard, you create one, and only one, instance of
LClipboard. The GetClipboard() function is static, so you can
always get a pointer to the clipboard object with
LClipboard::GetClipboard().

LString UResourceManager

LSharable UScreenPort

UTextTraits

Function Purpose

GetClipboard() return pointer to LClipboard object

SetData() do housekeeping, call SetDataSelf()

GetData() do housekeeping, call GetDataSelf()

SetDataSelf() put data on the scrap

GetDataSelf() get data from the scrap

ImportSelf() convert scrap to local clipboard

ExportSelf() convert local clipboard to scrap

ExecuteSelf() listen for suspend/resume event, set flags to
convert local clipboard
The PowerPlant Book PPB–509

PowerPlant Uti l i t ies
LClipboard
See also Inside Macintosh:More Macintosh Toolbox for information
on the Scrap Manager.

Using LClipboard

How you use LClipboard in your code depends greatly on your
requirements. For example, do you want to import or export custom
data for use with other applications? Do you only want to import or
export standard data types (PICT, TEXT, MooV, and 3DMF) for use
with other applications? Or do you only want a local clipboard
(local scrap) for your own application use?

A global clipboard, or global scrap, allows you to share either
standard or custom data between applications.

If you define an application-specific data type to be placed on the
global scrap, you need to subclass LClipboard and override
SetDataSelf() and GetDataSelf(). You also need to add some
instance variables for storing the custom data. For example, a
pointer or handle to your data.

In SetDataSelf(), you store the data in your private storage. In
GetDataSelf(), you retrieve the data from your private storage.

You attach the clipboard object to your application object as shown
in Listing 15.1. As an attachment, LClipboard looks for the
msg_Event message. If a suspend or resume event occurs,
LClipboard converts the local clipboard to the scrap or vice versa, as
appropriate. It does so by calling ExportSelf() or
ImportSelf() as appropriate.

Listing 15.1 Attaching LClipboard to your application’s constructor
...
// inside constructor for your application
// setup access to the global clipboard
AddAttachment(new CMyClipboard);
...

To be friendly, if your application’s custom clipboard data type can
be converted to a standard type, such as TEXT, PICT, MooV, or
3DMF, you need to override ExportSelf() and perform the data
conversion in that method. If your application can use standard
format data copied from other applications, but needs to convert
PPB–510 The PowerPlant Book

PowerPlant Uti l i t ies
LClipboard
that data to your custom type, you need to override
ImportSelf() to convert the data to your custom format. Both of
these methods are defined empty in LClipboard.

TIP Generally, ImportSelf() would only set a variable saying there is
data on the clipboard. You only need to convert the data if the user
chooses Paste.

An example may be useful here. Say you wrote that killer graphics
application. Your application has a custom storage mechanism for
your graphic data. Copy and Paste within your application is not a
problem as no data conversion is necessary. However, say a user
copies a graph created in your application. The user then switches
to another application, maybe a desktop publishing application that
only understands the standard clipboard data types, to paste the
graph. Your application receives a suspend event. At this time, the
ExportSelf() method of your LClipboard class is called. You
convert your custom data into a format the other application
understands in this method. If you do not do this, the other
application will not be able to paste the graph.

Similarly, if the user copies a picture from one application and
want’s to paste it into your graphics application, your application is
brought to the front and the ImportSelf() method of your
LClipboard class is called. If it’s more efficient to convert the
graphic to your custom format, you can convert the data in this
method or wait until the user actually chooses Paste and do the
conversion then.

If your application only handles the standard format data types,
declare an LClipboard object as a member variable of your
application subclass like this:

LClipboard mClipboard; // inside declaration of class CMyApp

Local Scrap

LClipboard only supports the global clipboard. If you want to
maintain a local clipboard (local scrap) for use by your application
only, you need to subclass LClipboard and override
GetDataSelf() and SetDataSelf() to use your local scrap
instead of the global scrap.
The PowerPlant Book PPB–511

PowerPlant Uti l i t ies
Arrays
Putting and getting data from the clipboard

To put data on the scrap, you call SetData() as shown in Listing
15.2. There are two overloaded versions of this function. One takes a
handle to data, the other a pointer and length of data. The actual
work is done by SetDataSelf(). The default implementation just
puts data on the global scrap. In derived classes using a private
clipboard, you would override SetDataSelf().

Listing 15.2 Putting text on the clipboard
...
// Copy text to the clipboard. Note: clipString is a Pascal string
(LClipboard::GetClipboard())->SetData(‘TEXT’, &clipString[1],

clipString[0]);
...

To retrieve data, you call GetData(). You provide a handle. This
function fills the block with the data from the scrap. The actual work
is done by GetDataSelf(). The default implementation just puts
data on the global scrap. In derived classes using a private
clipboard, you would override GetDataSelf().

Arrays

Arrays of data are common features of many applications.
PowerPlant provides powerful array classes for your use.
PowerPlant itself uses these classes in many places.

In PowerPlant the array classes can be organized into three groups:
the arrays, the iterators, and the comparators. An array is an
indexed series of values. An iterator lets you walk through the items
in the array—forwards or backwards, from the beginning, the end,
or from an arbitrary location in the array. A comparator is used to
sort the contents of the array if you wish to keep the items sorted.

PowerPlant uses its own array classes to manage all kinds of lists of
objects. Figure 15.6 shows the class hierarchy for the array classes.
PPB–512 The PowerPlant Book

PowerPlant Uti l i t ies
Arrays
Figure 15.6 Array classes

LArray is the fundamental class for arrays. You can use LArray for
an array of any kind of data, with an arbitrary number of items, as
long as all items are the same size. LArray is dynamic, which means
you can add or remove items from the array freely. LVariableArray
allows you to create arrays where each element in the array may
contain data of a different size.

LArray and LArrayIterator are each friend to the other. You can
iterate over the array or list from an arbitrary starting position,
either forward or backward. Iteration works properly even if items
are added or removed from the list during iteration. The array
iterator does the right thing even if the array disappears completely.

Using LComparator, you can keep the items in an array sorted.

NOTE In earlier versions of PowerPlant, the LList and LListIterator were
used as simple implementations of arrays, as well as used internally
within PowerPlant for list management. These classes are now
obsolete, so you should update old code to use LArray (or some
other appropriate array class). Any new needs for array classes
should use LArray, LArrayIterator and their descendants.

The array classes are:

• LArray—the fundamental ordered collection of identically-sized
data
The PowerPlant Book PPB–513

PowerPlant Uti l i t ies
Arrays
• LVariableArray—an array with variable-sized data

• LRunArray—an array where consecutive identical items are
stored as a single entry

• TArray—a template-based array class

• LArrayIterator—an iterator to walk an array

• LLockedArrayIterator—an iterator that locks the array

• TArrayIterator—a template-based iterator

• TLockedArrayIterator—a template-based iterator that locks the
array

• LComparator—compares elements in an array byte-by-byte

• LLongComparator—compares elements in an array as long
values

LArray

LArray implements an ordered collection of fixed-size items.
Positions in the array are one-based—the first item is at index value
1. Index 0 is not an item in the array. The index value zero is used to
indicate a nonexistent item.

Index values are signed, 32-bit integers. When specifying an item,
you pass a pointer to the item data as a parameter. The array stores
a copy of the data, or returns a copy of the data to you.

The size of each item in a particular LArray must be the same, but
the size can vary between instances of LArray. The actual content of
each item can be any type of data—pointers, handles, structures,
actual values, and so forth. The only data you should not store in an
array (LArray or otherwise) is an object. You should store pointers
to objects created via new(). One other limitation, specific to
LArray, is that each item must use the same amount of storage. You
specify the amount of storage per item in the LArray constructor.

Table 15.7 lists some of the functions in LArray.
PPB–514 The PowerPlant Book

PowerPlant Uti l i t ies
Arrays
Table 15.7 Some LArray functions

You can insert, remove, get a value, assign a value, swap, move
items, and get data about the array. There are many more functions
in the LArray class. You should consult the source code for details.

NOTE You cannot store C++ objects in an array. PowerPlant arrays store
data using Handles which allow items to move in memory. C++
objects must stay at the same place in memory. Internally, C++
objects store pointers to their various subparts. These pointers are
absolute, not relative, so moving the object would produce
unpredictable results.

PowerPlant defines the constants index_First and index_Last
so you can easily insert or remove items at the beginning or end of
an array. If you attempt to insert an item beyond the current end of
the array, PowerPlant inserts the item at the end of the array. If you
attempt to remove an item that doesn’t exist, PowerPlant does
nothing.

The FetchItemAt() function has two versions. In one, you specify
the size of the data you want returned. You can use this to retrieve
partial data from any array element, or control the amount of data
returned from an LVariableArray. In typical use you do not need to
specify the size of the data.

Function Purpose

GetItemSize() get data size of each item

GetCount() get number of items in the array

InsertItemsAt() add items at specified index

RemoveItemsAt() remove items at specified index

Remove() remove specified item

FetchIndexOf() get index of specified item

FetchItemAt() get value of item at specified index

AssignItemsAt() set value of items at specified index

SwapItems() interchange two specified index items

MoveItem() move an item from one index to another
The PowerPlant Book PPB–515

PowerPlant Uti l i t ies
Arrays
WARNING! When fetching data from an array, PowerPlant copies the data into a
buffer you provide. PowerPlant assumes that the data buffer is large
enough to hold the requested data. If it is not large enough, you can
expect unexpected results. If you specify a size for the returned
data, PowerPlant returns either that amount of data or the actual
data in the element, whichever is smaller.

The functions InsertItemsAt() and AssignItemsAt() also
have a default parameter you can use to specify the data size. This
allows the same function to work for all arrays, including those with
variable size data. If you are working with LVariableArray, specify
the size of the data. Otherwise, pass zero or let it default to zero.
You should not specify a size when working with LArray or
LRunArray, both of which are arrays with data of one size. If you
specify a size of zero, LArray gets the actual size and uses it.

WARNING! When using InsertItemsAt(), or AssignItemsAt() with
LVariableArray, you must specify the size of the data. If you are
working with LArray or LRunArray, do not specify the data size.

In typical use, you instantiate an array of items of the desired size.
As you add or remove items from the list, you call
InsertItemsAt() or RemoveItemsAt(). These functions take
care of notifying any array iterators of changes in the array. When
you want to retrieve an item, you call FetchItemAt() with the
desired index value.

To create a sorted array, you create an LComparator object before
creating the array. Then pass a pointer to the LComparator object to
the LArray constructor. Or you can use SetComparator() to
specify an arrays comparator after the fact.

To iterate over an array, you create an iterator object. You pass a
pointer to the array to the iterator constructor, so it knows what
array to work with.

LVariableArray

LVariableArray is an implementation of LArray that allows you to
store data of differing sizes in an array. It overrides several member
functions of LArray to implement data storage and retrieval in a
PPB–516 The PowerPlant Book

PowerPlant Uti l i t ies
Arrays
situation where array elements vary in size. It also implements a
few new functions (all of them internal).

The public interface for LVariableArray is effectively identical to
that of LArray. The tasks you need to perform—setting, getting,
adding, and removing items in the array—you accomplish by
making the same calls you would with an LArray object.

WARNING! When using InsertItemsAt(), or AssignItemsAt() with
LVariableArray, you must specify the size of the data.

When calling FetchItemAt() with LVariableArray, you may wish
to specify the size of the data returned if you don’t want it all, or
you want to ensure that the data returned does not overrun your
buffer.

LRunArray

LRunArray is an implementation of LArray in which a contiguous
series of identical items (a run of items) is stored once. It overrides
several member functions of LArray to implement data storage and
retrieval in a situation where a run of array elements is stored in a
single element. It also implements a few new functions (all of them
internal). You could use LRunArray to save memory in a situation
where you could expect to have runs of data.

The public interface for LRunArray is effectively identical to that of
LArray. The tasks you need to perform—setting, getting, adding,
and removing items in the array—you accomplish by making the
same calls you would with an LArray object.

You do not need to keep track of the true index number in the run
array. For example, if the first 16 items in an LRunArray are
identical, and the 17th is not, the first element in the array holds the
data for items 1-16, and the second element in the array holds item
17. However, you deal with the array as if each item occupied a
separate element. So you access the 17th item in the array with the
index number 17, even though the first 16 items are identical, and
therefore stored in a single element.
The PowerPlant Book PPB–517

PowerPlant Uti l i t ies
Arrays
TArray

TArray is a template-based implementation of LArray. TArray is a
subclass of LArray. All functions are one-line inlines that call the
corresponding LArray method.

Even though TArray is a template class, it is not that different, in
terms of usage, from LArray. The bonus of using TArray of LArray
is that the template implicitly or explicitly performs all the typecasts
to and from the void* pointers used by LArray. This means that
code which uses the template is typesafe.

Furthermore, TArray accepts its arguments as references, unlike
LArray which accepts its arguments as pointers.

One caveat to using TArray is that instantiating your TArray will
cause inherited virtual functions to be hidden. The compiler will
generate a warning about this if you have the “Hidden Virtual
Functions” warning turned on. There is no problem doing this.
However, to suppress the warning, you can wrap the declaration of
the TArray with #pragma warn_hidevirutal off/reset.

All of PowerPlant’s internal array usage utilizes TArray.

See also The C Compilers Reference, and Assembler Guide for more
information on #pragma’s, and the IDE User Guide for more
information on warning messages.

LArrayIterator

LArrayIterator provides the functionality necessary to walk through
an array from an arbitrary starting point, going either forward or
backward. Each LArrayIterator object is associated with a single
array. An array may have an arbitrary number of iterators, but each
iterator has one array.

Rather than use an LArrayIterator, you could walk through the
array contents directly. You could call the array’s FetchItemAt()
function and loop through each item. This works fine as long as the
number of elements in the array doesn’t change.

The iterator is much more robust. The design of LArrayIterator
allows for the length of the array to change while iterating, and even
for the array to disappear completely. This safety mechanism works
PPB–518 The PowerPlant Book

PowerPlant Uti l i t ies
Arrays
as long as you always notify the iterator when the underlying array
changes. The implementation of LArray in PowerPlant does this for
you.

You can use simple functions in LArrayIterator to traverse the
array. LArrayIterator keeps an index value or marker that refers to
the current item in the array. Table 15.8 lists the functions of
interest.

Table 15.8 LArrayIterator functions for walking a list

If you step past the end of the list, the Next() function returns
false. If you step before the beginning of the list, the Previous()
functions return false.

LArrayIterator has two versions of Current(), Next(), and
Previous(). In one version you specify the size of the data you
want returned. This is useful if you want only part of the data
returned, or with data of varying size. If you are working with
LArray or LRunArray, and not using LVariableArray, you typically
do not specify a size.

To use an array iterator, you start with the iterator constructor. You
specify the array object to which the iterator should be attached, and
you set the initial value for the index marker. You can use the
constants from_Start or from_End, or you may specify an exact
index number. You can call ResetTo() to set the marker at any
time.

If you iterate from_Start, the marker is set to non-existent item
zero. Call Next() to get the first item in the array. Conversely, if
you iterate from_End, call Previous() to get the last item. Listing
15.3 shows you how to iterate from the start to the end of an array.

Function Purpose

Current() get item at current marker

Next() get next item in list

Previous() get previous item in list

ResetTo() set the marker to the specified value
The PowerPlant Book PPB–519

PowerPlant Uti l i t ies
Arrays
Listing 15.3 Iterating from the start of an array
{
 // Iterating from beginning to end of myArray
 LArrayIterator iterator(myArray,LArrayIterator::from_Start);
 while (iterator.Next(&theItem))
 {
 // do something with theItem
 }
}

Remember that the iterator is a separate class from the array. You
can have multiple iterators for the same array. For example, Listing
15.4 shows how to remove duplicate entries from an array using
two iterators simultaneously on the same array.

Listing 15.4 Multiple iterators for a single array
{
 LArrayIterator outer(myArray, LArrayIterator::from_Start);
 while (outer.Next(&testItem)) {
 LArrayIterator searcher(myArray,
 myArray->FetchIndexOf(&testItem));
 while (searcher.Next(&searchItem)) {
 if (testItem == searchItem) {
 myArray->Remove(searchItem);
 }
 }
 }
}

The outer iterator starts from the beginning of the array. The
searcher iterator starts after the position of the current item in the
outer iterator and removes any item that matches that item. Each
iterator moves properly to the next item in the array, even when an
item is removed.

The PowerPlant source code is replete with examples of arrays and
array iterators. Browse the code to see how it’s done. Specifically,
the “LArray Demo,” located on the CodeWarrior Reference CD,
demonstrates the basics of how to use the array classes.
PPB–520 The PowerPlant Book

PowerPlant Uti l i t ies
Arrays
LLockedArrayIterator

LLockedArrayIterator is a subclass of LArrayIterator that locks the
array before traversing it. This is useful when accessing pointers to
items in arrays that do not change while iterating, or any time you
might otherwise need to lock an array.

Usage of LLockedArrayIterator is no different than using an
LArrayIterator. Since it is the constructor that locks the array and
the destructor that unlocks it, gaining the benefits of
LLockedArrayIterator is seamless.

NOTE Since the locking and unlocking occur in the constructor and
destructor, you need to ensure the LLockedArrayIterator is
destroyed before its associated array is destroyed. If you create the
LLockedArrayIterator on the stack, you can simply use braces to
limit the scope and life of the LLockedArrayIterator object.

TArrayIterator

TArrayIterator is a template-based implementation of
LArrayIterator. TArrayIterator is a subclass of LArrayIterator. The
entire class is declared as inlines in TArrayIterator.h.

TArrayIterator is to LArrayIterator as TArray is to LArray. The
relationships are analogous. It is typesafe, and uses references
instead of pointers.

TArrayIterator is used throughout PowerPlant itself. Reading the
source code will show how to utilize the class. Specifically, the
“LArray Demo” on the CodeWarrior Reference CD demonstrates
how to use this class.

TLockedArrayIterator

TLockedArrayIterator is a subclass of TArrayIterator. It functions
the same as TArrayIterator as well as mirroring the same locking
functionality of LLockedArrayIterator.
The PowerPlant Book PPB–521

PowerPlant Uti l i t ies
Arrays
LComparator

LComparator is a simple class. LComparator objects know how to
compare two objects or structures. LComparator has four member
functions.

Table 15.9 LComparator functions

The Compare() function should return a value less than zero if
item 1 is less than item 2, zero if they are the same, and greater than
zero if item 1 is greater than item 2. CompareToKey() should do
the same against the key value. CompareToKey() is not
implemented. If you wish to compare against a key, you must
override LComparator.

LComparator does a byte-level comparison. It uses the
BlockCompare() function defined in UMemoryManager.cp to do
the work.

To create a sorted array, you first create an LComparator object. You
then pass a comparator pointer to the array constructor. PowerPlant
takes care of the rest. It keeps the array sorted as you insert new
items. Removing items does not affect sorting.

The “LArray Demo” on the CodeWarrior Reference CD
demonstrates how to use LComparator.

LLongComparator

LLongComparator is a subclass of LComparator. It assumes that the
items being compared are long values. LLongComparator
overrides Compare() and IsEqualTo(). However, you use
LLongComparator exactly as you would LComparator.

Function Purpose

Compare() compare two items

IsEqualTo() returns true if two items are the same

CompareToKey() compare data with a key

IsEqualToKey() returns true if data matches a key
PPB–522 The PowerPlant Book

PowerPlant Uti l i t ies
LString
LLongComparator is declared in LComparator.h and defined in
LComparator.cp.

LString

The LString class implements string functionality for Pascal-style
strings. It serves as a base class for two PowerPlant string classes,
LStr255 and TString. Figure 15.7 illustrates the class hierarchy.

Figure 15.7 LString class hierarchy

TString is a template class. You can use it as a basis for a string of
any type (an array of unsigned chars). LStr255 is a Pascal-style
string with a maximum of 255 characters.

Use the PowerPlant Reference to get details on these string classes and
their functions. LString is a powerful class with many features.

LString has functions or operators to:

• Convert a string to a number—long, floating point, or a four-
character code.

• Fill in the contents of a string from a variety of sources,
including:

– a substring of another string

– a character

– a four-character code (e.g. an OSType)

– a pointer to data

– an STR or STR# resource

– a long number

– a floating point number
The PowerPlant Book PPB–523

PowerPlant Uti l i t ies
LSharable
• Find a substring within a string, including functions to start
from either end, or determine if the string begins or ends with a
specified substring.

• Insert, remove, or replace parts of the string.

• Compare strings.

• Compare strings with overloaded operators ==, !=, >, <, >=, and
<=

• Copy a string.

• Copy a string with overloaded operator=.

• Append strings.

• Append strings using overloaded operators + and +=.

If you are going to do significant work with strings, examine the
PowerPlant LString class and its descendants. These classes are
independent of the rest of PowerPlant and can be used without any
other PowerPlant classes.

NOTE LString replaces the functions found in the now-obsolete
String_Utils file. You can use String_Utils for some simple work.
There are functions to copy or concatenate Pascal strings. There
are also functions to convert between a Pascal string and an
OSType (four-character code).

LSharable

LSharable is a mix-in class to allow objects to delete themselves
when no longer used. LSharable uses a reference counter to keep
track of the number of objects currently using the shared data. Once
the counter reaches zero, the class deletes itself, thus freeing up any
memory that was used by the object.

An example of where you might use LSharable is a database
application where you may have several different views of the same
shared data object. Once the last view no longer needs to see the
data, the data object deletes itself.
PPB–524 The PowerPlant Book

PowerPlant Uti l i t ies
UScreenPort
UScreenPort

PowerPlant uses UScreenPort on certain occasions to manage the
desktop. This class creates a GrafPort that is the same size as the
gray region—the area of all monitors, excluding the menu bar. If the
port hasn’t been created when you try to access it, the class creates
the port automatically.

UDrawingState

The UDrawingState files declare and define several PowerPlant
utility classes. One of them is UQDGlobals.

The UQDGlobals class has four functions, listed in Table 15.10.

Table 15.10 UQDGlobals functions

The remaining classes in UDrawingState are designed to preserve
and restore drawing state information. To use any of these classes,
you simply define a local, stack-based object of the class. The
constructor preserves the information. When the function goes out
of scope, the class destructor is automatically called. The destructor
restores the original state.

Using these classes makes saving your drawing state virtually
automatic and foolproof. Even if the function terminates
abnormally—for example, because of an exception—the correct
destructor is called and state is restored. Table 15.11 lists each of
these classes, and the data they preserve and restore.

Function Purpose

InitializeToolbox(
)

 initialize the basic Toolbox managers

GetCurrentPort() return the current GrafPort

GetQDGlobals() return pointer to QDGlobals

SetQDGlobals() set QDGlobals
The PowerPlant Book PPB–525

PowerPlant Uti l i t ies
UDrawingUtils
Table 15.11 Stack-based drawing state classes

Most of these classes also have a Normalize() function to set the
values for that class’s data to default values. For example, the
StColorState::Normalize() function sets the foreground
color to black and the background color to white.

The StClipRgnState class has additional constructors for setting a
new clipping region, and for other clip region manipulations.
Browse the PowerPlant source code to see these classes in action.
Use the PowerPlant Reference to learn more about them. None of
these classes is dependent upon PowerPlant. You can use these
classes in any C++ code you write.

See also “Initialize the Toolbox.”

UDrawingUtils

The UDrawingUtils files declare and define four classes, each
related in some way to drawing. We’ll discuss each class in turn.
They are:

• UDrawingUtils

• StDeviceLoop

• UMarchingAnts

• UTextDrawing

Class Preserves/Restores

StColorState foreground and background color

StColorPenState pen location, size, mode, pattern, and color state

StTextState font number, text size, style, and mode

StClipRgnState clipping region

StPortOriginState port origin

StColorPortState GrafPort, port origin, pen state, color state, text state, and
clipping state

StHidePen hides and shows the pen

StEmptyVisRgn current visRgn; sets visRgn to empty, preventing drawing
PPB–526 The PowerPlant Book

PowerPlant Uti l i t ies
UDrawingUtils
UDrawingUtils

UDrawingUtils declares three static functions. Because every
function is static, you never declare an object of this class. The class
is simply a device for grouping these functions. Table 15.12 lists
them.

Table 15.12 UDrawingUtils functions

You may find these functions useful when drawing. None of them is
dependent upon any other part of PowerPlant.

StDeviceLoop

The StDeviceLoop class is designed to assist you when drawing
items that are color-depth-sensitive on multiple monitors.

Like other stack-based classes, you declare a local object of the class.
Typically you would do this in a pane’s DrawSelf() routine.
However, the implementation is not pane-dependent. You can use
this class independently of PowerPlant.

The constructor takes a Rect in the local coordinates of the current
port. Typically, this would be the pane’s frame.

The NextDepth() function passes back the depth of the next
device and returns true. After reaching the last device, the depth is
zero and the function returns false. You would normally call
NextDepth() as the condition in a “while” loop.

When NextDepth() returns with a valid depth, it has already set
the clipping region to the intersection of the specified Rect, the
current device, and the original clipping region. Therefore, you can
just draw the pane and rely on the clipping region to properly

Function Purpose

IsColorGrafPort() return whether specified port is a
color port

IsActiveScreenDevice(
)

return whether specified GDevice
is active

SetHiliteModeOn() turn on QuickDraw highlight
mode
The PowerPlant Book PPB–527

PowerPlant Uti l i t ies
UDrawingUtils
restrict the drawing. If you need access to the current device, you
can call the GetCurrentDevice() member function.

The destructor restores the clipping region to what it was when the
constructor was called.

Listing 15.5 shows some example code using StDeviceLoop.

Listing 15.5 A typical use of StDeviceLoop
Rect frame;
if (CalcLocalFrameRect(frame)) {
 StDeviceLoop theLoop(frame);
 SInt16 depth;
 while (theLoop.NextDepth(depth)) {
 switch (depth) {

 case 1: // Black & white
 break;

 case 4: // 16 colors
 break;

 case 8: // 256 colors
 break;

 case 16: // Thousands of colors
 break;

 case 32: // Millions of colors
 break;
 }
 }
}

You supply the appropriate drawing code for the different color
depths.

UMarchingAnts

The UMarchingAnts class provides some support for a standard
Macintosh animated selection marquee. All of the members of this
class are static, so you do not have to instantiate an object of this
class.
PPB–528 The PowerPlant Book

PowerPlant Uti l i t ies
UKeyFilters
The UMarchingAnts::BeginMarch() function sets up a pen
pattern for the marquee. UMarchingAnts::EndMarch() cleans
up. In between you are responsible for managing the marquee—
erasing, resizing, and drawing the marquee as the mouse moves.

UTextDrawing

The UTextDrawing class has a single static member function,
DrawWithJustification(). PowerPlant uses this function to
draw text in LCaption and LTextButton objects.

DrawWithJustification() provides the same functionality as
the Toolbox TextBox() routine, with one exception. The
PowerPlant function does not erase the box before drawing. This
enhances performance.

However, if you change the text in a caption or text button
dynamically, you must erase the text yourself before drawing the
new text.

UKeyFilters

The UKeyFilters class defines three different key filters. Every
function in this class is static, so you never have to declare a
UKeyFilter object. You can use the functions at any time. Even
better, UKeyFilters is another independent PowerPlant module that
you can use in any project.

In PowerPlant, a key filter examines a keydown event and returns a
value to you that tells you something about the key. You can then
act based upon the value you receive from the filter. The filter is an
automatic way of testing a key to see if it fits certain criteria.

The return value from each filter is an enumerated data type,
EKeyStatus. The possible EKeyStatus values are summarized in
Table 15.13.

Table 15.13 EKeyStatus values

Constant Meaning

keyStatus_Input input character is acceptable

keyStatus_TEDelete TextEdit delete key
The PowerPlant Book PPB–529

PowerPlant Uti l i t ies
UKeyFilters
Each call to a filter returns one of these values depending upon the
character in the event record. The filter doesn’t tell you precisely
what key is in the event. It does tell you whether the key passes the
filter, something about the nature of the key, or what to do with the
key.

The UKeyFilters class includes three key filters.

Table 15.14 UKeyFilters filter functions

A “printing character” is a character with an ASCII value from 32 to
126. Each of these functions is static.

You can use Constructor to assign one of these three key filters to an
LEditField object. You can set a key filter at runtime using
LEditField::SetKeyFilter(). You provide a function pointer
to the static filter function.

This mechanism allows you to create and use your own filter
functions in a class derived from UKeyFilters. When you create an
LEditField object, you call SetKeyFilter() to attach the desired
filter to the object.

The three PowerPlant filter functions rely on several lower-level
routines to process characters. You can use these functions directly

keyStatus_TECursor TextEdit cursor movement key

keyStatus_ExtraEdi
t

edit key not supported by TE

keyStatus_Ignore do nothing with the keystroke

keyStatus_Reject invalid keystroke

keyStatus_PassUp pass keystroke to next handler

Constant Meaning

Function Allows

IntegerField() numbers 0-9

AlphaNumericField() numbers and letters A-Z and a-z

PrintingCharField() any printing character
PPB–530 The PowerPlant Book

PowerPlant Uti l i t ies
UProfiler
for “quick and dirty” character testing, or as utilities in your own
key filter. Table 15.15 summarizes the available functions.

Table 15.15 UKeyFilters character testing functions

The IsCmdPeriod() function supports international keyboards.

You can find character-related constants declared in the
PP_KeyCodes.h file.

UProfiler

The UProfiler files declare and define one class, StProfileSection.
This is a simple, stack-based utility class to facilitate profiling a
section of code using the CodeWarrior Profiler. UProfiler is an
independent PowerPlant module that you can use in any project.

To use StProfileSection, you must have the project preferences set
up for profiling, and the correct Profiler library included in the
project. If you are set up for profiling, StProfileSection makes
profiling extremely simple.

Function Identifies

IsTEDeleteKey() delete key

IsTECursorKey() up, down, left, right arrow keys

IsExtraEditKey() home, end, page up, page down,
forward delete, clear keys

IsNavigationKey() home, end, page up, page down,
arrow keys

IsActionKey() enter, tab, return, escape keys

IsNonprintingChar(
)

ASCII value 0 to 31 or forward delete
key

IsPrintingChar() ASCII values 32 to 126

IsNumberChar() 0-9 keys

IsLetterChar() A-Z and a-z keys

IsCmdPeriod() the command-period combination
The PowerPlant Book PPB–531

PowerPlant Uti l i t ies
UReanimator
StProfileSection has two functions—a constructor and a destructor.
Define a local StProfileSection variable before making the function
call you want to profile. You provide a file name for the profiler’s
dump file, the number of functions to be profiled, and the expected
stack depth (the nesting depth of function calls). The constructor
initializes and activates the Profiler.

You can profile an entire application by creating the StProfileSection
object in the main() function before telling the application to run.

When your StProfileSection object goes out of scope, the destructor
automatically dumps results to the Profiler dump file. You would
then use the Profiler to view the results. Please read the Profiler
Manual for details.

See also the CodeWarrior Profiler Manual for details on setting up
a project for Profiling and the PowerPlant Advanced Topics chapter on
profiling PowerPlant code.

UReanimator

PowerPlant uses this class internally to build pane objects from a
PPob resource. In typical PowerPlant programming, you don’t have
to deal with this class at all, with one exception.

The UReanimator::LinkListenerToControls() function
connects a listener to the controls in a RidL resource.

See also “RidL Resource” and “Linking broadcasters to
listeners.”

UResourceManager

The UResourceManager files declare and define three stack-based
classes for managing resources. UResourceManager is an
independent PowerPlant module that you can use in any project. To
use it, the only other PowerPlant files you need are the
UMemoryMgr files.

We’ll discuss each class in turn. They are:

• StNewResource

• StDeleteResource
PPB–532 The PowerPlant Book

PowerPlant Uti l i t ies
UTextTraits
• StResLoad

You should also review the discussion of the StResource class
described in “Stack-based memory classes.”

StNewResource

You use StNewResource to create a new resource, or modify an
existing resource.

Like other stack-based classes, you instantiate a local object. The
constructor gets the handle to the existing resource, if it exists.
Otherwise it allocates a new handle for you.

After you create the object, you modify the pre-existing resource or
write new data into the handle provided for you by
StNewResource.

When the local object goes out of scope, the destructor writes the
resource to the resource fork, and releases the handle.

StDeleteResource

You use StDeleteResource to remove a resource from the resource
fork of a file. The constructor gets the resource handle for the
specified resource. The destructor removes the resource from the
file and releases the resource handle.

StResLoad

You use StResLoad to preserve, change, and restore the ResLoad
parameter in low memory. Typically you would do this to turn
ResLoad off temporarily, then restore ResLoad when your
operation is complete.

UTextTraits

The UTextTraits class provides support for managing the
appearance of text. The UTextTraits class is a fairly independent
PowerPlant module. It requires UEnvironment and UMemoryMgr.

All of the functions in UTextTraits are static. You never instantiate a
UTextTraits object. You can use the functions at any time.
The PowerPlant Book PPB–533

PowerPlant Uti l i t ies
UTextTraits
PowerPlant declares a TextTraitsRecord to store the following
text characteristics:

• font name

• font number

• text size

• text style

• text justification

• text drawing mode

• text color

The font number is determined from the font name at runtime.

The same information may be stored in a Txtr resource. You can use
UTextTraits to work with either a Txtr resource, or with a
TextTraitsRecord in memory. Table 15.16 lists all the
UTextTraits functions.

Table 15.16 UTextTraits functions

Except for LoadSystemTraits(), there are two overloaded
versions of each of these functions: one for working with a
TextTraitsRecord; the other for working with a Txtr resource.

When you initialize a TextTraitsRecord in memory, set all the
values directly—including the font name. However, set the font
number to UTextTraits::fontNumber_Unknown. This is the
value -1. Then call LoadTextTraits(). This function looks up the
font number for the named font.

If you are working with a Txtr resource, call LoadTextTraits().
It reads the resource and (assuming you saved the resource with the

Function Purpose

LoadSystemTraits() set text traits to system default values

LoadTextTraits() get text traits

SetPortTextTraits(
)

set port text characteristics

SetTETextTraits() set TextEdit record characteristics
PPB–534 The PowerPlant Book

PowerPlant Uti l i t ies
UTextTraits
value -1 as font number) gets the font number for the named font. It
puts the results in a handle-based TextTraitsRecord.

See the PowerPlant Reference and source code for details about these
and other UTextTraits functions.
The PowerPlant Book PPB–535

PowerPlant Uti l i t ies
UTextTraits
PPB–536 The PowerPlant Book

B
Resource Notes

This appendix covers the various resources used in PowerPlant.
There are three principal areas to cover:

• PowerPlant-Specific Resources

• Standard Resources

• ToolServer and Rez

PowerPlant-Specific Resources
PowerPlant has several specific resource formats, including PPob,
RidL, Mcmd, and Txtr. We have discussed each of these resources at
various places in this manual.

For general information on all of these resources, and how to install
resource templates for 3rd party resource editors, see “Installing
Resource Templates.”

For more information on the PPob resource, especially the text
format of PPobs, see the PowerPlant.r file. We discussed various
aspects of the PPob resource throughout this manual.

For more on the RidL resource, see “Linking broadcasters to
listeners.”

For more on the Mcmd resource, see “Menu-Related Resources.”

For more on the Txtr resource, see “UTextTraits.”

Standard Resources
PowerPlant provides a variety of resources in several files. Most of
these resources are standard resources in the Mac OS. A few are
custom resource types.
The PowerPlant Book PPB–537

Resource Notes
PP Copy & Customize.ppob
In this section we look at the contents of those files. All of these files
are in the PowerPlant Resources folder.

The files discussed are:

• PP Copy & Customize.ppob

• PP Copy & Customize.rsrc

• PP Action Strings.rsrc

• PP DebugAlerts.rsrc

• PP Document Alerts.rsrc

• PP AppleEvents.rsrc

• ColorAlertIcons.rsrc

PP Copy & Customize.ppob

This file is copied, renamed, and used as part of the PowerPlant
stationery projects. In typical use, you open and rename this file,
and use it as the basis for further development. You can add
resources to this file, modify the existing resources, or create
additional resource files for your project.

MBAR—Menu Bar

Standard resource for specifying the MENUs in a Menu Bar.

The default constructor for LApplication uses this resource to create
the initial menu bar for a program. You should change this resource
to contain the ID numbers of the MENUs contained in your
program’s menu bar.

MENU—Menu

 Standard resource for Toolbox Menus.

• 128 Apple

• 129 File

• 130 Edit
PPB–538 The PowerPlant Book

Resource Notes
PP Copy & Customize.rsrc
Mcmd—Menu Command

 Custom resource type for specifying the command numbers
associated with menu items. An Mcmd contains a list of 32-bit
numbers corresponding to the items in the MENU with the same ID
number.

• 128 Apple

• 129 File

• 130 Edit

STR#—String List

• 200 Standards

Common strings used by PowerPlant.

– 1”MyProgram”

Change this to the name of your program. PowerPlant
uses this string when it displays the program’s name in a
dialog box.

– 2“Save File As:”

This is the prompt string displayed in the standard file
dialog box for saving a file.

Txtr—Text Traits

PowerPlant text traits resources.

• 128 System Font

• 129 App Font

PP Copy & Customize.rsrc

This file is copied, renamed, and used as part of the PowerPlant
stationery projects. In typical use, you open and rename this file,
and use it as the basis for further development. You can add
resources to this file, modify the existing resources, or create
additional resource files for your project.
The PowerPlant Book PPB–539

Resource Notes
PP Action Strings.rsrc
aete—Apple Event Terminology Extension

This is a standard resource that defines the natural language syntax
of Apple events supported by a program. This information is used
by script editors.

You need to have a separate aete for each human language you wish
to support, such as English. The ID number of the resource specifies
the language. Check the Apple events documentation from Apple
for a list of ID numbers and the languages to which they
correspond.

We provide an aete for the English language (ID = 0) that specifies
the terminology for all Apple events supported by PowerPlant. To
properly support script editors, you must change this resource to
reflect the Apple events actually supported by your program.

ALRT—Alert Box

LApplication::ShowAboutBox() displays this Alert when the
user chooses the About item from the Apple menu. If you wish to
use a simple Alert for your About Box, change this resource (and its
associated DITL) as appropriate.

You do not need this resource if you override
LApplication::ShowAboutBox() to display your program’s
About Box and use some other alert, dialog, or window.

There is an additional alert for a low-memory warning.

DITL—Dialog Item List

Standard resource for items in the Alert described above.

PP Action Strings.rsrc

Resource file with STR# resources for “undo” and “redo.” These
strings are used by LAction and LUndoer to change the text of the
Undo menu item.

This file is included in the PowerPlant stationery. If you do not use
stationery when you make a new project and you use LEditField,
add this file to your project.
PPB–540 The PowerPlant Book

Resource Notes
PP DebugAlerts.rsrc
PP DebugAlerts.rsrc

Contains ALRT and associated DITL resources used during
debugging.

• 251 ThrowAt

Alert displayed when an exception is thrown, Debug_Throw
is defined and gDebugThrow == debugAction_Alert.

• 252 SignalAt

Alert displayed when a signal is raised, Debug_Signal is
defined and gDebugSignal == debugAction_Alert.

For more information, see “Set Debugging Options.”

This file is included in the PowerPlant stationery. If you do not use
stationery when you make a new project, add this file to your
project.

PP Document Alerts.rsrc

Contains ALRT and associated DITL resources for confirmation
dialogs used in the LDocument classes. Be sure to add this file to
your project if you use these classes. The PP_Resources.h file
contains the defines for these resources.

• 201 Save Before Closing

• 202 Save Before Quitting

• 203 Confirm Revert

PP AppleEvents.rsrc

Contains the aedt resource that are required for full Apple Event
support. Note that this file does not contain the aete resource.

aedt—Apple Event Dispatch Table

• 128 Required Suite

• 129 Core Suite

• 130 Misc Standards

This is a custom resource type (also used by MacApp) for
associating a 32-bit number with a particular Apple event. The
The PowerPlant Book PPB–541

Resource Notes
ColorAlertIcons.rsrc
Toolbox identifies Apple events with a pair of 32-bit numbers (Class
ID, Event ID). It is inconvenient to use two numbers to identify
Apple events in code, so we use an aedt to map from the two
numbers to just one.

It’s not necessary, but we use a separate aedt for each Apple event
suite. You should define new aedt resources if your program
supports additional Apple events.

UAppleEventsMgr::InstallAEHandlers() installs an Apple
event handler for every entry in every aedt resource included in the
program.

ColorAlertIcons.rsrc

You can add this resource file to any program and it will colorize
the standard alert icons.

cicn—Color Icon

• 0 Icon used by StopAlert

• 1 Icon used by CautionAlert

• 2 Icon used by NoteAlert

These icons are color versions of the standard System icons
displayed by the Alert calls. If you include these cicn resources in
your program, the System will use them when displaying Alerts on
color screens. If you don’t include them, the System uses the
standard black and white icons. We think the color icons are more
attractive. However, each cicn is about 1K in size, so there is some
space penalty for using them.

ToolServer and Rez
This section describes how to use Rez and DeRez to work with
PowerPlant resource files. To install Rez and Toolserver, see the
CodeWarrior User’s Guide and the Rez Documentation folder on
the CodeWarrior CD. CodeWarrior also has a plug-in Rez compiler.
PPB–542 The PowerPlant Book

Resource Notes
Using ToolServer
Using ToolServer

You run ToolServer by choosing Start ToolServer from the Tools
menu in the CodeWarrior IDE. This will launch the ToolServer
program and display a ToolServer worksheet window within
CodeWarrior.

ToolServer has a command line interface. You type commands into
the ToolServer Worksheet. To execute a command (or several
commands) select the lines containing the command(s) and press
the Enter key or Command-Return. Just pressing Return creates a
new line (as with a normal text editing window).

Alternatively, you can create a text file that contains ToolServer
commands. Then you can execute all those commands by opening
that text file in CodeWarrior and choosing Execute as a Script from
the ToolServer menu.

Rez

Rez is a tool that compiles text representations of resource data into
actual resources. For examples of defining resources as text, see the
various .r files in the “PowerPlant Cookbook” folder.

You will normally use Rez only for resources that have convenient
text representations. This includes all resources whose data is
primarily strings or numbers. Graphical resources—icons and
pictures for example—are best edited with visual tools such as
ResEdit and Resorcerer. However, PowerPlant’s PPob resources fit
quite nicely into the Rez text format.

A typical Rez command line looks like this:
Rez -o "HD:Projects:MyProgram.µ.rsrc" -a
"HD:Projects:MyProgram.r"

In this command, -o "HD:Projects:MyProgram.µ.rsrc"
specifies the output file for the Rez operation. The “-a” option
means to append or merge the resources into an existing file.
Without the -a option, Rez will overwrite the output file. Finally,
"HD:Projects:MyProgram.r" is the input file containing the
text defining the resources.
The PowerPlant Book PPB–543

Resource Notes
DeRez
By convention, files containing Rez resource definitions have a “.r”
extension.

The above command line does not specify the files that define the
format of the resource types, such as Types.r or PowerPlant.r. It is
assumed that the necessary definition files are included at the top of
the MyProgram.r file.

For example,
#define SystemSevenOrLater
#include $$Shell("RIncludes") "PowerPlant.r"
#include $$Shell("RIncludes") "Types.r"
#include $$Shell("RIncludes") "SysTypes.r"

inside MyProgram.r will include the proper files. ToolServer
defines the Shell variable RIncludes to be the full path name to the
folder containing the Rez interface files. See the file “StartupTS” in
the ToolServer folder to see how it defines its Shell variables.
Defining the symbol “SystemSevenOrLater” lets you use certain
System 7 specific resource formats.

The file “Rez Script” contains a simple script that uses the
GetFileName tools to prompt the user for the input and output files
for Rez (as opposed to having to specify the full path names).

For a more complex example, use the “Build Resource Files” script
file in the “PowerPlant Cookbook” folder.

DeRez

DeRez is the inverse of Rez. DeRez decompiles resources into text
representations of the resource data.

A typical DeRez command line looks like this:
DeRez "HD:Projects:MyProgram.µ.rsrc" -only PPob "PowerPlant.r" >
"HD:Projects:MyDeRez.r"

This command decompiles resources of type PPob in the
“HD:Projects:MyProgram.µ.rsrc” resource file. It uses the resource
definitions in “PowerPlant.r” to interpret the resource data. It places
the output text data in the file "HD:Projects:MyDeRez.r". If the
output file does not exist, it is created. If the output file already
exists, it is overwritten.
PPB–544 The PowerPlant Book

Resource Notes
DeRez
The -only PPob option specifies that only PPob resources in the
input file are decompiled by DeRez. You can specify as many -
only options and resource definition files as you want. For
example,

DeRez "ResFile" -only vers -only MENU "Types.r" "SysTypes.r" >
"MyDerezFile.r"

If you don’t include any -only parameters, then all resource types
in the input file are decompiled by DeRez.
The PowerPlant Book PPB–545

Resource Notes
DeRez
PPB–546 The PowerPlant Book

Index

A
Activate()

LPane 133
LWindow 344
UDesktop 349
UDesktop in dialogs 383

ActivateSelf()
LPane 130, 133
LWindow 344

active state 118
AddAttachment()

LAttachable 483
AddListener()

LBroadcaster 209, 211, 213
AddMenu()

LMenuBar 306
AddSubCommander()

LCommander 285
AdjustCursorSelf()

LPane 133
AdjustScrollBars()

LView 172, 174
adorner as MacApp class 482
aedt resource in PowerPlant 268
alignment in placeholder 446
AllowSubRemoval()

LCommander 285
LDialogBox 379
LSingleDoc 413
LWindow 347

AllowTargetSwitch()
LCommander 286, 287

Apple events
in LDocApplication 408
in PowerPlant 267, 268

application
and main() function 252
as commander 250
as design pattern 69
as event dispatcher 250
as scriptable object 250
as top commander 267, 285
checking environment 263
class hierarchy 91, 250

deriving 252
event handling 266
functions 251
implementing 419
initalize heap 259
initialize toolbox 260
initializing 252–266
memory management 260–263
overriding functions 252
quitting 252
registering classes 265
running 266
state 251

application framework
advantages 67
and interface 66
defined 66
design patterns in 68–77
flow of control in 67
utilities in 77

arrays 512–523
iterating 518
multiple iterators 520

AskForOneNumber()
UModalDialogs 381

AskForOneString()
UModalDialogs 382

AskPageSetup() 461
AskPrintJob() 461
AskSaveAs()

LDocument 411, 422
Assert_ macro 257

and side effects 257
AssignItemsAt()

LArray 515, 516
LVariableArray 516, 517

attachment 479–491
creating 487
defined 479
messages and data 486
strategy 482
uses for 488
when PowerPlant calls 485
when to use 487

AttemptClose()
The PowerPlant Book PPB–547

Index
LDialogBox 380
LDocument 411
LWindow 346, 347

AttemptQuit()
LCommander 285

AttemptQuitSelf()
LCommander 285, 286
LDocument 410

B
BeginDrawing()

LGWorld 343
BeginMarch()

UMarchingAnts 529
BeginSession() 461
behavior as MacApp class 482
BeTarget()

LCommander 287, 290
binding in a frame 132
BlockCompare() 263

used in LComparator 522
BlocksAreEqual() 263
broadcaster

defined 75
in design pattern 75
linking to listener 210, 213

broadcasting a message 211
BroadcastMessage()

LBroadcaster 209, 211, 212
LControl 212
listen in dialogs 377

BroadcastValueMessage()
LControl 212
listen in dialogs 377

button See control
buttons in PowerPlant 198

C
CalcLocalFrameRect()

LPane 132, 175
CalcPortFrameRect()

LPane 132, 175
CalcRevealedRect()

LView 172
calling Toolbox routines 61
cancel button in dialog 372, 374
caption See LCaption

Carbon
printing under 448
UCarbonPrinting.cp 448

Catch_ macro 259
chain of command 285

functions 285
maintaining 285

checking environment 263
ChooseDocument()

example 420
LDocApplication 408

class
interdependence in PowerPlant 84
name conventions 57
registering 265

class ID
reserved 124
when registering class 266

class library 65
ClearAttribute()

LWindow 331
click in a window 344
Click()

LPane 134
LWindow 345

ClickCell()
LTable 180

ClickInContent()
LWindow 345

ClickInDrag()
LWindow 345

ClickInGoAway
LWindow 345

ClickInGrow()
LWindow 341, 345

ClickInZoom()
LWindow 345

ClickMenuBar()
LEventDispatcher 298

ClickSelf()
LControl 206, 209
LListBox 140
LPane 127, 134
LWindow 341, 346
overriding 135

clipboard 509
clipping region 526
PPB–548 The PowerPlant Book

Index
close
dialog 379
document 410, 413
window 346

CloseBox window attribute 329
CloseDataFork()

LFile 414
CloseResourceFork()

LFile 414
code library 64
coding conventions 57–62
command 283–291

calling inherited commander 299
chain of 285
class hierarchy 284
duty handling 287
handling 290
handling target 286
identifying synthetic 298
latency 288
maintaining chain of command 285
passing to supercommander 299
responding to 298
responding to quit as example 299

command hierarchy
as design pattern 70

command number 294
and menu item 102
explained 292
in Mcmd resource 294
negative 294
reserved numbers 294
synthetic 295
using synthetic 296

commander
default 286
defined 70

Compare()
LComparator 522

CompareToKey()
LComparator 522

constants name conventions 60
Constructor

described 53
to build controls 203
to build dialogs 374
to build panes 122
to build printout 451

to build views 163
to build windows 335

constructor, stream 126
Contains()

LPane 134
control 197–214

as pane 199, 204
broadcasting 212
characteristics listed 199
class hierarchy 197
constructors 205
creating 203–205
creating on the fly 205
defined 197
deriving 206
descriptor 201
drawing 207
hot spot in control 201
installing in a view 205
likely function overrides 206
linking to listener 210, 213
listening to other controls 206
managing descriptor 208
managing hot spot 208
managing values 207
message 200
message components 202
scroll bar 199
setting port for 205
standard Mac OS 198
title 201
using Constructor 203
value 200

coordinate conversion 175
and image size 175

coordinate systems 158–162
global 159
image 162
listed 158
local 161
port 160
window 160

CopyBits() (Mac OS)
and printing 459

CountPanels()
LPane 449
LPlaceHolder 447
LPrintout 445
LView 448
The PowerPlant Book PPB–549

Index
CreateNewDataFile()
LFile 414

CreateNewFile()
LFile 414

CreatePrintout()
LPrintout 451

CreateWindow()
LWindow 339
LWindow for dialogs 374

creator function 126, 265
and default commander 286

Current()
and variable length data 519
LArrayIterator 519

cursor, managing in a pane 134

D
Deactivate()

LPane 133
LWindow 344
UDesktop 349
UDesktop in dialogs 382

DeactivateSelf()
LPane 130, 133
LWindow 344

Debug_Signal 255
Debug_Throw 255
debugging 254–259

actions 255
Catch_ macro 259
errors and signals 254
macros listed 256, 258
options 255
signal side effects 257
strategy in PowerPlant 254
turning off 258

default button in dialog 372, 374
default commander 286
DelaySelect window attribute 331
DeleteAllSubPanes()

LView 171
deriving

application 252
controls 206
dialog 376
panes 126
printout 455

views 169
window 340

descriptor
in control 201
in document 412
in LSingleDoc 413
in pane 119, 132

design pattern defined 68
development process in PowerPlant 105
DevoteTimeToIdlers()

LPeriodical 476, 477
DevoteTimeToRepeaters()

LPeriodical 476
dialog 369–383

as listener 372
button tracking 372
characteristics 372
class hierarchy 371
closing 379
creating 373–377
creating on the fly 376
deriving 376
message handling 378, 379
mixing positive and negative messages 378
negative messages 378
overriding functions 376
pure modal in PowerPlant 371, 375
setting buttons 374
traditional 370
using Constructor 374
using Mac OS Dialog Manager 382
window kind 375

Dialog Manager (Mac OS) in PowerPlant 382
DialogSelect() (Mac OS) 370, 371
Disable()

LPane 133
disabled state 118
DisableSelf()

LPane 130, 133
DispatchEvent()

LApplication 267
DoAEClose()

LDocument 411
DoAEOpenOrPrintDoc()

LDocApplication 408, 456
DoAESave()

LDocument 411
tasks to implement 422
PPB–550 The PowerPlant Book

Index
DoClose()
LDialogBox 379
LWindow 346, 347

document 404–413
and applications in design 405
closing 410, 413
constructor tasks 420
defined 404
design in PowerPlant 404
design responsibilities 405
implementing 420–423
in design pattern 76
list in application 409
opening 420
printing 457
resources in 423
reverting 423
saving 421

documentation for PowerPlant 51
DoDialog()

StDialogHandler 380
DontBeTarget()

LCommander 287, 290
DontRefresh()

LPane 130
DoPrint()

example 457
LDocument 411
tasks to implement 457

DoPrintJob()
LPrintout 444

DoQuit()
LApplication 251

DoRevert()
LDocument 411

DoSave()
LDocument 411
tasks to implement 422

DoSetBounds()
LWindow 341

DoSetZoom()
LWindow 341

drag and drop support 331
DragDeskWindow()

UDesktop 349
Draw()

LControl 207
LPane 128

LView 170
LWindow 128, 341

DrawCell()
LTable 180

drawing
and focus 170
control 207
on multiple monitors 527
pane 128
view 170

DrawSelf()
and printing 459
LControl 206, 207
LPane 121, 127, 128
LPicture 181
LStdControl 129
LView 170
LWindow 128, 342
overriding 129
with multiple monitors 527

DrawWithJustification()
UTextDrawing 529

duty
and target 288
functions 289
handling 287
latency 288

dynamic menus 306

E
Enable()

LPane 133
enabled state 118
Enabled window attribute 330
EnableSelf()

LPane 130, 133
EndDrawing()

LGWorld 343
EndMarch()

UMarchingAnts 529
EndSession() 461
enumerated types name conventions 60
environment checking 263
EraseOnUpdate window attribute 330, 342
error See debugging
event dispatch

as design pattern 70
The PowerPlant Book PPB–551

Index
bottom-up 71
top-down 70

event handling in application 266
example code on CD 52
Execute()

LAttachment 485
ExecuteAttachments()

LAttachable 484
parameters 486

ExecuteSelf() 509
LAttachment 485

ExpandSubPane()
LView 171

ExportSelf() 509
LClipboard 510

F
factored behavior in PowerPlant 88
factored classes in PowerPlant 86
factored design in PowerPlant 84
FailNIL_ macro 258
FailOSErr_ macro 258
FetchBottomFloater()

UDesktop 349
FetchBottomModal()

UDesktop 350
FetchIndexOf()

LArray 515
FetchItemAt()

LArray 515, 516
LVariableArray 517

FetchMenu()
LMenuBar 307

FetchTopFloater()
UDesktop 349

FetchTopModal()
UDesktop 349

FetchTopRegular()
UDesktop 349

FetchWindowObject()
LWindow 350

file
in design pattern 76
name conventions 57
replacing existing 422

file I/O 404–423
FindCommandStatus()

and non-synthetic commands 303
and synthetic commands 305
in supercommander 304
LApplication 252
LCommander 290, 301
LDialogBox 377
LDocApplication 407
LDocument 410
LWindow 341
parameters 303
updates menu items 291

FindDeepSubPaneContaining()
LPane 135
LView 171

FindDominant Device()
UWindows 348

FindHotSpot()
LControl 208

FindNamedDocument()
LDocument 412

FindNamedWindow()
UWindows 348

FindNthWindow()
UWindows 348

FindPaneByID() 115, 125, 131, 156
LView 171

FindShallowSubPaneContaining()
LPane 135
LView 171

FindSubPaneHitBy()
LPane 134
LView 131, 171

FindWindowIndex()
UWindows 348

FinishCreate()
LControl 205
LPane 125
LView 168

FinishCreateSelf()
LControl 205
LDialogBox 372
LPane 125
LWindow 341

floating window 338
closing 347

focus 170
in application framework 74
setting 128
PPB–552 The PowerPlant Book

Index
FocusDraw()
LView 128, 170

frame
binding 132
contents 121
for pane 115
LPrintout 442

framework
 See also application framework
defined 65
difficulties using 66

from_End, iterating 519
from_Start, iterating 519
FrontWindowIsModal()

UDesktop 350
FSpExchangeFiles() (Mac OS) 422
FSRead() (Mac OS) 418
FSWrite() (Mac OS) 418

G
GetBytes()

LFileStream 418
GetClipboard() 509

LClipboard 509
GetCount()

LArray 515
GetCurrentMenuBar()

LMenuBar 306
GetCurrentPort()

UQDGlobals 350, 525
GetData()

LClipboard 509, 512
GetDataForkRefNum()

LFile 414
GetDataSelf() 509

LClipboard 510, 511, 512
GetDefaultCommander()

LCommander 285
GetDescriptor()

LControl 208
LDocument 412
LPane 128, 132
LSingleDoc 413
LWindow 333

GetDescriptorForPaneID()
LView 172

GetDocumentList()

LDocument 412
GetEOF() (Mac OS) 418
GetFPos() (Mac OS) 418
GetFrameBinding()

LPane 132
GetFrameLocation()

LPane 131
GetFrameSize()

LPane 131
GetImageLocation()

LView 172
GetImageSize()

LView 172
GetItemSize()

LArray 515
GetLastPaneClicked()

LPane 134
GetLatentSub()

LCommander 289
GetLength()

LStream 416
GetMacListH()

LListBox 139
GetMacMenuH()

LMenu 307
GetMacPort()

for windowKind 334
LPane 350
LWindow 350

GetMarker()
LStream 416

GetMaxValue()
LControl 208

GetMenuID()
LMenu 307

GetMinMaxSize()
LWindow 332

GetMinValue()
LControl 208

GetPaneID()
LPane 131

GetPrintError() 461
GetPrintJobSpecs()

LPrintout 444
GetQDGlobals()

UQDGlobals 525
GetResourceForkRefNum()
The PowerPlant Book PPB–553

Index
LFile 414
GetRevealedRect()

LView 172
GetScrollPosition()

LView 173
GetScrollUnit()

LView 173
GetSelectClick window attribute 330
GetSpecifier()

LFile 414
GetStandardSize()

LWindow 333
GetState()

LApplication 251
GetSubPanes()

LView 171
GetSuperView()

LPane 131
GetTarget()

LCommander 286
GetTopCommander()

LCommander 285
GetUserCon()

LPane 132
GetValue()

LControl 208
LPane 128, 132

GetValueForPaneID()
LView 171

GetValueMessage()
LControl 208

GetWindowContent Rect()
UWindows 348

GetWindowStructure Rect()
UWindows 348

global coordinates 159
GlobalToPort Point()

LView 175
GrowZone() (Mac OS) 261

H
HandleAppleEvent()

LDocApplication 408
HandleClick()

LWindow 345
HandleCreateElementEvent()

LDocApplication 408

HandleKeyPress()
LCommander 290
LDialogBox 372
responds to keystroke 291

HasAttribute()
LPrintout 444
LWindow 331

HasFeature()
UEnvironment 264

hidden state 118
Hide()

LPane 133
LWindow 344

HideDeskWindow()
UDesktop 349

HideOnSuspend window attribute 330
HideSelf()

LWindow 344
hit testing in panes 134
HorizSBarAction()

LView 175
HorizScroll()

LView 174
host an attachment 479
hot spot 201
HotSpotAction()

LControl 207, 209
HotSpotResult()

LControl 207, 209
LStdCheckBox 221

I
idler periodical 475
image

as view characteristic 156
compared to frame 156
coordinates 162
managing in a view 172
size 175

ImagePointIsInFrame
LView 175

ImageRectIntersectsFrame()
LView 175

ImageToLocal Point()
LView 175

ImportSelf() 509
LClipboard 510, 511
PPB–554 The PowerPlant Book

Index
inactive state 118
IncrementValue()

LControl 208
initialize

heap 259
QuickTime 260
Toolbox 260

Initialize()
LApplication 251, 252, 266
LApplication and menu creation 298
UQuickTime 260

InitializeHeap() 259
InitializeToolbox()

UQDGlobals 525
InsertCommand()

LMenu 307
InsertItemsAt()

LArray 515, 516
LVariableArray 516, 517

Installing Resource Templates
Rez 542

InstallOccupant()
LPlaceHolder 447

integer types 59
InvalPortRect()

LPane 130
InvalPortRgn()

LPane 130
IsActive()

LPane 133
IsActiveScreenDevice()

UDrawingUtils 527
IsBroadcasting()

LBroadcaster 209, 211
IsColorGrafPort()

UDrawingUtils 527
IsDialogEvent() (Mac OS) 370, 371
IsEnabled()

LPane 133
IsEqualTo()

LComparator 522
IsEqualToKey()

LComparator 522
IsHitBy()

LPane 134
IsListening()

LListener 213

IsOnDuty()
LCommander 289

IsSyntheticCommand()
LCommander 296, 298

IsTarget()
LCommander 287

IsVisible()
LPane 133

ItemIsEnabled()
LMenu 307

iterator
example 520

iterator, multiple 520

K
key filter 138, 529
keystroke handling 290

L
LActiveScroller 157
LAddColumn()

LListBox 139
LAddRow()

LListBox 139
LApplication 91

constructor 264
See also application

LArray 85, 514–516
LArrayIterator 85, 518
latent commander 288
latent subcommander 93
LAttachable 81

characteristics 483
class hierarchy 481
defined 480
functions 483

LAttachable See also attachment
LAttachment 509

class hierarchy 481
data members 484
defined 481
deriving 487
functions 485
See also attachment

layers for windows 328
LBeepAttachment 489
LBorderAttachment 490
The PowerPlant Book PPB–555

Index
LBroadcaster 80, 85, 97
and LControl 198
defined 202
described 209

LButton described 215
LCaption

described 136
descriptor in 119
erasing text

LCicnButton
described 216

LCLipboard 509–512
LClipboard

GetData() 509
SetData() 509

LCommandEnablerAttachment 490
LCommander 80, 92

chain of command functions 285
class hierarchy 94, 284
command handling functions 290
duty handling functions 289
features 284
See also command
target functions 286

LComparator 522
LControl 81, 197

and LBroadcaster 198
class hierarchy 197
See also control

LDataStream 418
LDefaultOutline described 136
LDialogBox

class hierarchy 371
LDocApplication 91, 250

class hierarchy 407
command handling 407
function interface 408
See also application

LDocument
class hierarchy 409
command handling 410
data members 409
described 409
functions 411

LEditField 81
as periodical 478
described 137
descriptor in 119

LEraseAttachment 490
LEventDispatcher 92
LFile 98

and data fork 415
and resource fork 415
as file systems 406
class hierarchy 416
data members 413
described 413
functions 414

LFileStream 98
described 418
functions 418

LFocusBox described 137
LGrafPortView described 177
LGroupBox described 136
LGrowZone

as broadcaster 261
as periodical 262, 478
class hierarchy 261
described 261
using in non-PowerPlant projects 261

LGWorld 342
drawing in 343

LHandleStream 418
LIconPane described 137
LinkListenerToControls() 210, 211, 213

for dialogs 376
listen to message 214
listener

defined 75
in design pattern 75
linking to broadcaster 210, 213

ListenToMessage()
in memory management 261
LDialogBox 376, 377, 378, 379
LDialogBox sending commands 378
LListener 211, 213
LRadioGroup 214

lists
iterating 518

LKeyScrollAttachment 491
LListBox

compared to LTable 139
described 139
descriptor in 119

LListener 80, 85, 97
described 213
PPB–556 The PowerPlant Book

Index
dialog as 372
LLockedArrayIterator 521
LLongComparator 522
LMenu 84

described 307
functions 307
using in non-PowerPlant code 307

LMenuBar 84
described 306
using in non-PowerPlant code 307

LModelObject 81
LMovieController

as periodical 478
described 137

LoadSystemTraits()
UTextTraits 534

LoadTextTraits()
UTextTraits 534

local coordinates 161
LocalToImage Point()

LView 175
LocalToPort Point()

LView 175
location, pane characteristic 115
LOffscreenView 342

described 178
LPaintAttachment 490
LPane 80, 96, 111

class hierarchy 112
descriptor in 120
printing functions 449
See also pane
value in 120

LPeriodical 81
class hierarchy 474
destructor 476
See also periodical

LPicture described 181
LPlaceHolder

characteristics 445
described 445
frame 450
functions 447
See also placeholder

LPreferencesFile 423
LPrintout

data members 443
frame 442, 450

See also printout
LPrintSpec 460
LRadioGroup 199

creating 225
LRunArray 517
LScroller 157

and controls 199
LSharable 524
LSingleDoc

data members 412
described 412
descriptor in 120

LStdButton described 220
LStdCheckBox described 221
LStdControl

described 219
descriptor in 119, 201
installing in a view 205
scroll bar 199

LStdPopupMenu
described 221

LStdRadioButton described 223
LStr255 523
LStream 98

class hierarchy 416
data members 416
described 416
functions 417
in document design 406
in stream constructor 126
overloaded operators 418

LString 85, 99, 523
LTabGroup described 138
LTable

compared to LListBox 139
described 179

LTextButton
described 217
descriptor in 201
erasing text

LTextEditView
as periodical 478
described 178

LToggleButton described 216
LVariableArray 516
LView 96

class hierarchy 153
The PowerPlant Book PPB–557

Index
described 155
printing functions 448
See also view

LWindow 87
class hierarchy 326
described 325
descriptor in 119
See also window

M
MakeAlias()

LFile 414
MakeNewDocument()

example 419
LDocApplication 408

MakeScrollBars()
LScroller 199, 205

maximum size, window 332
MBAR resource 293
Mcmd resource 102, 292, 293

and command number 294
type 52

member access in PowerPlant 87
memory classes 262
memory management 260–263

allocating and deallocating 262
other strategies 263
reserve strategy 261

menu 291–307
adding dynamically 306
adding to application 297
clear a mark 303
command number See command number
default dispatch chain 298
effect of reorganizing 292
enable item 303
forcing update 302
mark an item 303
modify item text 304
modifying items 303
passing update to supercommander 304
real-time updating 301
removing dynamically 306
resources in PowerPlant 293
responding to choice 298
updating 300–306
updating in PowerPlant 301
updating negative items 304

updating non-synthetic items 303
updating synthetic items 305
when PowerPlant updates 302
when to update 300
working with Mac OS Menu Manager 307

MENU resource 293
MenuSelect() (Mac OS) 292, 295
message

broadcasting 211
components 202, 211
in control 200
in dialog 378
listening to 214
sending command as 202

messaging system design pattern 75
minimum size, window 332
mix-in class 80, 82
ModalDialog() (Mac OS) 370, 371, 380, 382
modeless dialog

window kind 375
mouse information in a pane 120
MouseEnter()

LPane 133
MouseLeave()

LPane 133
MouseWithin()

LPane 133
MoveBy()

LPane 131
MoveItem()

LArray 515
msg_AdjustCursor 134
msg_ControlClicked 211, 212
multiple inheritance

compared to single 82
in PowerPlant 80

mValue 202, 212
compared to mValueMessage 200

mValueMessage 200, 202, 212
compared to mValue 200

N
naming conventions 57–62
negative messages in dialogs 378
NewDeskWindow()

UDesktop 349
Next()
PPB–558 The PowerPlant Book

Index
and variable length data 519
LArrayIterator 519

Normalize()
in drawing state classes 526

NormalizeWindowOrder()
UDesktop 350

O
ObeyCommand()

and command numbers 292, 298
and printing 457
and synthetic commands 296
calling inherited 299
LApplication 252, 299
LCommander 290
LDialogBox 376, 377, 379
LDocApplication 407
LDocument 410
LWindow 299, 341
responds to commands 291
typical functionality 298

occupant 446
installing in placeholder 447
removing from placeholder 447

offscreen drawing 342
OpenDataFork()

LFile 414
OpenDocument()

example 419
LDocApplication 408

opening a document 420
OpenOrCreateResourceFork()

LPreferencesFile 424
OpenResourceFork()

LFile 414
OrientSubPane()

LView 171
overloaded operators

defined 88
LStream 418
LString 524

overloading defined 88
overriding defined 88

P
page numbering 443
pane 111–135

adding to a view 170
characteristics 113–121
characteristics listed 114
characteristics of non-view 114
class hierarchy 112
class ID 124
constructors 125
contents 121
creating 122–125
creating on the fly 124
cursor management 134
defined 111
deriving 126
descriptor 119, 132
drawing 121, 128
frame 115
frame binding 132
hit testing 134
ID 115, 131
ID in Constructor 123
invalidating area 129
kinds of classes 96
likely function overrides 127
location 115
managing state 133
mouse information in 120
parts described 116
printing 459
removing from a view 170
size 115
state 117, 118
updating 129
using Constructor 122
value 119, 132

PaneIDT data type 115
panel

counting 449
in a pane 449
in printing 441

paper size 442, 450, 462
parameter name conventions 58
pattern See design pattern
PeekData()

LStream 417
periodical 474–479

defined 474
flexibility 479
idlers 477
limitations 479
The PowerPlant Book PPB–559

Index
queues 475
removing from queue 476
repeaters 476
spending time 477

persistence 404
placeholder

alignment 446
in printing strategy 440
installing occupant 447
margins when printing 454
occupant 446
removing occupant 447
setting default alignment 454

PlaceInSuperFrameAt()
LPane 125, 132

PlaceInSuperImageAt()
LPane 125, 132

PointInHotSpot()
LControl 208

PointIsInFrame()
LControl 206, 209

port coordinates 160
port, getting Mac OS GrafPort 351
PortToGlobal Point()

LView 175
PortToLocal Point()

LView 175
PowerPlant

calling Toolbox routines 61
coding conventions 57–62
defined 13
documentation 51
example code on CD 52
factored behavior 88
factored classes 86
factored design 84
installing 50
installing resource templates 52–54
integer data types 59
member access 87
multiple inheritance in 80
resources 99
runtime requirements 50
source code folders 51

PP_Window_Kind described 334
PPob resource 52, 100
preferences file 423
Previous()

and variable length data 519
LArrayIterator 519

PrintCopiesOfPages()
LPrintout 444
overriding 455

PrintDocument()
LDocApplication 408
overriding 456
tasks to implement 456

printing 439–461
areas 450
creating a hierarchy 451–455
document 455–458
from the Finder 456
margins 454
page numbering 443
panel 441
panes 459
paper size 442, 450, 462
view 459
window 457

printout
characteristics 453
creating on the fly 454
deriving 455
in printing strategy 440
overriding functions 455
using Constructor 451

PrintPanel()
LPane 449
LPrintout 445
LView 449

PrintPanelRange()
LPrintout 444
overriding 455

PrintPanelSelf()
LPane 449
LView 449
need to override 449
overriding 459

problem domain 65
ProcessCommand()

calling supercommander in dialog 378
in supercommander 299
LCommander 298
LDialogBox 377, 378

ProcessNextEvent()
LApplication 251, 266
PPB–560 The PowerPlant Book

Index
profiling code 531
PutBytes()

LFileStream 418
PutChainOnDuty()

LCommander 289
PutInside()

LPane 125, 131
LView 170

PutOnDuty()
LCommander 289, 290

Q
QuickDraw space 159
QuickTime, initializing 260

R
ReadAll()

LStream 417
ReadCString()

LStream 417
ReadData()

LStream 417
ReadDataFork()

LFile 414
LFileStream 419

ReadHandle()
LStream 417

ReadPString()
LStream 417

ReadPtr()
LStream 417

reconcile overhang 165
refCon

in Constructor 339
in Mac OS 339
in WIND 340

Refresh()
LPane 130

RegisterClass()
URegistrar 266

RegisterClass_() 265
registering PowerPlant classes 265
Remove()

LArray 515
RemoveAllAttachments()

LAttachable 484
RemoveAttachment()

LAttachable 483
RemoveCommand()

LMenu 307
RemoveItem()

LMenu 307
RemoveItemsAt()

LArray 515, 516
RemoveListener()

LBroadcaster 209
RemoveMenu()

LMenuBar 306
RemoveOccupant()

LPlaceHolder 447
RemoveSubCommander()

LCommander 285
repeater periodical 475
replacing files 422
ResEdit, resource templates for 54
ResetTo()

LArrayIterator 519
Resizable window attribute 329
ResizeFrameBy()

LPane 131
ResizeFrameTo()

LPane 131
ResizeImageBy()

LView 172
ResizeImageTo()

LView 172
Resorcerer, resource templates for 53
resource ID name conventions 60
resources

in PowerPlant 99
installing templates 52–54
reading and writing 415

Resume()
LWindow 344
UDesktop 349

reverting a document 423
Rez, resource templates for 54
RidL resource 53, 103, 210

customizing 211
Run()

LApplication 251, 266
LApplication and menu creation 297, 298

runtime requirements for PowerPlant apps 50
The PowerPlant Book PPB–561

Index
S
saving a document 421
SBooleanRect 117
scroll management 172
scrolling view ID 174
scrolling with an attachment 491
ScrollToPanel()

LPane 449
LPlaceHolder 447
LView 448

SDialogResponse structure 378
Select()

LWindow 344
SelectDeskWindow()

UDesktop 349
SendAECreateDocument()

LDocApplication 408
SendAEOpenDoc()

LDocApplication 408
SendAEQuit()

LApplication 251
SetAttribute()

LPrintout 444
LWindow 331

SetCancelButton()
LDialogBox 372

SetCommand()
LMenu 307

SetComparator()
LComparator 516

SetData()
LClipboard 509, 512

SetDataSelf() 509
LClipboard 510, 511, 512

SetDefaultButton()
LDialogBox 372

SetDefaultCommander()
LCommander 285

SetDefaultView()
LView 169

SetDescriptor()
LControl 208
LPane 128, 132
LWindow 333

SetDescriptorForPaneID()
LView 172

SetEOF() (Mac OS) 418

SetFPos() (Mac OS) 418
SetFrameBinding()

LPane 132
SetHiliteModeOn()

UDrawingUtils 527
SetLatentSub()

LCommander 289, 290
SetLength()

LStream 416
SetMarker()

LStream 416
SetMaxValue()

LControl 208
SetMinMaxSize()

LWindow 332
SetMinValue()

LControl 208
SetPaneID()

LPane 131
SetPortTextTraits()

UTextTraits 534
SetQDGlobals()

UQDGlobals 525
SetScrollUnit()

LView 173
SetSleepTime()

LApplication 251
SetSpecifier()

LFile 414
SetStandardSize()

LWindow 333
SetSuperCommander()

LCommander 285
SetTETextTraits()

UTextTraits 534
SetUpdateCommandStatus()

LCommander 302
SetUserCon()

LPane 132
SetValue()

LControl 208
LPane 128, 132
LStdRadioButton 212

SetValueForPaneID()
LView 171

SetValueMessage()
LControl 208
PPB–562 The PowerPlant Book

Index
Show()
LPane 133
LWindow 344

ShowAboutBox()
LApplication 251, 252

ShowDeskWindow()
UDesktop 349

ShowNew window attribute 330
ShowSelf()

LWindow 344
signal macro

and side effects 257
signal macros 256
signal See debugging
SimulateHotSpotClick()

LControl 209
single-inheritance compared to multiple 82
size

for pane 115
window 332

SizeBox window attribute 329
source code folders 51
SPaneInfo 124, 126, 168, 169
SpendTime()

in memory management 262
LPeriodical 476
overriding 478

stack-based classes 99
memory 262

standard controls 198
standard state for window 332
StartBroadcasting()

LBroadcaster 209, 211
StartIdling()

LPeriodical 476
StartListening()

LListener 213
StartRepeating()

LPeriodical 476
StartUp()

LApplication 251, 252, 268
state

in a pane 117
in application 251
in windows 343

stationery files in PowerPlant 253
StClipRgnState 526

StColorPenState 526
StColorPortState 526
StColorState 526
StDeviceLoop 527
StDialogHandler 380

and periodicals 479
StEmptyVisRgn 526
StHidePen 526
StOffscreenGWorld 178
StopBroadcasting()

LBroadcaster 209, 211
StopIdling()

LPeriodical 476
StopListening()

LListener 213
StopRepeating()

LPeriodical 476
StPortOriginState 526
StProfileSection 99, 531
stream

defined 415
in design pattern 76

stream constructor 126
strings in PowerPlant 523
structure name conventions 60
StTextState 526
subpane defined 155
SuperPrintPanel()

LPane 449
LView 449

superview defined 114
Suspend()

LWindow 344
UDesktop 349

SViewInfo 168, 169
SwapItems()

LArray 515
SWindowInfo 340

for dialogs 376
SwitchTarget()

LCommander 286

T
TakeChainOffDuty()

LCommander 289
TakeOffDuty()
The PowerPlant Book PPB–563

Index
LCommander 289, 290
target

and duty 288
becoming 287
defined 71
handling 286
switching 287

Targetable window attribute 330
TArray 518
TArrayIterator 521
text button See LTextButton
text traits 533
this->, use in PowerPlant 62
Throw_ macro 254, 256

listed 258
TitleBar window attribute 329
TLockedArrayIterator 521
TrackHotSpot

LControl 207
TrackHotSpot()

LControl 208
TString 523
Txtr resource 53, 104, 534

U
UCarbonPrinting.cp 448
UClassicPrinting.cp 448
UDebugging 86, 99
UDesktop

described 348
different versions 349
functions 349
used by LWindow 344

UDrawingState 525
UDrawingUtils 99, 527
UEnvironment 99
UKeyFilters 85, 99, 138, 529
UMarchingAnts 528
UModalDialogs 99, 381
UpdatePort()

LWindow 128
UPrinting

AskPageSetup() 461
AskPrintJob() 461
BeginSession() 461
EndSession() 461
GetPrintError() 461

UPrinting.cp 448
UPrinting.h 447
UProfiler 531
UResourceManager 532
UScreenPort 525
user state for window 332
UTextDrawing 529
UTextTraits 533
utilities

for windows 347
in an application framework 77
memory 262

utility classes 98
UWindows 99

described 348
functions 348

V
ValidPortRect()

LPane 130
ValidPortRgn()

LPane 130
value

in a control 200
in a pane 119, 132

variable name conventions 58
VertSBarAction()

LView 175
VertScroll()

LView 174
view 153–177

add subpanes 170
as commander 74
characteristics 155–162
characteristics listed 155
class hierarchy 153
classes 96
constructors 168
coordinate systems 158
creating 163–169
creating on the fly 168
defined 153
deriving 169
drawing 170
image 156
image management 172
in application framework 73
PPB–564 The PowerPlant Book

Index
in superview 164
pane information in 164
printing 459
reconcile overhang 165
remove subpanes 170
scroll management 172
subpanes 155
using Constructor 163

visible state 118
visual hierarchy

and controls 205
as design pattern 73
defined 154
finding top container 170
in application framework 73
in PowerPlant 97
maintaining 169, 170
managing panes in 131

W
window 325–351

as commander 326
as LWindow and WindowRecord 326
as pane 326
as view 326
attributes 327–331
attributes listed 328
characteristics 327–334
class hierarchy 326
click attributes 330
click in content 345
click in peripheral control 345
closing 346
creating 335–341
creating on the fly 340
deriving 340
descriptor 333
drawing 341
drawing attributes 330
drawing offscreen 341
floating 329, 338, 347
handling click 344
hide 343
in document design 406
layers 328
maximum size 332
minimum size 332
modal 328
overriding functions 341

pane information in 337
peripheral controls 329
positioning 339
printing 457
refCon 339, 340
regular 329
select 343
setting attributes at runtime 331
setting attributes in Constructor 337
setting window kind in Constructor 339
setting window kind in WIND 340
show 343
size 332
standard state 332
state 343
title 333
type 338
user state 332
userCon 339
using Constructor 335
utilities 347
window kind 334
Window Manager (Mac OS) 350
zooming 332

window coordinates 160
window kind

getting in PowerPlant 334
setting in Constructor 339
setting in WIND 340
use in PowerPlant 334

Window Manager (Mac OS) 350
WindowIsSelected()

UDesktop 349
WriteCString()

LStream 417
WriteData()

LStream 417
WriteDataFork()

LFile 414
LFileStream 419

WriteHandle()
LStream 417

WritePString()
LStream 417

WritePtr()
LStream 417
The PowerPlant Book PPB–565

Index
Z
Zoomable window attribute 329
zooming a window 332
PPB–566 The PowerPlant Book

	Introduction
	What’s New in This Release
	Exception macros
	Updated classes
	Carbon support

	What You Should Know
	The Master Plan
	Background
	Basic Building Blocks
	Writing PowerPlant Code

	Starting Points
	Strategies For Learning
	Other Resources
	PowerPlant Information
	Object-Oriented Programming Information
	Third Party Books on PowerPlant
	Online Resources

	Conventions Used in This Book
	Your First PowerPlant Application
	Building the Interface
	Writing PPEdit
	What Next?

	Starting Your Own PowerPlant Projects

	Installing PowerPlant
	PowerPlant Requirements
	Development Requirements
	Runtime Requirements

	Installing PowerPlant
	PowerPlant Source Code
	PowerPlant Documentation
	PowerPlant Example Code

	Installing Resource Templates
	Resorcerer
	ResEdit
	Rez

	Summary

	PowerPlant Conventions
	Class and File Names
	Variable and Parameter Names
	Data Types
	Integer types
	Synonyms for integer types
	Enumerated types
	Constants
	Resource IDs
	Structures

	Other Names
	Calling Macintosh Toolbox Routines
	Summary

	Application Frameworks
	Reusable Code
	Procedural Code Libraries
	Class Libraries
	Frameworks

	Application Frameworks
	Framework Design Patterns
	Applications
	Event Handling
	Command Hierarchy
	Visual Hierarchy
	Messaging Systems
	Persistence
	Utilities

	Summary

	PowerPlant Architecture
	Design Principles
	Multiple Inheritance
	Mix-in and base classes
	A mix-in example
	A single-inheritance example

	Factored Design
	Factored Classes
	Class Implementation Details

	Factored Behavior

	Framework Implementation
	Application Classes
	Event Classes
	Commander Classes
	Visual Classes
	The LPane class
	The LView class

	Messaging Classes
	Persistence Classes
	Utility Classes

	Basic PowerPlant Resources
	PPob Resource
	Mcmd Resource
	RidL Resource
	Txtr Resource

	PowerPlant Development
	Layout
	Coding
	Testing

	Summary

	Panes
	What Is a Pane
	Pane Characteristics
	Characteristics of Simple Panes
	Characteristics of All Panes
	Pane ID
	Frame
	Frame binding
	Pane state
	Value and descriptor
	Mouse information
	Contents

	Working With Panes
	Creating a Pane
	Using Constructor
	Creating a pane on the fly
	Deriving your own panes
	Class creator function
	Stream constructor
	Overriding LPane functions

	Drawing a Pane
	Validating and invalidating drawing areas
	Additional drawing considerations

	Managing Pane Characteristics
	View hierarchy
	Pane ID
	Frame
	Frame binding
	Contents
	Value and descriptor
	State
	Adjusting the cursor
	Hit testing

	Some Specific Panes
	LCaption
	LGroupBox
	LDefaultOutline
	LIconPane
	LFocusBox
	LMovieController
	LEditField
	LListBox

	Summary
	Code Exercise
	Learning Paths
	Basic Assumptions
	The Interface
	Implementing a Custom Pane

	Views
	What Is a View
	View Characteristics
	Subpanes
	Image
	Scrolling
	Coordinate Systems
	Global coordinates
	Port Coordinates
	Local Coordinates
	Image Coordinates

	Working With Views
	Creating a View
	Using Constructor
	Creating a view on the fly
	Deriving your own views

	Drawing a View
	Managing Subpanes and the Visual Hierarchy
	Managing the View Image
	Managing Scrolling
	Managing Coordinate Transformations

	Some Specific Views
	LGrafPortView
	LOffscreenView
	LTextEditView
	LTable
	LPicture

	Summary
	Code Exercise
	The Interface
	Implementing a Custom View

	Controls and Messaging
	What Is a Control
	Control Characteristics
	Control Values
	Control Descriptor
	The Hot Spot
	Broadcasting and Listening

	Working With Controls
	Creating a Control
	Using Constructor
	Creating a control on the fly
	Deriving your own controls

	Drawing a Control
	Managing Control Characteristics
	Managing control values
	Managing the control descriptor
	Managing the hot spot

	Broadcasting
	LBroadcaster
	Linking broadcasters to listeners
	Broadcasting a message
	How controls broadcast a message

	Being a Good Listener
	LListener
	Linking listeners to broadcasters
	Listening to a message

	Specific Control Classes
	LButton
	LCicnButton
	LToggleButton
	LTextButton
	LStdControl
	LStdButton
	LStdCheckBox
	LStdPopupMenu
	LStdRadioButton
	LRadioGroup

	Summary
	Code Exercise
	The Interface
	CColorControl
	The Controls Application

	Intermission

	Applications and Events
	The Application Object
	Application Class Hierarchy
	Application State
	Deriving an Application

	Initializing an Application
	Set Debugging Options
	Initialize the Heap
	Initialize the Toolbox
	Setup Memory Management
	The LGrowZone class
	Stack-based memory classes
	Other possible memory strategies

	Check the Environment
	Register PowerPlant Classes
	Run the Application

	Event Handling and Dispatch
	PowerPlant and Apple Events

	Summary
	Code Exercise
	The Interface
	Setting Up an Application

	Commanders and Menus
	Introduction to Commands
	Command Chain
	Target Handling
	Duty Handling
	Command and Keystroke Handling

	Making and Managing Menus
	Menu Strategy
	Menu-Related Resources
	Command Numbers
	Negative command numbers
	Synthetic command numbers
	Using synthetic command numbers

	Adding Menus
	Responding to Menu Commands
	When To Update Menus
	Update before display
	Update as needed

	Updating Menu Items
	The command number is positive
	The command number is zero
	The command number is -1
	The command number is negative
	The command number is synthetic

	Working With LMenuBar and LMenu

	Summary
	Code Exercise
	The Menu Resources
	Implementing Menus

	Windows
	What is a Window
	Window Characteristics
	Window Attributes
	Window layers
	Peripheral window parts
	Drawing attributes
	Clicking attributes
	Setting window attributes

	Window Size and Zooming
	Minimum and maximum sizes
	Standard size and zooming

	Window Descriptor
	Window Kind

	Working With Windows
	Creating a Window
	Using Constructor
	Creating a window on the fly
	Deriving your own windows

	Drawing a Window and Its Contents
	Offscreen Drawing

	Managing Window Behavior
	Selecting, showing, and hiding a window
	Handling clicks
	Click in a peripheral control
	Click in the content area of a window
	Closing a window

	Window Utilities in PowerPlant
	UWindows
	UDesktop

	Dealing with the Window Manager

	Summary
	Code Exercise
	The Interface
	The Windows Application

	Dialogs
	What Is a Dialog
	Traditional Dialogs
	PowerPlant Dialogs
	LDialogBox Hierarchy

	Dialog Characteristics
	Working With Dialogs
	Creating a Dialog
	Using Constructor
	Creating a dialog on the fly
	Deriving your own dialogs

	Messages in Dialogs
	StDialogHandler
	Simple Movable Modal Dialogs
	Traditional Dialogs

	Summary
	Code Exercise
	The Simple Dialog Interfaces
	Implementing Simple Dialogs
	The Complex Dialog Interface
	Implementing a Complex Dialog

	File I/O
	The Document Strategy
	LDocApplication
	Command handling
	Apple events
	Function interface

	What Is a Document
	LDocument
	Command handling
	Document management
	Other features

	LSingleDoc

	What Is a File
	LFile attributes
	LFile behaviors

	What Is a Stream
	LStream
	Stream attributes
	Stream behaviors

	LFileStream

	Saving and Opening Files
	Implement an Application
	Implement a Document
	Create and open a document
	Save a document
	Revert a document

	Implement a Preferences File

	Summary
	Code Exercise
	The Interface
	Implementing Documents

	Printing
	Printing Strategy
	LPrintout
	LPrintout Characteristics
	Frame
	Data members
	Page numbering

	LPrintout Behaviors

	LPlaceHolder
	LPlaceHolder Features
	The occupant
	Alignment

	LPlaceHolder Behaviors

	UPrinting
	Printing in Views and Panes
	The Mac OS, LPrintout, and LPlaceHolder
	Printing in PowerPlant
	Building a Printing Hierarchy
	Using Constructor
	Adding a placeholder
	Creating a printout on the fly
	Deriving your own printouts

	Printing a Document
	Print from the Finder
	Print a Document
	Print a Pane

	The Print Record
	Printing Utilities

	Summary
	Code Exercise
	The Interface
	Implementing Printing

	Periodicals and Attachments
	Periodicals
	What Is a Periodical
	Periodical Characteristics
	Working With Periodicals
	Repeaters
	Idlers
	Spending time

	Attachments
	What Is an Attachment
	Attachment Strategy
	Attachment Characteristics
	Features of attachable objects
	Features of attachments

	Working With Attachments
	When and how PowerPlant calls attachments
	Creating your own attachments
	When to use attachments
	Uses for attachments

	Specific PowerPlant Attachments
	LBeepAttachment
	LBorderAttachment
	LPaintAttachment
	LEraseAttachment
	LCommandEnablerAttachment
	LKeyScrollAttachment

	Summary
	Code Exercise
	The Interface
	Implementing Goodies

	Looking Backward, Looking Forward

	PowerPlant Utilities
	PowerPlant Utilities Overview
	Classes Discussed Elsewhere
	More Utility Classes
	LClipboard
	Using LClipboard
	Local Scrap
	Putting and getting data from the clipboard

	Arrays
	LArray
	LVariableArray
	LRunArray
	TArray
	LArrayIterator
	LLockedArrayIterator
	TArrayIterator
	TLockedArrayIterator
	LComparator
	LLongComparator

	LString
	LSharable
	UScreenPort
	UDrawingState
	UDrawingUtils
	UDrawingUtils
	StDeviceLoop
	UMarchingAnts
	UTextDrawing

	UKeyFilters
	UProfiler
	UReanimator
	UResourceManager
	StNewResource
	StDeleteResource
	StResLoad

	UTextTraits

	Resource Notes
	PowerPlant-Specific Resources
	Standard Resources
	PP Copy & Customize.ppob
	MBAR-Menu Bar
	MENU-Menu
	Mcmd-Menu Command
	STR#-String List
	Txtr-Text Traits

	PP Copy & Customize.rsrc
	aete-Apple Event Terminology Extension
	ALRT-Alert Box
	DITL-Dialog Item List

	PP Action Strings.rsrc
	PP DebugAlerts.rsrc
	PP Document Alerts.rsrc
	PP AppleEvents.rsrc
	aedt-Apple Event Dispatch Table

	ColorAlertIcons.rsrc
	cicn-Color Icon

	ToolServer and Rez
	Using ToolServer
	Rez
	DeRez

	Index

